
Henriques and Madeira ﻿Algorithms Mol Biol (2016) 11:23
DOI 10.1186/s13015-016-0085-5

RESEARCH

BiC2PAM: constraint‑guided biclustering
for biological data analysis with domain
knowledge
Rui Henriques* and Sara C. Madeira*

Abstract 

Background:  Biclustering has been largely used in biological data analysis, enabling the discovery of putative
functional modules from omic and network data. Despite the recognized importance of incorporating domain
knowledge to guide biclustering and guarantee a focus on relevant and non-trivial biclusters, this possibility has not
yet been comprehensively addressed. This results from the fact that the majority of existing algorithms are only able
to deliver sub-optimal solutions with restrictive assumptions on the structure, coherency and quality of biclustering
solutions, thus preventing the up-front satisfaction of knowledge-driven constraints. Interestingly, in recent years,
a clearer understanding of the synergies between pattern mining and biclustering gave rise to a new class of algo-
rithms, termed as pattern-based biclustering algorithms. These algorithms, able to efficiently discover flexible biclus-
tering solutions with optimality guarantees, are thus positioned as good candidates for knowledge incorporation. In
this context, this work aims to bridge the current lack of solid views on the use of background knowledge to guide
(pattern-based) biclustering tasks.

Methods:  This work extends (pattern-based) biclustering algorithms to guarantee the satisfiability of constraints
derived from background knowledge and to effectively explore efficiency gains from their incorporation. In this
context, we first show the relevance of constraints with succinct, (anti-)monotone and convertible properties for the
analysis of expression data and biological networks. We further show how pattern-based biclustering algorithms can
be adapted to effectively prune of the search space in the presence of such constraints, as well as be guided in the
presence of biological annotations. Relying on these contributions, we propose BiClustering with Constraints using
PAttern Mining (BiC2PAM), an extension of BicPAM and BicNET biclustering algorithms.

Results:  Experimental results on biological data demonstrate the importance of incorporating knowledge within
biclustering to foster efficiency and enable the discovery of non-trivial biclusters with heightened biological
relevance.

Conclusions:  This work provides the first comprehensive view and sound algorithm for biclustering biological data
with constraints derived from user expectations, knowledge repositories and/or literature.

© 2016 The Author(s). This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license,
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Introduction
Biological data are characterized by the presence of local
patterns, whose discovery has been widely studied and
motivated in the context of biclustering [1, 2]. In particular,
the relevance of biclustering has been largely shown in the

analysis of gene expression data (to discover transcriptional
modules described by subsets of genes correlated in subsets
of samples [2]) and biological networks (to unravel mean-
ingfully dense regions from weighted adjacency matrices
derived from interaction data [3]). A key question in the
field of biclustering is how to benefit from the increasingly
available domain knowledge. Initial attempts to incorporate
background knowledge from user expectations [4–6] and
knowledge-based repositories [7–10] within biclustering

Open Access

Algorithms for
Molecular Biology

*Correspondence: rmch@tecnico.ulisboa.pt;
sara.madeira@tecnico.ulisboa.pt
INESC‑ID and Instituto Superior Técnico, Universidade de Lisboa, Lisbon,
Portugal

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13015-016-0085-5&domain=pdf

Page 2 of 23Henriques and Madeira ﻿Algorithms Mol Biol (2016) 11:23

showed its importance to explore efficiency gains and guar-
antee relevant solutions. However, these attempts only sup-
port very specific forms of knowledge and cannot be
extended to flexibly constrain the desirable properties of
outputted biclusters. Furthermore, due to the complexity of
the biclustering task1, most of the existing algorithms: (1)
are based on greedy or stochastic approaches, producing
sub-optimal solutions; and (2) usually place restrictions on
the allowed structure, coherency and quality of biclusters,
compromising the flexibility of the outputs [2, 11]. In this
context, these biclustering approaches cannot be extended
to incorporate knowledge-driven constraints since their
restrictions may a priori contradict the inputted
constraints.

Recent attempts to perform biclustering based on
enhanced pattern mining searches [8, 12, 13], termed as
pattern-based biclustering, showed the unprecedented
possibility to efficiently discover arbitrarily positioned
biclusters with parameterizable size, coherency and qual-
ity [2, 14]. In this context, two valuable synergies can be
identified between pattern-based biclustering and knowl-
edge incorporation. First, the optimality and flexibility of
pattern-based biclustering solutions provide an adequate
basis upon which knowledge-driven constraints can
be incorporated. Pattern-based biclustering tackles the
restrictions of peer algorithms, being an adequate candi-
date to flexibly constrain the desirable properties of the
target solution space. Second, the effective use of domain
knowledge to guide pattern mining searches has been
largely studied in the context of domain-driven pattern
mining [15, 16].

Despite these synergies, two major problems per-
sist. First, there is a lack of understanding on whether
domain-driven pattern mining and biclustering can be
consistently integrated. In particular, there is not a solid
ground on how to map the commonly available back-
ground knowledge in the form of constraints to guide
the biclustering task. Second, pattern-based bicluster-
ing algorithms depend on a specific variant of pattern
mining, referred as full-pattern mining, which has been
scarcely studied in the context of domain-driven pat-
tern mining. In fact, although new full-pattern mining
searches have been recently proposed to guarantee the
scalability of the biclustering task over large and dense
data [17, 18], there are not yet contributions on how

1  Biclustering involves combinatorial optimization to select and group rows
and columns and it is known to be a NP-hard problem (proven by mapping
the problem of finding maximum edge (bi)clique in a bipartite graph into the
problem of finding dense biclusters with maximum size [2, 10]). The problem
complexity increases for non-binary data contexts and when elements are
allowed to participate in more than one bicluster (non-exclusive structure) and
in no bicluster at all (non-exhaustive structure).

these searches can be adapted to incorporate background
knowledge.

This work addresses these problems. To this end, it
extends pattern-based biclustering algorithms using prin-
ciples from domain-driven pattern mining to seize large
efficiency gains in the presence of background knowl-
edge. Furthermore, it shows how functional annotations
and constraints with succinct, (anti-)monotone and con-
vertible properties can be used to guide the biclustering
task. The major contributions are fivefold:

• • integrative view of domain-driven pattern mining
and (pattern-based) biclustering. The consistency
of this view is shown for patterns given by frequent
itemsets, association rules and sequences;

• • principles for biclustering tabular data in the pres-
ence of an arbitrary number of annotations per
observation (derived from knowledge repositories
and literature);

• • list of meaningful constraints with succinct, (anti-)
monotone and convertible properties for biological
data contexts with a focus on gene expression and
network data;

• • principles to specify, process and incorporate differ-
ent types of constraints;

• • extension of full-pattern miners based on pattern-
growth searches to optimally explore efficiency gains
from constraints with succinct, (anti-)monotone and
convertible properties. In particular we show:
–– F2G [17] compliance with state-of-the-art pruning

principles on pattern-trees;
–– IndexSpan [18] compliance with prefix-monotone

checks on pattern-conditional data projections.

Figure 1 provides a structured view on the proposed con-
tributions and their applicability.

In this context, we propose BiClustering with Con-
straints using PAttern Mining (BiC2PAM), an algorithm
that integrates recent breakthroughs on pattern-based
biclustering [3, 14, 19, 20] and extends them to effectively
incorporate constraints and annotations from domain
knowledge.

Experimental results on synthetic and real data show
the importance of incorporating background knowledge
within pattern-based biclustering to seize large efficiency
gains by adequately pruning the search space and to guar-
antee non-trivial and (biologically) relevant solutions.

This paper is structured as follows. First, we pro-
vide background on domain-driven pattern mining for
pattern-based biclustering. Second, key contributions
and limitations from related work are surveyed. Third,
we list meaningful constraints in gene expression data
and biological networks, and describe an algorithmic

Page 3 of 23Henriques and Madeira ﻿Algorithms Mol Biol (2016) 11:23

basis (BiC2PAM) for their incorporation. BiC2PAM is
further extended to attain efficiency gains from con-
straints with nice properties. Fourth, we provide initial
empirical evidence of BiC2PAM’s efficiency and ability to
unravel non-trivial yet biologically significant biclusters.
Finally, concluding remarks and major implications are
synthesized.

Background
Biclustering, full‑pattern mining and pattern‑based
biclustering

Definition 1  Given a real-valued matrix A with n rows
X = {x1, . . . , xn} and m columns Y = {y1, . . . , ym}, and ele-
ments aij relating row xi and column yj, the biclustering
task aims to identify a set of biclusters {B1, . . . ,Bp}, where
each bicluster Bk = (Ik , Jk) is defined by a subset of rows
Ik ⊂ X and columns Jk ⊂ Y satisfying specific criteria of
homogeneity and statistical significance.

The homogeneity criteria determine the structure, coher-
ency and quality of biclustering solutions, while the sta-
tistical significance of a bicluster determines whether its
probability of occurrence deviates from expectations.
The homogeneity of a biclustering model is commonly
guaranteed through a merit function. Following Madei-
ra’s taxonomy [2], existing biclustering algorithms can be

grouped according to their homogeneity criteria (defined
by the underlying merit function) and search paradigm
(determining how the merit function is applied). The
structure of a biclustering solution is essentially defined
by the number, size and positioning of biclusters. Flex-
ible structures are characterized by an arbitrary high set
of (possibly overlapping) biclusters. The coherency of a
bicluster is defined by the observed correlation of val-
ues (coherency assumption) and by the allowed devia-
tion from expectations (coherency strength). A bicluster
can have coherency of values across its rows, columns or
overall elements, where the values typically follow con-
stant, additive, symmetric and order-preserving assump-
tions [2]. Finally, the quality of a bicluster is defined
by the type and amount of accommodated noise. Defi-
nitions 2 and 3 formalize these concepts, while Fig. 2
shows a set of biclusters with different coherencies in a
symbolic dataset.

Definition 2  Let the elements in a bicluster aij ∈ (I , J)
have coherency across rows given by aij = kj + γi + ηij,
where kj is the expected value for column j, γiis the adjust-
ment for row i, and ηij is the noise factor (affecting the
quality of the bicluster). Let Ā be the amplitude of values
in a matrix A. Given a matrix A, the coherency strength
is a real value δ ∈ [0, Ā], such that aij = kj + γi + ηij
where ηij ∈ [−δ/2, δ/2].

Fig. 1  Proposed contributions to an effective incorporation of constraints with distinct properties into (pattern-based) biclustering tasks

Page 4 of 23Henriques and Madeira ﻿Algorithms Mol Biol (2016) 11:23

Definition 3  The γ factors define the coherency
assumption: constant when γ = 0, and additive oth-
erwise. Symmetries can be accommodated on rows,
aij × ci where ci ∈ {1, −1}. Order-preserving assumption
is verified when the values of rows induce the same linear
ordering across columns.

Definition 4  Given a bicluster B = (I, J), the bicluster
pattern ϕB is given by the sequence of expected values
(kj ) according to a permutation of columns in the absence
of adjustments (γi = 0) and noise (ηij = 0): {kj | yj ∈ J },
while its support is given by the number of rows satisfy-
ing the pattern: |I|.

Consider the additive bicluster (I,J) = ({x1, x2} ,{y1, y2, y3})
in N

+
0

 with coherency across rows. Assuming x1|J

= {1, 3, 2} and x2|J = {3, 4, 2}, then this biclusters
can be described by aij = kj + γi with the pattern
ϕ = {k1 = 0, k2 = 2, k3 = 1}, supported by two rows with
additive factors γ1 = 1 and γ2 = 3.

Despite the relevance of discovering optimal and flex-
ible biclustering solutions to effectively incorporate
knowledge-driven constraints, most of the existing
biclustering algorithms are based on greedy or stochas-
tic searches, producing sub-optimal solutions, and place
restrictions (such as simplistic forms of coherency, fixed
number of biclusters, non-overlapping structures) that
prevent the flexibility of the outputs [2, 14].

Pattern-based biclustering. In recent years, a clearer
understanding of the synergies between pattern mining
and biclustering gave rise to a new class of algorithms,
referred as pattern-based biclustering, aiming to address
these limitations (no guarantees of optimality and flex-
ibility). Pattern-based biclustering is inherently prepared
to efficiently find exhaustive solutions of biclusters with
the unprecedented possibility to customize their struc-
ture, coherency and quality. Such behavior explains why
these algorithms are receiving an increasing attention for

biological data analysis [3, 8, 12, 14, 19–21]. The major
potentialities include: (1) efficient searches with opti-
mality guarantees; (2) biclusters with flexible coherency
strength and assumption [14, 19, 20]; (3) robustness to
noise, missing values and discretization problems [14] by
introducing the possibility to assign or impute multiple
symbols to a single data element; (4) non-fixed number
of biclusters arbitrarily positioned [12, 21]; (5) applica-
bility to network data and sparse data matrices [3, 22];
among others.

At its core, pattern-based biclustering relies on the
(iterative application of the) full-pattern mining task [14].
A full-pattern defines a region from the input data space,
thus enclosing not only the underlying pattern (itemset,
association rule, sequential pattern or graph with fre-
quency and length above certain thresholds), but also its
supporting rows and columns.

Definition 5  Let L be a finite set of items, and a pattern
P to be a composition of items, either an itemset (P ⊆ L ),
association rule (P : P1 → P2 where P1 ⊆ L ∧ P2 ⊆ L)
or sequence (P = P1 . . .Pn where Pi ⊆ L). Let a trans-
actional database Dbe a finite set of rows/transactions,
each defining a composition of items. A transaction is
commonly given by an itemset or sequence. Given D, let
the coverage �P of pattern P be the set of rows in D in
which P is satisfied/occurs, and its support supP be the
coverage size, |�P |. Let the length of a pattern |P| be the
number of items.

Definition 6  Given a matrix A, let D be a transac-
tional database derived from A: either the concatenation
of items with their column index (transactions given by
itemsets) or the ordering of column indexes according
to the values per row (transactions given by sequences).
A full-pattern is a tuple (P,�P ,ψP ,ϒP), where P is the
pattern in D, �P ⊂ X is its coverage (rows satisfying P),
�P ⊂ Y is the set of indexes (columns), and ϒP is the
original pattern in A (the corresponding itemset, rule or

Fig. 2  Pattern-based biclusters with distinct coherency assumptions

Page 5 of 23Henriques and Madeira ﻿Algorithms Mol Biol (2016) 11:23

sequence prior to the concatenation or ordering of col-
umn indexes).

Definition 7  Given a matrix A, the mapped transac-
tional database D, and a minimum support θ1 and pat-
tern length θ2 thresholds, full-pattern mining consists of
computing: {(P,�P ,ψP ,ϒP) | supP ≥ θ1 ∧ |P| ≥ θ2}.

Figure 3 shows how a symbolic matrix, A, is mapped
into two distinct transactional databases (given either by
index concatenations or orderings), D1 and D2, for the
subsequent discovery of full-patterns. The concatena-
tion of an item σ ∈ L with a column index in yi ∈ Y is
represented as yi.σ. The full-pattern in D1 can be formally
described as ({y1.6, y2.5, y4.3}, {t1, t3}, {y1, y2, y4}, 〈6, 5, 3〉).

Frequent itemsets can be discovered to compose con-
stant, additive and multiplicative models [14]; sequential
patterns are used to learn order-preserving models [19];
and rules can be composed to learn plaid models or tol-
erate parameterizable levels of localized noise [20]. Fig-
ure 3 further illustrates the paradigmatic cases where
full-pattern mining is applied to discover constant and
order-preserving biclusters.

In this context, the set of maximal biclusters (biclus-
ter not contained in larger biclusters) are mapped from
closed full-patterns (frequent yet not contained in larger
patterns with same support). Definition 8 specifies the
mapping between a full-pattern and a bicluster. For real-
valued matrices, (real-valued) biclusters are mapped
from full-patterns discovered under a parameterizable
coherency strength (δ ∝1/|L| where L is the discretization
alphabet).

Definition 8  Given a transactional database D derived
from a real-valued matrix, the set of maximal biclus-
ters ∪k(Ik , Jk) can be derived from the set of closed full-
patterns ∪kPk by mapping Ik = �Pk and Jk = �Pk, where
ϕBk = ϒPk.

Constraint‑based biclustering
To formalize the task targeted in this work, we introduce
below the concept of constraint in the context of biclus-
tering, and further describe different types of constraints
according to the selected full-pattern mining task.

A constraint is traditionally seen as a conjunction of
relations (predicate) over a set of variables describing a
given dataset [23]. Definitions 9 and 10 revise this notion
to guarantee its proper applicability within (pattern-
based) biclustering tasks.

Definition 9  In the context of pattern mining, a con-
straint is a predicate on the powerset of items C: 2L →

{true,false}. In the context of full-pattern mining,
a full-constraint is a predicate on the powerset of
original items, transactions, indexes and/or concat-
enations, C : {2Y × 2L, 2X, 2Y , 2L} →{true,false}. A full-
pattern (P,�P ,ψP ,ϒP) satisfies a full-constraint C if
C(P,�P ,ψP ,ϒP) is true.

Definition 10  A biclustering constraint is a predi-
cate on a bicluster’s values per column, rows I, columns
J and pattern ϕB, C : {2Y × 2L, 2X, 2Y , 2L} → true, false.
A bicluster B satisfies a constraint C if C(ϕB · J , I , J ,ϕB)
is true (or, alternatively, when the associated full-pattern
satisfies a full-constraint).

Consider a matrix mapped into a transactional data-
base with L = {a,b,c}. An illustrative full-constraint is
y1a ∈ P ∧ {x2, x3} ⊆ �P ∧ y4 ∈ �P ∧ {b} ⊆ ϒP, and the
associated biclustering constraint is y1a ∈ B ∧ {x2, x3} ⊆
I∧ y4 ∈ J ∧ {b} ⊆ ϕB. Minimum support and minimum
pattern length are the default full-constraints in full-pat-
tern mining: Csupport = |�P | ≥ θ and Clength = |P| ≥ θ.

More interesting constraints with properties of interest
include regular expressions or aggregate functions. In the
presence of matrices with numeric or ordinal values, further
constraints can be specified. In this context, a cost table is

Fig. 3  Discovery of biclusters with constant and order-preserving assumptions based on full-patterns (itemsets and sequences) discovered from
transactional databases mapped from the original data matrix

Page 6 of 23Henriques and Madeira ﻿Algorithms Mol Biol (2016) 11:23

specified in addition to the alphabet of items (e.g. {a:0, b:1,
c:2}). Depending on the type of full-pattern, multiple con-
straints can be applied against a cost table, including the
paradigmatic cases of aggregate functions such as length,
maximum, minimum, range, sum, mean and variance [24].

Some of these constraints are said to exhibit nice prop-
erties when their input can be effectively pushed deep
into the pattern mining task [15] to prune the search
space and therefore achieve efficiency gains. Below, we
explore different types of constraints according to the
selected full-pattern mining task for biclustering: itemset,
rule-based and sequential-pattern constraints.

Itemset constraints
Regular expressions and aggregate functions are the most
common form of constraints to guide frequent itemset
mining. In this context, efficiency gains can be seized in
the presence of constraints with succinct, (anti-)mono-
tone and convertible properties.

Definition 11  Let L be a set of items and P be an
itemset, P ⊆ L. Let each item σ ∈ L have a correspond-
ence with a real value, c:L → R, according to a well-
defined cost table. Let v be a real-valued constant and
range(P) = max(P) − min(P), max(P) = max

⋃
σ∈P

c(σ),
min(P) = min

⋃
σ∈P

c(σ) and avg(P) =
∑

σ∈P
c(σ)
|P| be well-

defined predicates. In this context:

• • A constraint C is monotone if for any P satisfying C,
P supersets satisfy C (e.g. range(P) ≥ v).

• • 	 A constraint C is anti-monotone if for any P not satis-
fying C, P supersets do not satisfy C (e.g. max(P) ≤ v).

• • Given a pattern P′ satisfying a constraint C, C is suc-
cint over P if P contains P′ (e.g. min(P) ≤ v).

• • A constraint C is convertible with regards to an
ordering of items R� if for any itemset P satisfying C,
the P suffixes satisfy C or/and itemsets with P as suf-
fix satisfy C (e.g. avg(P) ≥ v).

To instantiate the formalized constraints, consider
three observations (x1 = {a, b, c}, x2 = {a, b, c, d},
x3 = {a, d}), a minimum support θ1 = 1 and length θ2 = 2,
and the cost table {a:0, b:1, c:2, d:3}. The set of closed full-
patterns satisfying: the monotone constraint range(P) ≥ 2
is {({a, b, c}, {t1, t2}), ({a, d}, {t1, t3}), ({b, d}, {t2})}; the
anti-monotone constraint sum(P) ≤ 1 is {({a, b}, {t1, t2})} ;
the succint P ⊇ {c, d} is {({a, b, c, d}, {t2})}; and the con-
vertible constraint avg(P) ≥ 2 is {({b, c, d}, {t2})}.

Association rule constraints
Constraints satisfying these properties can be also effec-
tively applied in the context of association rule mining
(for the discovery of noise-tolerant biclusters [1, 20]).

In this context, constraints need to be satisfied by the
antecedent, consequent, or can be alternatively applied
during the generation of frequent itemsets, prior to the
composition of rules.

Additional constraints to guarantee specific correla-
tion/interestingness criteria [25] or the dissimilarity and
minimality of rules [26] can be specified.

In the context of association rule-based biclustering,
a full-constraint is evaluated against the union of items
on the antecedent and consequent as well as the union
of supporting transactions of the antecedent and con-
sequent. Given P: P1 → P2 and a constraint C, P satis-
fies C if the full-pattern given by (ϒP1∪P2 ,�P1 ∪�P2 ,
ψP1∪P2 ,P1 ∪ P2) satisfies C.

Sequential pattern constraints
The introduced concepts can be further extended for the
incorporation of constraints in the context of sequential
pattern mining (for the discovery of order-preserving
biclusters [19]). A sequence P is an ordered set of itemsets,
each itemset being a set of indexes in Y. Given a matrix
(X, Y) with n = 5 rows and m = 3 columns and a minimum
support θ1 = 3, (y2 ≤ y1 ∧ y2 ≤ y3, {x2, x4, x5}, {y1, y2, y3} ,
〈y2(y1y3)〉) is an illustrative full-pattern. Interestingly, the
sequential pattern ϒP does not explicitly disclose the value
expectations ϕB. Instead, ϒP is associated with an ordering
relation (such as y2 ≤ y1 ∧ y2 ≤ y3). In this context, the
following constraints can be specified: item constraints
(e.g. {y1, y3} ⊆ P); length constraints (minimum/maxi-
mum number of precedences and/or co-occurrences);
super-pattern constraints (patterns that contain a par-
ticular set of patterns as sub-patterns −y2 ≤ y1 ⊆ P );
and, more interestingly, regular expressions (e.g.
P ≡ y• ≤ {y•, y•}). Constraints concerning value expecta-
tions can be also specified using the values from a given
ordering based on the median of values from the support-
ing rows and columns (e.g. b ≤ a or 1.3 ≤ 0.4). As a result,
aggregate functions can be additionally specified within
sequential pattern constraints.

With regards to properties of the aforementioned con-
straints: length constraints are anti-monotonic, while
super-pattern constraints are monotonic. Item con-
straints, length constraints and super-pattern constraints
are all succinct. Some aggregate constraints and regular
expressions can also show nice properties [27].

Related work
Related work is surveyed according to: (1) the contribu-
tions and limitations of existing attempts to perform
biclustering with domain knowledge; (2) the state-of-the-
art on domain-driven pattern mining; and (3) the existing
efforts towards full-pattern mining and their adequacy to
accommodate domain knowledge.

Page 7 of 23Henriques and Madeira ﻿Algorithms Mol Biol (2016) 11:23

Knowledge‑driven biclustering
The use of domain knowledge to guide biclustering has
been increasingly stressed since solutions with good
homogeneity and statistical significance may not neces-
sarily be biologically relevant. However, few biclustering
algorithms are able to incorporate domain knowledge.

AI-ISA [7], GenMiner [8] and scatter biclustering [10]
are able to annotate data with functional terms retrieved
from repositories with ontologies and use these annota-
tions to guide the search.

COBIC [28] is able to adjust its behavior (maximum-
flow/minimum-cut parameters) in the presence of back-
ground knowledge. Similarly, the priors and architectures
of generative biclustering algorithms [29] can also be
parameterized to accommodate specific forms of back-
ground knowledge. However, COBIC and its generative
peers support only the definition of constraints concern-
ing the algorithm’s behavior and are not able to deliver
flexible biclustering solutions.

Fang et al. [4] proposed a constraint-based algorithm
enabling the discovery of dense biclusters associated
with high-order combinations of single-nucleotide poly-
morphisms (SNPs). Data-Peeler [5], as well as algorithms
from formal concept analysis [6] and bi-sets mining [30],
are able to efficiently discover dense biclusters in binary
matrices in the presence of (anti-)monotone constraints.
However, these algorithms impose a very restrictive form
of homogeneity in the delivered biclusters.

Domain‑driven pattern mining
A large number of studies explored how constraints can
be used to guide pattern mining tasks. Two major para-
digms are available: constraint-programming (CP) [16]
and dedicated searches [15, 31]. CP allows pattern min-
ing to be declaratively defined according to sets of con-
straints [16, 32]. These declarative models can allow for
complex mathematical expressions on the set of full-
patterns. Nevertheless, due to the poor scalability of CP
methods, they have been only used in highly constrained
settings, small-to-medium sized data, or to mine approx-
imate patterns [16, 32].

Pattern mining searches have been adapted to seize effi-
ciency gains from different types of constraints [15, 31,
33]. These efforts aim to replace naïve solutions based on
post-filtering to guarantee the satisfaction of constraints.
Instead, the constraints are pushed as deep as possi-
ble within the mining step for an optimal pruning of the
search space. The nice properties exhibited by constraints,
such as anti-monotone and succinct properties, have been
initially seized in the context of frequent itemset mining
by Apriori methods [31] to affect the generation of can-
didates. Convertible constraints can hardly be pushed
in Apriori methods but can be adequately handled by

pattern growth methods such as FP-Growth [15]. FICA,
FICM, and more recently MCFPTree [15], are FP-Growth
extensions to further explore opportunities from diverse
constraints. The inclusion of monotone constraints is
more complex. Filtering methods, such as ExAnte [34],
are able to combine anti-monotone and monotone prun-
ing based on reduction procedures. Empirical evidence
shows that these reductions are optimally handled within
pattern growth methods by adequately growing and prun-
ing small FP-Trees (referred as FP-Bonsais) [33].

These contributions were extended for association
rule mining [33, 35]. In particular, nice properties were
studied for item constraints [35], support constraints
[36], bounds interestingness criteria [37], and constraints
on the structure and dissimilarity of rules (respectively
referred as schema and opportunistic) [38].

Similarly, some studies proposed ways to effectively
incorporate constraints within Apriori and pattern-
growth searches for sequential pattern mining (SPM)
[27, 39]. Apriori searches were first extended to incor-
porate temporal constraints and user-defined taxono-
mies [39]. Mining frequent episodes in a sequence of
events [40] can also be viewed as a constrained SPM task
by seeing episodes as constraints in the form of acyclic
graphs. SPIRIT [41] revises the Apriori search to incor-
porate a broader range of constraints with nice proper-
ties and regular expressions. Pattern growth searches
based on data projections, such as PrefixSpan, were only
later extended by Pei et al. [27, 42] to support a wide-set
of constraints with nice properties. Although multiple
studies have been proposed on the use of temporal con-
straints for SPM, including length and gap constraints
[27, 43], these constraints are not relevant for the aim of
learning order-preserving models.

Full‑pattern mining with constraints
There are three major classes of full-pattern mining
searches [1, 44, 45]: (1) AprioriTID-based searches, gen-
erally suffering from costs of candidate generation for
dense datasets and low support thresholds; (2) searches
with vertical projections, which show efficiency bot-
tlenecks for data with a high number of transactions
since the bitset cardinality becomes large and associated
intersection procedures expensive; and (3) recently pro-
posed pattern-growth searches based on the annotation
of original pattern-growth structures with transactions’
identifiers. In particular, F2G [17] and IndexSpan [18]
(default options in BicPAM, BiP, BicNET and BicSPAM
biclustering algorithms [14, 19, 20, 22]) were the first
pattern-growth searches for full-pattern mining aiming
to surpass memory and time bottlenecks associated with
bitset and diffset structures used by AprioriTID and ver-
tical-based searches.

Page 8 of 23Henriques and Madeira ﻿Algorithms Mol Biol (2016) 11:23

Despite the high number of contributions from
domain-driven pattern mining, the ability of pattern-
growth searches to effectively incorporate full-con-
straints with nice properties (Definition 9) was not yet
demonstrated.

Solution: Pattern‑based biclustering with domain
knowledge
This section extends pattern-based biclustering algo-
rithms [1] to accommodate constraints by proposing
BiC2PAM (BiClustering with Constraints using PAt-
tern Mining). In what follows, we first provide princi-
ples for biclustering annotated biological data. Second,
meaningful full-constraints with nice properties are
listed to guide expression data analysis and network
data analysis. The possibility to specify alternative con-
straints in order to customize the structure, coherency,
quality and statistical significance of biclustering solu-
tions according to available knowledge is discussed
in Appendix. Third, we describe a set of principles
for the specification, processing and incorporation of
constraints within pattern-based biclustering. Finally,
we adapt the full-pattern mining searches used within
BiC2PAM in order to seize heightened efficiency gains
by exploring the properties associated with the input-
ted constraints.

Biclustering with annotations extracted from knowledge
repositories and literature
Domain knowledge comes often in the form of annota-
tions associated with specific rows and columns in a
matrix (or nodes in a network). These annotations are
often retrieved from knowledge repositories, seman-
tic sources and/or literature. Annotations can be either
directly derived from the properties associated with each
row/column/node (e.g. properties of a gene or a sample
in gene expression data) or can be implicitly predicted
based on the observed values by using feature extraction
procedures. For instance, consider the set of functional
annotations associated with gene ontology (GO) terms
[46]. A GO term is associated with an interrelated group
of genes associated with a specific biological process.
Since a gene can participate in multiple biological pro-
cesses, genes can have an arbitrary number of functional
annotations. As such, rows in an expression matrix (or
nodes in a biological network) can be annotated with a
non-fixed number of labels.

Pattern-based biclustering supports the integrated
analysis of matrices and annotations recurring to one of
two strategies. First, association rules or sequential rules
can be used to guide the biclustering task in the presence
of annotations according to the principles introduced by

Martinez et al. [8]. In this context, annotations can either
appear in the consequent, antecedent or on both sides
of an association rule. Biclusters can then be inferred
from these rules using the principles introduced by Hen-
riques et al. [1]. Illustrating, a rule {y12, y42} → {T1,T2}
supported by {x1, x3, x5} rows can be used to compose
a bicluster ({y1, y4}, {x1, x3, x5}) with elements consist-
ently associated with annotations T1 and T2. Learning
association rules with levels of confidence (or alternative
interestingness scores) below 100 % [20] is relevant to
discover biclusters with consistent annotations without
imposing a subset of annotations to appear on all rows/
columns of each bicluster.

Second, the annotations can be included directly
within data since pattern mining is able to rely on
rows with an arbitrary length. To this aim, annota-
tions are associated with a new dedicated symbol and
appended to the respective rows, possibly leading to a
set of observations with varying length. Consider the
annotations T1 and T2 to be respectively associated with
genes {x1, x3, x4} and {x3, x5}, an illustrative transac-
tional database of itemsets for this scenario would be
{x1 = {a11, . . . , a1m,T1}, x2 = {a21, . . . , a2m}, x3 = {a31, . . . , 
a3m,T1,T2}, . . .} . Databases of sequences (for order-
preserving biclustering) can be composed by appending
terms either at the end or the beginning of each sequence.

Given these enriched databases, pattern mining can
then be applied on top of these annotated transac-
tions with succinct, (anti-)monotone and convertible
constraints. Succinct constraints can be incorporated
to guarantee the inclusion of certain terms (such as
P ∩ {T1,T2} �= 0). This is useful to discover, for instance,
biclusters with genes participating in specific functions
of interest. (Anti-)monotone convertible constraints can
be, alternatively incorporated to guarantee, for instance,
that a bicluster associated with a discovered pattern is
functionally consistent, meaning that it can be mapped
to a single annotation. The |P ∩ {T1,T2}| ≥ 1 constraint is
anti-monotone and satisfies the convertible condition: if
P satisfies C, the P suffixes also satisfy C.

Interestingly, the two previous strategies can be seen as
equivalent when assuming that the discovery of the intro-
duced class of association rules is guided by rule-based
constraints and the discovery of patterns from annotated
data is guided by itemset/sequence constraints.

Biological constraints with properties of interest
Different types of constraints were introduced in Defini-
tion 11. In order to show how these constraints can be
specified and instantiated, this section provides examples
of meaningful constraints for gene expression and net-
work data analysis.

Page 9 of 23Henriques and Madeira ﻿Algorithms Mol Biol (2016) 11:23

Note that similar constraints can be formulated for the
analysis of alternative biological data, including: struc-
tural genome variations to enable the discovery of high-
order single-nucleotide polymorphisms; genome-wide
data to find promoters where mutations or appearing
binding sites show properties of interest; or medical data
to force the inclusion of certain clinical features or to
focus on less-trivial disease markers.

Gene expression data analysis
For illustrative purposes, consider Fig. 4 to be associated
with a symbolic expression matrix (and associated “price
table”), where the rows in the matrix correspond to dif-
ferent genes and their values correspond to the observed
expression levels for a specific condition (column). The
{−3,−2}, {−1,0,1} and {2,3} sets of symbols are respectively
associated with repressed (down-regulated), default (pre-
served) and activated (up-regulated) expression levels.

First, succinct constraints in gene expression analysis
allow the discovery of genes with specific constrained
levels of expression across a subset of conditions. Illus-
trating, min(ϕB) = −3 implies an interest in biclusters
(putative biological processes) where genes are at least
highly repressed in one condition. Alternatively, succinct
constraints can be used to discover non-trivial biclusters
by focusing on non-highly differential expression (e.g.
patterns with symbols {−2,2}). Such option contrasts
with the large focus on dense biclusters [2], thus enabling
the discovery of less-trivial yet coherent modules.

Second, (anti-)monotone constraints are key to cap-
ture background knowledge and guide biclustering. For
instance, the non-succinct monotonic constraint coun-
tVal(ϕB) ≥ 2 implies that at least two different levels of
expression must be present within a bicluster (putative
biological process). In gene expression analysis, biclus-
ters should be able to accommodate genes with differ-
ent ranges of up-regulation and/or down-regulation. Yet,
the majority of existing biclustering approaches can only
model a single value across conditions [2, 14]. When con-
straints, such as the value-counting inequality, are avail-
able, efficiency bottlenecks can be tackled by adequately
pruning the search space.

Finally, convertible constraints also play an important
role in biological settings to guarantee, for instance, that
the observed patterns have an average of values within a
specific range. Illustrating, the anti-monotonic convert-
ible constraint avg(ϕB) ≤ 0 indicates a preference for
patterns with repression mechanisms without a strict
exclusion of activation mechanisms. These constraints
are useful to focus the discovery on specific expression
levels, while still allowing for noise deviations. Under-
standably, they are a robust alternative to the use of strict
bounds from succinct constraints with maximum–mini-
mum inequalities.

Biological network data analysis
To motivate the relevance of inputting similar constraints
for the analysis of biological networks, we use again the
tabular dataset provided in Fig. 4. In this context, rows
and columns correspond to nodes associated with bio-
logical entities (such as genes, proteins, protein com-
plexes or other molecular compounds), and the values in
the matrix correspond to the strength of the interactions
between the nodes. As such, the strength of the interac-
tions is either negative {−3, −2} (e.g. inhibition), weak
{−1, 0, 1} or positive {2, 3} (e.g. activation).

First, succinct constraints can be specified for the dis-
covery of sets of nodes with specific interaction patterns
of interest. Illustrating, {−2, 2} ⊆ ϕB implies an interest
on non-dense network modules (coherent interactions
with soft inhibition and activation) to disclose non-trivial
regulatory activity, and min(ϕB) = −3 ∧max(ϕB) = 3
implies a focus on modules with the simultaneous pres-
ence of highly positive and negative interactions.

Second, (anti-)monotone constraints are key to dis-
cover network modules with distinct yet coherent reg-
ulatory interactions. For instance, the non-succinct
monotonic constraint countVal(ϕB) ≥ 3 implies that at
least three different types of interactions must be present
within a module.

Finally, convertible constraints are useful to place
non-strict expectations on the desirable patterns, yet
still accommodating deviations from expectations. Illus-
trating, avg(ϕB) ≤ 0 indicates a preference for network

Fig. 4  Symbolic dataset and corresponding “price table”

Page 10 of 23Henriques and Madeira ﻿Algorithms Mol Biol (2016) 11:23

modules with negative interactions without a strict exclu-
sion of positive interactions.

Constraints with nice properties can be alternatively
applied for networks with qualitative interactions.
Regulatory interactions, such as “binds”, “activates” or
“enhances”, are increasingly observed for a wide-variety
of protein-protein and gene interaction networks [47,
48]. In this context, assuming the presence of {a, b, c}
types of biological interactions, an illustrative anti-mono-
tone constraint is |ϕB ∩ {a, b}| ≥ 0.

Biological data analysis with full‑constraints
Although less motivated, constraints can be also defined
on the powerset of rows, columns and/or values per
columns. In fact, the minimum support and minimum
pattern length can be seen as constraints over I and J
indexes, respectively. An alternative constraint over I and
J is to require that biclusters include a minimum number
rows/columns from a particular subset of rows/columns
of interest. An illustrative succinct constraint in Y × L is
P ∩ {y2-3, y23} �= ∅, which implies an interest in biclus-
ters with differential expression (or interactions) associ-
ated with the y2 sample/gene/node.

Please have in mind that the constraints instantiated
throughout this section represent a small subset of all
possible constraints of interest, thus being mainly intro-
duced for the sake of motivating the relevance of suc-
cinct, (anti-)monotone and convertible properties. The
specification of constraints of interest is always depend-
ent on the learning goal and the peculiarities of the input
data. As such, an exhaustive listing and discussion of rel-
evant constraints for biological data contexts is consid-
ered to be out the scope of this work.

Biclustering with full‑constraints
We propose BiClustering with Constraints using PAt-
tern Mining (BiC2PAM) to effectively incorporate full-
constraints (including the set of constraints motivated in
previous section). BiC2PAM’s extensions to the existing
contributions on pattern-based biclustering [12, 14, 19,
20, 22] are twofold. First, a precise formalism was defined
to represent full-constraints (with identical notation to
the one introduced along this work) and new processing
procedures were implemented for their parsing and inter-
pretation. Under these principles, the desirable proper-
ties of biclustering solutions can be defined with sharp
usability. BiC2PAM supports not only the specification of
full-constraints (Definition 10), but further makes availa-
ble the possibility to specify native constraints to custom-
ize the structure, coherency and quality of biclustering
solutions (as described in Appendix). Second, BiC2PAM
implements different strategies to incorporate distinct
types of constraints:

• • if native constraints are inputted, BiC2PAM maps
them into parameterizations along the mapping,
mining and closing steps of BicPAMS (Appendix);

• • if constraints without nice properties are inputted,
BiC2PAM satisfies them recurring to post-filtering
verifications;

• • if constraints with nice properties are inputted, BiC-
2PAM implements pruning heuristics from previous
research on constraint-based Apriori-based methods
[36, 41].

In the context of the formal view on constraint-based
full-pattern mining introduced in "Constraint-based
biclustering" section, when constraints over ϒP (con-
straints in 2L) are inputted, they are mapped as con-
straints over P ∈ 2Y×L. For instance, the a ∈ ϒP succinct
constraint is mapped as P ∩ {y1a, . . . yma} �= ∅.

Similarly, constraints from ψP ∈ 2Y are mapped to con-
straints over P ∈ 2Y×L. Illustrating, y2 ∈ Y is mapped as
P ∩ {y2a, y2b, . . .} �= ∅.

Finally, constraints from �P ∈ 2X are incorporated by
adjusting the Apriori searches to effectively prune the
search space. Consider a succinct constraint that speci-
fies a set of transactions to be included in the resulting
biclusters. In this case, as soon as a generated candidate
is no longer supported by any transaction of interest,
there is no need to further generate new candidates and,
thus, the search space can be pruned at this point.

Understandably, despite the inherent simplicity of
incorporating constraints with nice properties in Apriori-
based searches, there is a critical drawback: the inabil-
ity to rely on key pattern-growth searches, such as F2G
(for the discovery of constant/additive/symmetric/plaid
biclusters) and IndexSpan (for the discovery of order-
preserving biclusters). These pattern-growth searches
were previously shown to be able to mine large data
with superior efficiency [17, 18]. Adding to this observa-
tion, there is a considerable agreement that the under-
lying structures of pattern-growth searches, such as
frequent-pattern trees and prefix-growth trees, provide a
more adequate representation of the search space for an
improved pruning.

Exploring efficiency gains from constraints with nice
properties
Although the incorporation of constraints with nice
properties can only be easily supported under Apriori-
based searches, there is large consensus that pattern-
growth searches are better positioned to seize efficiency
gains from these constraints than peer Apriori-based
and vertical searches. As such, F2G-Bonsai and Index-
SpanPG, described below, extend respectively the
recently proposed F2G (full-frequent itemset miner) and

Page 11 of 23Henriques and Madeira ﻿Algorithms Mol Biol (2016) 11:23

IndexSpan (full-sequential pattern miner) algorithms to
guarantee a more effective pruning of the search space
in the presence of constraints. These extensions are inte-
grated in BiC2PAM. Native constraints are effectively
incorporated in BiC2PAM through adequate param-
eterizations of pattern-based biclustering algorithms
(Appendix).

F2G‑Bonsai: F2G with itemset constraints
F2G [17] implements a pattern-growth search that does
not suffer from efficiency bottlenecks of peer searches
since it relies on frequent pattern tree structures (FP-
trees) that store transaction-IDs without duplicates. The
FP-tree is efficiently traversed to enumerate all full-pat-
terns. Full-patterns are generated by concatenating the
pattern suffixes with the full-patterns discovered from
conditional FP-trees where suffixes are removed. Figure 5
instantiates the behavior of F2G. In this section, we first
show the compliance of F2G with principles to handle
succinct and convertible constraints [15]. Second, we
show its compliance to handle difficult combinations of
monotone and anti-monotone constraints [33].

Compliance with different types of constraints  Unlike
candidate generation methods, pattern growth searches
provide further pruning opportunities. Pruning principles
can be standardly applied on both the original database
(FP-Tree) and on each projected database (conditional FP-
Tree).

The CFG method extends pattern-growth searches [15]
to seize the properties of nice constraints using simplistic
principles. Supersets of itemsets violating anti-monotone
constraints are removed from each (conditional) FP-
Tree. Illustrating, in the presence of sum(ϒP) ≤ 3, when
analyzing the y12 conditional database, the following

items ∪m
i=1

{yi2, yi3} can be removed to avoid conflicts
as their sum violates the given constraint. For an effec-
tive pruning, it is recommended to order the symbols
in the header table according to their value and support
[15, 24]. F2G is compliant with these pruning heuristics,
since it allows the rising of transaction-IDs in the FP-Tree
according to the order of candidate items for removal in
the header table (see Algorithms 1 and 2 in [17]).

For the particular case of an anti-monotone convertible
constraint, itemsets that satisfy the constraint are effi-
ciently generated under a pattern-growth search [24]. This
is done by assuming that original/conditional FP-trees are
built according to a price table and by pruning patterns
that no longer satisfy an anti-monotone convertible con-
straint since the inclusion of new items will no longer sat-
isfy the constraint. Illustrating, since {y1−3, y42, y23} does
not satisfies avg(ϒP) ≤ 0, there is no need to further build
{y1−3, y42, y23}-conditional trees. Therefore, this principle
provides an important criterion to stop FP-tree projec-
tions and/or prune items in a (conditional) FP-tree.

Finally, the transactions and items within a (condi-
tional) FP-tree that conflict with a given constraint can
be directly removed without causing any changes on
the resulting set of valid patterns. Illustrating, given
min(ϒP) = 0 constraint, the transactions x1 = {y1
−1, y23, y31} and x4 = {y11, y2−1, y32} can be directly
removed as they do not satisfy this succinct constraint.
Similarly, given the same constraint, min(ϒP) = 0, the
items with values below 0 can be removed. With regards
to transactions x1 and x4, this means removing a1,1 = y1
−1 and a4,2 = y2−1 items.

Furthermore, constraint checks can be avoided for sub-
sets of itemsets satisfying a monotone constraint. Illus-
trating, no further checks are needed in the presence of
countVal(ϒP) ≥ 2 constraint when the range of values in

Fig. 5  Behavior of F2G (detailed in [17]). The FP-tree is created from the inputted database with transactions annotated in leafs; a conditional pat-
tern is created for each node in the FP-tree; conditional FP-trees are projected from each conditional pattern (transactions moved up along the tree
to enable the discovery of full-patterns); conditional FP-trees are recursively mined and patterns grown if frequent; whenever a conditional FP-tree
contains a single path, all frequent patterns are enumerated

Page 12 of 23Henriques and Madeira ﻿Algorithms Mol Biol (2016) 11:23

the suffix of a pattern is ≥2 under the {y10, y11}-condi-
tional FP-Tree.

Combination of constraints with nice properties  The
previous extensions to pattern-growth searches are not
able to effectively comply with monotone constraints
when anti-monotone constraints (such as minimum sup-
port) are also considered. In FP-Bonsai [33], principles
to further explore the monotone properties for pruning
the search space are considered without reducing anti-
monotone pruning opportunities. This method is based
on data-reduction operations originally implemented in
ExAnte to seize efficiency gains from the properties of
monotone constraints. There are two data-reductions: µ
-reduction, which deletes transactions not satisfying C;
and α-reduction, which deletes from transactions single
items not satisfying C. Thanks to the recursive projec-
tions of FP-growth, the ExAnte data-reduction methods
can be applied on each conditional FP-tree to obtain a
compact number of smaller FP-Trees (FP-Bonsais). The
FP-Bonsai method can be combined with the previously
introduced principles, which are particularly prone to
handle succinct and convertible anti-monotone con-
straints. F2G can be extended to support these reduc-
tions on the (conditional) FP-Trees by guaranteeing that
transactions consistently rise up. The only requirement
is to preserve the order of items in the header table [17].
As such, F2G complies with the FP-Bonsai extension (see
Algorithm 2).

IndexSpanPG: IndexSpan with sequential pattern constraints
The work of Pei et al. [27] provides principles to extend
pattern-growth searches with prefix-based database
projections and no candidate generation to effectively
incorporate regular expressions and constraints with
nice properties. For this aim, the prefix-monotone prop-
erty is defined. A constraint is called prefix-monotone if
it is prefix anti-monotonic or prefix monotonic. With
a prefix-monotone constraint, there is only the need to
search in the projected databases for prefixes that satisfy
the constraint. When a constraint C is: (1) prefix anti-
monotonic, if C(P) = false, then there exists no sequen-
tial patterns containing P has a prefix and also satisfies C;
(2) prefix monotonic, if C(P) = true, then every sequen-
tial pattern having P as a prefix satisfies C; and (3) a regu-
lar expression, if the prefix of a given sequential pattern is
conflicting with the regular expression C, then there is no
need to further expand (i.e. there are no sequential pat-
terns with the same prefix that also satisfy C). As such,
since monotonic, anti-monotonic and regular expres-
sion constraints are prefix-monotone they can be pushed
deep into the search. Understandably, the efficiency gains
associated with such constraints cannot be attained

under Apriori-based searches [41]. Although succinct
constraints are not necessarily prefix anti-monotonic or
prefix monotonic, they can also be easily pushed deep
into the mining process (independently of the applied
SPM method).

According to these principles, we extended IndexS-
pan [18], an extension of PrefixSpan to explore efficiency
gains from the intrinsic properties of the order-preserv-
ing biclustering task. IndexSpan is compliant with the
enumerated principles. The minimalist data structures,
fast database projections and early pruning techniques
[18] do not interfere with the underlying prefix-growth
behavior, the essential requirement to incorporate pre-
fix-monotone constraints. Furthermore, given the fact
that IndexSpan explores item-indexable properties asso-
ciated with the order-preserving biclustering task, test-
ing constraints is done in an efficient and elegant way
(see Algorithm 3). This is true with regards to both: (1)
the validation of whether an anti-monotonic constraint
(or regular expression) cannot be satisfied by a given
prefix (in order to stop its growth), and (2) the validation
of whether a a monotonic constraint cannot be satisfied
by a given (projected) sequence (in order to prune the
search).

BiC2PAM: algorithmic details
The algorithmic basis of BiC2PAM is described in
Algorithm 1. The behavior of BiC2PAM can be divided
according to four major steps: (1) preprocessing, (2)
instantiation of constraints, (3) mining and (4) post-
processing. In step 1, the input real-valued matrix is
discretized (after proper normalization and exclusion of
outliers) under a given coherency strength, and multi-
ple items assign to values near a boundary of discretiza-
tion (according to [14]). If, instead, a network is given
as input, it is mapped into a sparse adjacency matrix
(according to [3]). Still along this first step, transactional
and sequential databases are mapped from the previous
data structures. In step 2, the inputted constraints are
parsed, their soundness checked against the preproc-
essed databases, and used to parameterize BiC2PAM (if
native) or instantiated (otherwise). In step 3, the pattern
mining searches proposed in "Exploring efficiency gains
from constraints with nice properties" section are applied
over the mapped databases and inputted constraints with
a decreasing support until a pre-specified number of
pattern-based biclusters (or coverage of matrix elements)
satisfying these constraints is achieved. Finally, BiC2PAM
allows for the postprocessing of the discovered biclus-
ters to guarantee their robustness and dissimilarity by
recurring to merging, extension, reduction and filtering
procedures (step 4 according to [14]). Figure 6 provides a
simplified illustration of these major steps.

Page 13 of 23Henriques and Madeira ﻿Algorithms Mol Biol (2016) 11:23

Understandably, the behavior and performance of
Algorithm 1 is essentially dependent on the underly-
ing domain-driven pattern mining searches. Algorithms
2 and 3 respectively describe F2G-Bonsai and IndexS-
panPG in accordance with the pruning principles respec-
tively introduced in "F2G-Bonsai: F2G with itemset

constraints" and "IndexSpanPG: indexSpan with sequen-
tial pattern constraints" sections. In F2G-Bonsai, reduc-
tions of the search space are efficiently applied during
the creation of the initial FP-tree and of each conditional
FP-tree (lines 7 and 32). Succinct, monotone, frequency
and anti-monotone reductions are efficiently applied in

Algorithm 1: BiC2PAM Core Steps (simplified pseudo-code)
Input: (required) dataset, constraints

(optional) patternMiner, stopCriteria, coherencies, alphabets, normalizer, discretizer, noiseHandler,
extender, merger, reducer, filter, orientation, cost table /*for symbolic data*/, annotations

1 main begin
2 biclusters ← ∅;
3 foreach assumption ∈ coherencies do
4 foreach L /*coherency strength*/ ∈ alphabets do
5 if isMatrix then matrices ← {dataset};
6 else matrices ← mapNetworkIntoAdjacencyMatrices(dataset);
7 foreach matrix ∈ matrices do
8 fullConstraints ← parseAndCheckConstraints(constraints);
9 database ← runMappingStep(matrix, L, normalizer, discretizer, noiseHandler, orientation, fullConstraints);

10 biclusters ← runMiningStep(database, assumption, patternMiner, stopCriteria, L, orientation, fullConstraints);

11 biclusters ← runPostprocessingStep(biclusters, extender, merger, filter);
12 return biclusters;

13 runMappingStep begin
14 mask ← getOutliersMask(adjacencies);
15 discData ← discretize(adjacencies, L, normalizer, discretizer, mask);
16 if isColumn(orientation) then discData ← transpose(discData);
17 treatedData ← generateMultiItems(discData, adjacencies noiseHandler);
18 // mapping data into transactional or sequential databases (observations with possibly varying size)
19 if isOrderPreserving(coherency) then database ← createSequencesByOrderingIndexes(treatedData);
20 else database ← createTransactionsByConcatenatingIndexes(treatedData);
21 database ← removeUninformativeElements(database, fullConstraints);
22 return appendAnnotations(database, annotations, constraints); //optional

23 runMiningStep begin
24 if isConstant(assumption) || isOrderPreserving(coherency) then

patterns ← runPM (patternMiner, database, stopCriteria, fullConstraints);
25 if isAdditive(assumption) || isSym(assumption) then

patterns ← runAdditiveSymmetricPM (patternMiner, database, stopCriteria, fullConstraints);
26 //recover biclusters from patterns either represented as itemsets, sequences or association rules
27 return getBiclustersFromPatterns(patterns, assumption, L, orientation);

28 runPostprocessingStep begin
29 biclusters ← merge(biclusters, merger); //using similarity criteria
30 biclusters ← filter(biclusters, filter); //using dissimilarity criteria
31 return adjust(biclusters, extender, reducer); //using homogeneity criteria

32 runAdditiveSymmetricPM begin
33 allFactors ← ∅;
34 patterns ← ∅;
35 foreach node-index j in database do
36 factors ← computeAlignmentFactors(database,j,coherency); //according to [14]
37 if factors ∈ allFactors then continue;
38 else allFactors ← allFactors ∪ factors;
39 alignedDatabase ← alignDatabase(factors,database);
40 patterns ← patterns ∪ runPM (patternMiner, alignedDatabase, stopCriteria, fullConstraints);
41 if allCombinations(allFactors) then break; /*simple combinatorial calculus to prune the search*/ ;
42 return patterns;

43 runPM begin

44 if isIterativeRun(stopCriteria) /*PM is iteratively applied with decreasing support by default*/ then
45 minSupport ← 0.8;
46 patterns ← ∅;
47 while minAreaPercentageAchieved(patterns, stopCriteria) || minNrBiclusters(patterns, stopCriteria) do
48 //F2G-Bonsai (constraint-based FIM or ARM) for constant/additive/sym coherencies
49 //IndexSpanPG (constraint-based SPM) for order-preserving coherency
50 patterns ← runSinglePM (patterns, patternMiner, minSupport, data, patternRep, constraints);
51 minSupport ← minSupport×0.9;
52 else
53 //simple statistical calculus based on the frequency of items
54 (minRows,minColumns) ← findLowerLimitsExpectations(data);
55 patterns ← runSinglePM (patterns, minRows, minColumns, data, patternRep, constraints);
56 return patterns;

57 runSinglePM with F2G-Bonsai specified in Algorithm 2;
58 runSinglePM with IndexSpanPG specified in Algorithm 3;

Page 14 of 23Henriques and Madeira ﻿Algorithms Mol Biol (2016) 11:23

this order. In IndexSpanPG, the pruning of conflicting
sequences or items with sequential constraints is done
after the initial construction of the item-indexable data-
base and after each database projection (lines 6, 24 and
29). Moreover, the growing of a given prefix is stopped
whenever the prefix contradicts an anti-monotonic con-
straint or regular expression (lines 21 and 26). In order
to avoid an unnecessary overhead for biclustering tasks
in the presence of high number of constraints, the prun-
ing principles in F2G-Bonsai and IndexSpanPG might be
only applied for certain database projections. In this case,
the periodicity τ of projections eligible for pruning should
be given as input to the algorithms (τ = 1 by default).

The computational complexity of BiC2PAM is bounded
by the complexity of the pattern-based biclustering task
in the absence of constraints. The complexity of pattern-
based biclustering tasks for dense and sparse matrices
can be respectively consulted in the documentation of
BicPAM [14] and BicNET [3].

BiC2PAM also provides default behaviors in order
to guarantee a friendly environment for users without
expertise in biclustering. For this aim, BiC2PAM makes
available: (1) default parameterizations (data-independ-
ent setting) and (2) dynamic parameterizations (data-
dependent setting). Default parameterizations include:
(1) zero-mean row-oriented normalization followed
by overall Gaussian discretization with n/4 items for
order-preserving coherencies (for an adequate trade-off
of precedences vs. co-occurrences) and a set of {3, 5, 7}
items for the remaining coherencies; (2) iterative dis-
covery of biclusters with distinct coherencies (constant,
symmetric, additive and order-preserving); (3) F2G-
Bonsai search for closed FIM and association rule min-
ing, and IndexSpanPG search for SPM; (4) multi-item
assignments; (5) merging of biclusters with over 70 %
Jaccard-based similarity; (6) a filtering procedure for
biclusters without statistical significance (according
to [49]) and a 60 % Jaccard-based similarity against a
larger bicluster; and (7) no constraints. For the default

setting, BiC2PAM iteratively decreases the support
threshold by 10 % (starting with θ = 80 %) until the out-
put solution discovers 50 dissimilar biclusters or a min-
imum coverage of 10 % of the inputted matrix elements
or network interactions. Dynamic parameterizations
enable the: (1) selection of data-driven normalization
and discretization procedures according to their fit-
ting error, and (2) activation of data partitioning pro-
cedures for large matrices: over 100 million elements
(excluding missing values) for the discovery of constant
biclusters and over 1 million elements for the remain-
ing coherencies.

Results
This section provides empirical evidence of the sound-
ness of the proposed contributions and of the relevance
of using constraints within (pattern-based) biclustering
to prune the search space and guarantee biologically sig-
nificant solutions. To this end, we assessed the perfor-
mance of BiC2PAM on synthetic data, gene expression
data and biological networks in the presence of domain
knowledge. BiC2PAM was parameterized with default
behavior and applied with F2G-Bonsai for the discov-
ery of constant biclusters with itemset constraints and
with IndexSpanPG for the discovery of order-preserving
biclusters with sequential pattern constraints. The stop-
ping criteria of BiC2PAM was specified as a minimum of
20 dissimilar biclusters for synthetic data contexts and 50
dissimilar biclusters for real data contexts. BiC2PAM is
implemented in Java (JVM v1.6.0-24). The experiments
were computed using an Intel Core i5 2.30GHz with 6GB
of RAM.

Results on synthetic data
Synthetic data
Table 1 describes the generated data settings, with prop-
erties resembling the regularities of gene expression
data. Constant and order-preserving biclusters with
varying quality and coherency strength were generated.

Fig. 6  Simplified illustration of BiC2PAM behavior: (1) transactional and sequential databases are derived from a multi-item matrix; (2) constraints
are processed; (3) pattern mining searches are applied with a decreasing support; and (4) the discovered pattern-based biclusters that satisfy the
inputted constraints are postprocessed

Page 15 of 23Henriques and Madeira ﻿Algorithms Mol Biol (2016) 11:23

Noise factors (±20 % of the range of inputted values)
were imputed and overlaps between biclusters allowed.
The selected number of rows and columns per biclus-
ter follows a Uniform distribution using the ranges in
Table 1 in order to guarantee the inclusion of biclusters
with dissimilar shapes. Reported results are the average
of performance views collected from 30 data instances
per setting.

Uninformative elements
A simplistic yet relevant form of domain knowledge is
the knowledge regarding the uninformative elements of
a given dataset. To this end, the ranges of values (or sym-
bols) to remove can be specified under a succinct con-
straint S /∈ P where S ⊆ R

+ (or S ⊆ L). The application
of this constraint within BiC2PAM leads to the removal
of these elements prior to the mining step, resulting in

Algorithm 2: F2G-Bonsai (Constraint-based Frequent Full-pattern Growth Bonsai)

1 Method: runSinglePM using F2G-Bonsai
Input: Transactions data, double θ /*support*/, C constraints

2 Map<Int,Int> mapSup ← getItemsFrequency(data);
3 data ← removeInfrequentItemsAndSort(data,mapSup,θ); //sort items in desc. freq. order
4 FPTree tree;
5 foreach Transaction t : data do tree.addTransaction(t.itemset,t.id); //annotate TIDs on leafs
6 tree.createHeaderList(mapSup);
7 exAnteReductions(tree.getPaths(),null,constraints,mapSup,θ);
8 F2G(tree,∅,mapSup,constraints);

9 Method: F2G
Input: FPTree tree, Itemset α, Map<Int,Int> mapSup, C constraints

10 if tree.hasSinglePath() then addAllCombForPath(tree.path, α);
11 else FPGrowthMultiplePaths(tree, α, mapSup,constraints);

12 Method: FPGrowthMultiplePaths
Input: FPTree tree, Itemset α, Map<Int,Int> mapSup, C constraints

13 foreach Int item : tree.headerList /*items in reverse order*/ do
14 if mapSup[item] < θ then
15 foreach Node node : tree.getItemNodes(item) do
16 node.parent.trans←node.parent.trans ∪ node.trans;
17 node.trans = ∅;
18 continue;
19 β.values ← α ∪ item;
20 β.support ← min(α.support,mapSup[item]);
21 foreach Node node : tree.mapItemNodes.get(item) do
22 node.parent.trans ← node.parent.trans ∪ node.trans;
23 β.trans ← β.trans ∪ node.trans;
24 fullPatterns.add(β);
25 Path[] prefixPaths; //β cond. base (prefixes co-occuring with suffix pattern)
26 foreach Node node: tree.getItemNodes(item) do
27 Path path = node.getParentsUntilRoot();
28 path.trans ← node.trans;
29 prefixPaths.add(path);
30 Map<Int,Int> mapβSup ← getItemsSup(prefixPaths);
31 exAnteReductions(prefixPaths,β,constraints,mapβSup,θ);
32 FPTree βtree; //β conditional FP-Tree
33 foreach Path path : prefixPaths do
34 βtree.addPrefixPath(path, mapβSup, θ);
35 βtree.addTransactionIDs(path.getTransactions());
36 βtree.createHeaderListSortedByIndex(mapβSup, tree.headerList);
37 if βtree.hasNodes() then F2G(βtree, β, mapβSup);

38 Method: addAllCombForPath //recursively adds path nodes with prefix
Input: Path path, Itemset α

39 Node node ← path.retrieveFirst();
40 β.items ← α ∪ node.item; β.support ← node.counter; β.trans ← node.trans;
41 fullPatterns.add(β);
42 if path.hasMoreNodes() then
43 addAllCombForPath(path, α);
44 addAllCombForPath(path, β);

45 Method: exAnteReductions //pruning space using the inputted constraints
Input: Path[] paths, Itemset prefix /*optional*/, C constraints, Map<Int,Int> mapSup, double θ

46 //pruning from succinct constraints
foreach constraint ∈ constraints.getSuccinct() do

47 for each path ∈ paths do path.prune(prefix,constraint,prefixmapSup);
48 //pruning from monotone constraints

foreach constraint ∈ constraints.getMonotone() do
49 foreach path ∈ paths do
50 if path.notSatisfies(prefix,constraint) then paths.remove(path,mapSup);
51 //alpha reduction (discard infrequent items)

for each path ∈ paths do path.removeInfrequentItems(θ,mapSup);
52 //pruning from anti-monotone constraints

foreach constraint ∈ constraints.getAntiMonotone() do
53 for each path ∈ paths do path.pruneConflictingItems(prefix,constraint,θ,mapSup);

Page 16 of 23Henriques and Madeira ﻿Algorithms Mol Biol (2016) 11:23

Table 1  Properties of the generated dataset settings.

where µ defines the flexibility of the underlying coherency assumption (µ = 1 for constant and µ = 2 for order-preserving)

Additional properties (default settings in bold):

Coherency strength δ = {5, 10, 15, 20, 25, 33 %} (or symbols |L| = {20, 10, 7, 5, 4, 3})

Deviations on data values in {0, δ/2, δ, 2δ}, and degree of noisy and missing elements in {0, 2, 5, 10 %}

Overlapping degree θ = {0, 0.1, 0.2, 0.4} with plaid effects2 described by f = {sum, product, weighted} (cumulative function) ν = {1, 0.7, 0.4} (cumulative effect),
ǫ = {0.1, 0.2} (noise), κ = {0.5, 0.3, 0.1 K} (average number of interacting biclusters) and φ = {1, 0.8, 0.5} (distribution of overlapping areas between the κ bics)—
variables according to [20]

Non-exhaustive list of matrices (♯rows × ♯columns) 500 × 50 1000 × 100 2000 × 200 4000 × 400

Number of hidden biclusters (K) 6× 1

µ
10× 1

µ
15× 1

µ
20× 1

µ

Number of rows per hidden bicluster µ[50,70] µ[70,100] µ[100,200] µ[200,300]

Number of columns per hidden bicluster µ[5,7] µ[7,10] µ[8,12] µ[10,15]

Algorithm 3: IndexSpanPG (Indexable Prefix-Span with Sequential Pattern Constraints)
Input: sequential database D, minimum support θ1, minimum sequence length θ2, constraints
Output: set of sequential patterns S
Note: α is a sequence, Dα is the α-projected database

(Dα simply maintains a reference to the current sequences)

1 Method: runSinglePM using IndexSpan begin
2 foreach sequence s in D /*add array of item indexes per sequence*/ do
3 foreach item c do
4 s.indexes[c] ← position(s,c);
5 α.items ← φ; α.trans ← φ;
6 fastPruning(D,α,constraints); //remove sequences and items that conflict with the constraints
7 indexSpan(α,D,constraints);

8 indexSpan(α,Dα,constraints) begin
9 foreach frequent item c in Dα do

10 β.items ← α.items ∪ c; //co-occurrence (c is added to the last α itemset)
11 γ.items ← α.items · c; //α precedes c (c is inserted as a new itemset)

12 //pruning and fast gathering of supporting transactions (for efficient data projections)
13 foreach sequence s in Dα do
14 currentIndex ← s.indexes[c];
15 upperIndex ← s.indexes[αn] /*αn is the last item*/ ;
16 if leftPositions(currentIndex)≥ θ2 − |α| /*pruning*/ then
17 if currentIndex > upperIndex then
18 γ.trans ← γ.trans ∪ s.ID;
19 else
20 if currentIndex=upperIndex ∧ c>αn then β.trans ← β.trans∪s.ID;

21 if supβ(Dα) ≥ θ1 ∧ notConflicts(β,constraints.getAntiMonotonic()) then
22 S ← S ∪ {β};
23 Aβ ← fastProjection(β,Dα);
24 fastPruning(Dβ ,β,constraints);
25 indexSpan(β,Dβ);
26 if supγ(Dα) ≥ θ1 ∧ notConflicts(γ,constraints.getAntiMonotonic()) then
27 S ← S ∪ {γ};
28 Dγ ← fastProjection(γ,Dα);
29 fastPruning(Dγ ,γ,constraints); //remove conflicting sequences and items
30 indexSpan(γ,Dγ);

31 fastProjection(β,Dα) begin
32 foreach sequence s in Dα do
33 currentIndex ← s.indexes[βn];
34 upperIndex ← s.indexes[βn−1];
35 if leftPositions(currentIndex)≥ θ2 − |α| /*pruning*/ then
36 if currentIndex > upperIndex then
37 Dβ ← Dβ ∪ s;
38 else
39 if currentIndex=upperIndex ∧ βn > βn−1 then Dβ ← Dβ ∪ s;
40 return Dβ ;

Page 17 of 23Henriques and Madeira ﻿Algorithms Mol Biol (2016) 11:23

significantly large efficiency gains as shown by Fig. 7.
This figure describes the impact of removing a varying
extent of uninformative elements from synthetic data on
the biclustering task. Despite the simplicity of this con-
straint, existing biclustering algorithms are not able to
support this behavior, which undesirably impacts their
efficiency and the adequacy of the outputted biclustering
solutions.

Incorporating annotations
Figure 8 assesses the ability of BiC2PAM to discover
biclusters with functional consistency from annotated
data. Functional consistency is observed when the major-
ity of rows in a bicluster share one or more annotations.
To this end, we annotate 2000 × 200 matrices with a var-
ying number of annotations per row2, {10 ± 4, 4 ± 2},
where each annotation is observed on a varying number
of rows, {200 ± 10, 100 ± 10}. For this analysis, we guar-
anteed that the hidden biclusters have a high degree of
functional consistency by imposing that the majority
(85 % ± 10 pp) of their rows share a common annotation.
As such, BiC2PAM was parameterized with succinct
constraints guaranteeing that at least one annotation is
consistently observed for all the rows of each bicluster
before postprocessing (before the application of exten-
sion, merging and reduction procedures). Despite the

2  Datasets available in http://web.ist.utl.pt/rmch/software/bic2pam/.

higher complexity from mining heterogeneous data
(input data plus a large amount of annotations), results
show that BiC2PAM is in fact more efficient than the
baseline option. Furthermore, the observed match scores
suggests that the presence of annotations may play an
important role in guiding the recovery of true biclusters.

Itemset constraints
In order to test the ability of BiC2PAM to seize efficiency
gains in the presence of itemset constraints with nice prop-
erties, we applied BiC2PAM over the 2000 × 200 data set-
ting (generated with 5 background symbols L = {−2, −1,
0, 1, 2} and hidden biclusters with constant assumption) in
the presence of succinct, monotone and convertible con-
straints. For the baseline performance, constraints were
satisfied using post-filtering procedures. Figure 9 shows the
impact of inputting disjunctions of succinct constraints in
the performance of BiC2PAM. As observed, the ability of
BiC2PAM to effectively prune the search space in the pres-
ence of these constraints is associated with significant effi-
ciency gains. Moreover, they enable a focus on less-trivial
regions from the input data space (e.g. −1 ∈ ϕB ∨ 1 ∈ ϕB).

Figure 10 measures the performance of BiC2PAM
when constraints with monotone, anti-monotone and
convertible properties are inputted. To this end, we show
the efficiency gains from parameterizing the underly-
ing F2G miner with diverse principles, and further test
F2G’s ability to deal not only with constraints satisfying

Fig. 7  Efficiency gains of BiC2PAM from succinct constraints specifying uninformative elements for varying data settings with constant and order-
preserving biclusters and coherency strength defined by |L| = 7

Fig. 8  BiC2PAM ability to biclustering data with varying distributions of annotations (efficiency and Jaccard-based match scores [14] collected for
the 2000 × 200 setting)

http://web.ist.utl.pt/rmch/software/bic2pam/

Page 18 of 23Henriques and Madeira ﻿Algorithms Mol Biol (2016) 11:23

a single property but multiple properties of interests (e.g.
γ1 < sum(ϕB) < γ2). Results confirm that the proposed
enhancements can lead to a substantial pruning of the
search space. In particular, CFG principles [15] are used
to seize efficiency gains from convertible constraints and
FP-Bonsai [33] to seize efficiency gains from monotonic
constraints.

Sequential pattern constraints
Figure 11 extends the previous analyses towards the
constraint-guided discovery of order-preserving biclus-
ters with regular expressions. For this analysis, BiC2PAM
was parameterized with IndexSpan and IndexSpanPG
and applied over the 1000 × 100 setting with a varying
set of constraints (minimum number of precedences and
ordering constraints). Results show that increased effi-
ciency gains can be attained from pruning data regions
that do not satisfy these constraints.

Full‑pattern growth searches
The previous results highlight the relevance of full-pat-
tern growth searches for biclustering (F2G-Bonsai and
IndexSpanPG) to adequately prune the search space.
Figure 12 further motivates the importance of the pro-
posed F2G-Bonsai against AprioriTID and Eclat (F2G
is able to surpass efficiency bottlenecks associated with
bitset data structures), and the relevance of IndexSpanPG
against PrefixSpan (IndexSpan is able to explore further

efficiency gains from the item-indexable properties of the
biclustering task). Results show the relevance of parame-
terizing BiC2PAM with the proposed full-pattern growth
searches for large data and for hidden biclusters with
loose coherency strength (highly dense data).

Results on biological data
Real data
To assess BiC2PAM over real data, we selected expres-
sion and network datasets with varying properties. Four
gene expression datasets were considered: dlblc (660
genes, 180 conditions) with human responses to chem-
otherapy [50], hughes (6300 genes, 300 conditions) to
study nucleosome occupancy [51], and yeast-cycle (6221
genes, 80 conditions) and gasch (6152 genes, 176 con-
ditions) measuring yeast responses to environmental
stimuli [52]. Three biological networks from STRING
v10 database [53] were additionally considered. These
networks capture the gene interactions within human
(6314 nodes, 423,335 interactions), Escherichia coli (8428
nodes, 3,293,416 interactions) and yeast (19,247 nodes,
8,548,002 interactions) organisms. The scores in these
networks are inferred from literature and multiple data
sources, revealing the expected strength of correlation
between genes.

Uninformative elements
In gene expression data analysis, elements from the input
matrix with default/non-differential expression are gen-
erally less relevant. Similarly, in the context of network
data analysis, interactions with low weights are gener-
ally of reduced interest for module discovery. In these
contexts, these data elements can be removed from the
learning under a succinct constraint. Figures 13 and 14
measures the impact of inputting such succinct con-
straints on the efficiency of BiC2PAM and on the prop-
erties of the outputted biclusters (assuming constant
coherency). For this analysis, we analyze performance

Fig. 10  BiC2PAM’s efficiency with (combined) anti-monotone, monotone and convertible constraints (2000 × 200 setting with constant coher-
ency). Impact of enhancing BiC2PAM with CFG [15] and FP-Bonsai [33] principles

Fig. 9  BiC2PAM’s efficiency in the presence of succinct constraints
(2000 × 200 setting with constant assumption)

Page 19 of 23Henriques and Madeira ﻿Algorithms Mol Biol (2016) 11:23

of BiC2PAM on both expression data (Fig. 13) and net-
work data (Fig. 14) from different organisms. Results
show that by inputting such simplistic constraints, very

high efficiency gains can be obtained. Additionally, the
removal of uninformative elements allows the focus on
more relevant regions of the input data space and is asso-
ciated with slightly smaller biclusters due to the greater
ability to exclude such elements from the solution space.

Annotations
Figure 15 measures the impact of incorporating func-
tional terms from ontologies for the analysis of biologi-
cal data (assuming an underlying constant coherency).
To this end, we collected for each gene from human
and yeast organisms the set of functional terms associ-
ated with the biological processes represented in gene

Fig. 11  BiC2PAM performance with sequence constraints when
learning order-preserving solutions (1000 × 100 setting)

Fig. 12  Impact of full-pattern growth searches in the performance of BiC2PAM for data with varying size (under a fixed coherency strength δ =
20 %) and for fixed data settings with varying coherency strength

Fig. 13  Efficiency of BiC2PAM with knowledge regarding the uninformative elements for the analysis of expression data (hughes, dlblc, yeast-cycle)
when assuming a constant coherency with |L| = 5

Fig. 14  Efficiency of BiC2PAM with knowledge regarding the uninformative elements for the analysis of network data (human, Escherichia coli, yeast
from STRING [53]) when assuming constant coherency with |L| = 5

Page 20 of 23Henriques and Madeira ﻿Algorithms Mol Biol (2016) 11:23

ontology from GOToolBox [46]. BiC2PAM was then
applied over expression and network data in the presence
of these annotations. Results confirm that BiC2PAM
is able to integratively learn from data and annotations
without further costs in efficiency, and to guarantee the
functional consistency of the outputted biclusters (as
expectedly demonstrated by the analysis of the enriched
terms).

Succinct, monotone and convertible constraints
Figures 16 and 17 show the impact of inputting biologi-
cally meaningful constraints in the efficiency and effec-
tiveness of BiC2PAM. For this purpose, we used the
complete gasch dataset (6152 × 176) [54] with five
levels of expression (|L| = 6). The impact of consider-
ing a diverse set of constraints in the efficiency levels of

BiC2PAM is provided in Fig. 16. The observed results
demonstrate the relevance of using meaningful con-
straints with succinct, (anti-)monotone and convertible
properties not only to guarantee a user-guided focus on
specific regions of interest, but also to promote the trac-
tability to perform biclustering to solve computationally
complex biological problems and analyzes.

The impact of these constraints in the relevance of pat-
tern-based biclustering solutions is presented in Fig. 17.
The biological relevance of each bicluster was derived
from the analysis of functionally enriched GO terms
based on the application of hypergeometric tests [46]. A
bicluster is considered significantly enriched if it has a
set of correlated over-represented terms with Bonferroni
corrected p values below 10−3. Two major observations
can be retrieved. First, when focusing on properties of

Fig. 15  Performance of BiC2PAM for biclustering biological datasets (yeast-cycle and dlblc) annotated with representative human and
yeast GO terms (terms associated with biological processes with more than 50 genes)

Fig. 17  Biological relevance of BiC2PAM for different constraint-based profiles of expression

Fig. 16  Efficiency gains from using biologically meaningful constraints with succinct/monotone/convertible properties within BiC2PAM for the
analysis of the gasch dataset (6152 × 176)

Page 21 of 23Henriques and Madeira ﻿Algorithms Mol Biol (2016) 11:23

interest (e.g. differential expression), the average signifi-
cance of biclusters increases as their genes have higher
propensity to be functionally co-regulated. This trend
is observed despite the smaller size of the constrained
biclusters. Second, when focusing on rare expression
profiles (≥3 distinct levels of expression), the average
relevance of biclusters slightly decreases as their co-reg-
ulation is less obvious. Yet, such non-trivial biclusters
hold unique properties with potential interest that can be
further investigated. To our knowledge, BiC2PAM is the
only available biclustering algorithm able to rely on user
expectations and other forms of knowledge to focus the
search on these non-trivial yet coherent and potentially
interesting regions from the input data space.

Conclusions and future work
This work motivates the relevance of constraint-guided
biclustering for biological data analysis with domain
knowledge. To answer this task, we explored the syner-
gies between pattern-based biclustering and domain-
driven pattern mining. As a result, BiC2PAM algorithm
was proposed with two major goals: (1) to learn biclus-
tering models in the presence of an arbitrary number of
annotations from knowledge repositories and literature,
and (2) to effectively incorporate constraints with nice
properties derived from user expectations. BiC2PAM can
therefore be applied in the presence of domain knowl-
edge to guarantee a focus on relevant regions and explore
potentially high efficiency gains.

We further demonstrated the consistency between
domain-driven pattern mining and pattern-based biclus-
tering based on the notion of full-patterns; surveyed the
major drawbacks of existing research towards this end; and
extended pattern-growth searches with state-of-the-art
principles to prune the search space by pushing constraints
with nice properties deep into the mining process. In par-
ticular, we showed the compliance of F2G searches with
principles to effectively prune (conditional) FP-Trees, and
the compliance of IndexSpan searches with principles to
effectively prune prefix-growth structures. These searches
were respectively extended to support pattern-based biclus-
tering with constant and order-preserving assumptions.

Meaningful constraints with succinct, monotone, anti-
monotone and convertible properties were presented for
distinct biological tasks (gene expression analysis and
network data analysis) in order to focus the search space
on less-trivial yet coherent regions.

Results from synthetic and real data show that the
incorporation of background knowledge leads to large
efficiency gains that turn the biclustering task tractable for
large-scale data. We further provide initial evidence of the
relevance of the supported types of constraints to discover

non-trivial yet meaningful biclusters in expression and
network data with heightened biological significance.

Four major directions are identified for future work.
First, the extension of the proposed contributions
towards classification tasks based on the discrimina-
tive properties of biclusters in labeled data contexts.
Second, an in-depth systematization of constraints with
nice properties across biological data domains, including
a structured view on their relevance for omic, genome-
wide and chemical data analysis. Third, a broader quanti-
fication of the impact of incorporating constraints across
these data domains. Finally, the extension of the pro-
posed framework for the tasks of biclustering time series
data and triclustering multivariate time series data in the
presence of temporal constraints.

Data and software availability
The datasets and BiC2PAM software are available in
http://web.ist.utl.pt/rmch/software/bic2pam/.

Abbreviations
BicNET: Biclustering NETworks (); Bic2PAM: BiClustering with Constraints
using PAttern Mining (algorithm); BicPAM: BiClustering using PAttern Mining
(algorithm); BicSPAM: Biclustering using Sequential PAttern Mining (algorithm);
BiModule: Biclustering Modules (algorithm); BiP: Biclustering Plaid models
(algorithm); DeBi: Differentially expressed Biclustering (algorithm); F2G: Full
Frequent-pattern Growth; FIM: Frequent Itemset Mining; FP: Frequent Pattern;
GO: Gene Ontology; SPM: Sequential Pattern Mining.

Authors’ contributions
RH designed the algorithms under the close supervision of SCM. Both authors
revised the final manuscript. Both authors read and approved the final
manuscript.

Competing interests
The authors declare that they have no competing interests.

Ethical approval and consent to participate
Not Applicable. The manuscript does not report new studies involving any
animal or human data or tissue.

Funding and acknowledgments
This work was supported by Fundação para a Ciência e Tecnologia under the
project Neuroclinomics2 PTDC/EEI-SII/1937/2014, Inesc-ID plurianual with
reference UID/CEC/50021/2013, the research Grant SFRH/BD/75924/2011 to
RH, and the sabbatical leave Grant SFRH/BSAB/1427/2014 to SCM. SCM was
also partially funded by the EURIAS Fellowship Programme and the European
Commission (Marie-Sklodowska-Curie actions CoFUND Programme-FP7)
through a grant for a junior fellowship position at Istituto di Studi Avanzati,
University of Bologna, Italy.

Appendix: Native constraints
In addition to the incorporation of functional annota-
tions and specification of constraints with properties of
interest, further possibilities can be explored within BiC-
2PAM to guarantee its ability to learn biclustering solu-
tions with customizable structure, coherency and quality
in accordance with domain knowledge. Below we list a
set of native constraints to this end that are effectively

http://web.ist.utl.pt/rmch/software/bic2pam/

Page 22 of 23Henriques and Madeira ﻿Algorithms Mol Biol (2016) 11:23

incorporated within BiC2PAM by adapting the param-
eters that control its behavior along its preprocessing,
mining, postprocessing steps.

Relevant constraints provided in the preprocessing step
include:

• • Minimum coherency strength of the target biclusters
(Definition 2). Decreasing the coherency strength
(increasing the number of symbols) reduces the
allowed deviations from value expectations and it is
often associated with solutions composed by a higher
number of smaller biclusters;

• • Tolerance to noise ηij (Definition 2). This constraint is
used to adjust the behavior of BiC2PAM in the pres-
ence of noise, missing values or discretization draw-
backs. BiC2PAM enables the possibility to assign a
parameterizable number of symbols to a given data
element when its value is near a boundary of discre-
tization. By assigning two or more symbols guaran-
tees a higher robustness to noise (proof in [14]).

Relevant constraints provided in the mining step include:

• • Coherency assumption and orientation: Currently,
BiC2PAM supports the selection of constant, addi-
tive, multiplicative, symmetric, order-preserving and
plaid models with coherency on rows or columns.
An in-depth view on the relevance of non-constant
coherency assumptions for expression and network
data analysis was previously provided in [14, 19, 20,
22].

• • Minimum pattern length and/or support (minimum
number of columns and/or rows in the bicluster).

• • Pattern representation: simple (all coherent biclus-
ters), closed (all maximal biclusters), or maximal
(solutions with a compact number of biclusters with
a preference towards a high number of columns).

• • Stopping criteria: minimum number of biclusters
able to satisfy the inputted constraints, or minimum
area of the input matrix covered by the discovered
valid biclusters.

Understandably, constraints addressed at the post-
processing stage are not desirable since they are not able
to seize major efficiency gains. Nevertheless, BiC2PAM
supports three key types of constraints that could imply
additional computational costs, but are addressed with
heightened efficiency: (1) maximum percentage of noisy
and missing elements per bicluster (based on merging
procedures [14]), (2) minimum homogeneity of the tar-
get biclusters (using extension and reduction procedures
with a parameterizable merit function [14]) and (3) mini-
mum dissimilarity criteria to guarantee compact outputs.

Previous work from Henriques and Madeira [1, 14, 19,
20, 22] provide an in-depth description of how pattern-
based biclustering algorithms implement this wide-set of
customization possibilities.

The listed native constraints can be specified in declar-
ative form. As such, BiC2PAM provides the possibil-
ity to affect structural aspects of its outputs with sharp
usability.

Received: 2 February 2016 Accepted: 16 August 2016

References
	1.	 Henriques R, Antunes C, Madeira SC. A structured view on pattern

mining-based biclustering. Pattern Recogn. 2015;48(12):3941–58.
	2.	 Madeira SC, Oliveira AL. Biclustering algorithms for biological data

analysis: a survey. IEEE/ACM Trans Comput Biol Bioinformatics.
2004;1:24–45.

	3.	 Henriques R, Madeira SC. BicNET: flexible module discovery in large-scale
biological networks using biclustering. Algorithms Mol Biol. 2016;11:1–30.

	4.	 Fang G, Haznadar M, Wang W, Yu H, Steinbach M, Church TR, Oetting
WS,Van Ness B, Kumar V, High-order SNP combinations associated with
complexdiseases: efficient discovery, statistical power and functional
interactions. Plos One. 2012;7:e33531. doi:10.1371/journal.pone.0033531.

	5.	 Guerra I, Cerf L, Foscarini J, Boaventura M, Meira W. Constraint-based
search of straddling biclusters and discriminative patterns. JIDM.
2013;4(2):114–23.

	6.	 Kuznetsov SO, Poelmans J. Knowledge representation and processing
with formal concept analysis. Wiley Interdisc Rev Data Min Knowl Discov.
2013;3(3):200–15.

	7.	 Visconti A, Cordero F, Pensa RG. Leveraging additional knowledge to
support coherent bicluster discovery in gene expression data. Intell Data
Anal. 2014;18(5):837–55.

	8.	 Martinez R, Pasquier C, Pasquier N, Martinez R, Pasquier C, Pasquier N.
GenMiner: mining informative association rules from genomic data. In
BIBM. Washington, D.C.: IEEE CS; 2007.

	9.	 Nepomuceno JA, Troncoso A, Nepomuceno-Chamorro IA, Aguilar-Ruiz
JS. Integrating biological knowledge based on functional annotations
for biclustering of gene expression data. Computer Methods Programs
Biomed. 2015;119(3):163–80.

	10.	 Peeters R. The maximum edge biclique problem is NP-complete. Discrete
Appl Math. 2003;131(3):651–4.

	11.	 Hochreiter S, Bodenhofer U, Heusel M, Mayr A, Mitterecker A, Kasim A,
Khamiakova T, Van Sanden S, Lin D, Talloen W, Bijnens L, Göhlmann HWH,
Shkedy Z, Clevert DA. FABIA: factor analysis for bicluster acquisition.
Bioinformatics. 2010;26(12):1520–7.

	12.	 Serin A, Vingron M. DeBi: discovering differentially expressed biclusters
using a frequent itemset approach. Algorithms Mol Biol. 2011;6:1–12.

	13.	 Okada Y, Okubo K, Horton P, Fujibuchi W. Exhaustive search method
of gene expression modules and its application to human tissue data.
IAENG Int J Comput Sci. 2007;34:119–26.

	14.	 Henriques R, Madeira S. BicPAM: pattern-based biclustering for biomedi-
cal data analysis. Algorithms Mol Biol. 2014;9:27.

	15.	 Pei J, Han J. Can we push more constraints into frequent pattern mining?
In KDD. New York: ACM; 2000. p. 350–4.

	16.	 Bonchi F, Lucchese C. Extending the state-of-the-art of constraint-based
pattern discovery. Data Knowl Eng. 2007;60(2):377–99.

	17.	 Henriques R, Madeira SC, Antunes C. F2G: efficient discovery of full-
patterns. In ECML/PKDD nfMCP. Prague; 2013.

	18.	 Henriques R, Antunes C, Madeira S. Methods for the efficient discovery
of large item-indexable sequential patterns. In: Appice A, Ceci M, Loglisci
C, Manco G, Masciari E, Ras ZW, editors. New frontiers in mining complex
patterns. Lecture Notes in Computer Science, vol 8399. Springer; 2014. p.
100–116.

Page 23 of 23Henriques and Madeira ﻿Algorithms Mol Biol (2016) 11:23

• We accept pre-submission inquiries

• Our selector tool helps you to find the most relevant journal

• We provide round the clock customer support

• Convenient online submission

• Thorough peer review

• Inclusion in PubMed and all major indexing services

• Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central
and we will help you at every step:

	19.	 Henriques R, Madeira S. BicSPAM: flexible biclustering using sequential
patterns. BMC Bioinform. 2014;15:130.

	20.	 Henriques R, Madeira S. Biclustering with flexible plaid models to unravel
interactions between biological processes. IEEE/ACM Transactions on:
Comput Biol Bioinform; 2015.12;738–752

	21.	 Okada Y, Fujibuchi W, Horton P. A biclustering method for gene expres-
sion module discovery using closed itemset enumeration algorithm. IPSJ
Trans Bioinform. 2007;48(SIG5):39–48.

	22.	 Henriques R, Madeira SC. BicNET: efficient biclustering of biological
networks to unravel non-trivial modules. In: Algorithms in bioinformatics
(WABI), LNCS. Berlin: Springer-Verlag; 2015.

	23.	 Marriott K, Stuckey P. Programming with constraints: an introduction.
adaptive computation and machine. Cambridge: MIT Press; 1998.

	24.	 Pei J, Han J. Constrained frequent pattern mining: a pattern-growth view.
SIGKDD Explor Newslett. 2002;4:31–9.

	25.	 Tan PN, Kumar V, Srivastava J. Selecting the right interestingness measure
for association patterns. In: Proceedings of the eighth ACM SIGKDD
international conference on Knowledge discovery and data mining, KDD
’02. New York: ACM; 2002. p. 32–41.

	26.	 Alves R, Rodríguez-Baena DS, Aguilar-Ruiz JS. Gene association analysis: a
survey of frequent pattern mining from gene expression data. Briefings
Bioinform. 2010;11(2):210–24.

	27.	 Pei J, Han J, Wang W. Constraint-based sequential pattern mining: the
pattern-growth methods. J Intell Inf Syst. 2007;28(2):133–60.

	28.	 Mouhoubi K, Létocart L, Rouveirol C. A knowledge-driven bi-clustering
method for mining noisy datasets. In: Neural information processing.
Berlin:Springer; 2012. p. 585–93.

	29.	 Henriques R, Antunes C, Madeira S. Generative modeling of reposi-
tories of health records for predictive tasks. Data Min Knowl Discov.
2015;29(4):999–1032. doi:10.1007/s10618-014-0385-7.

	30.	 Besson J, Robardet C, De Raedt L, Boulicaut JF. Mining bi-sets in numeri-
cal data. In: Knowledge discovery in inductive databases. Berlin:Springer;
2007. p. 11–23.

	31.	 Ng RT, Lakshmanan LVS, Han J, Pang A. Exploratory mining and
pruning optimizations of constrained associations rules. SIGMOD R.
1998;27(2):13–24.

	32.	 Khiari M, Boizumault P, Crémilleux B. Constraint programming for mining
n-ary patterns. In: Principles and practice of constraint programming.
Berlin: Springer; 2010. p. 552–67.

	33.	 Bonchi F, Goethals B. FP-Bonsai: the art of growing and pruning small
FP-trees. In: Dai H, Srikant R, Zhang C, editors. Advances in knowledge
discovery and data mining. Berlin Heidelberg: Springer; 2004. p. 155–60.

	34.	 Bonchi F, Giannotti F, Mazzanti A, Pedreschi D. ExAnte: a preprocessing
method for frequent-pattern mining. IEEE Intell Syst. 2005;20(3):25–31.

	35.	 Srikant R, Vu Q, Agrawal R. Mining association rules with item constraints.
KDD. 1997;97:67–73.

	36.	 Wang K, He Y, Han J. Pushing support constraints into association rules
mining. IEEE Trans Knowl Data Eng. 2003;15(3):642–58.

	37.	 Bayardo RJ, Agrawal R, Gunopulos D. Constraint-based rule mining in
large, dense databases. In: 15th international conference on data engi-
neering. New York: IEEE; 1999. p. 188–97.

	38.	 Baralis E, Cagliero L, Cerquitelli T, Garza P. Generalized association rule
mining with constraints. Inf Sci. 2012;194:68–84.

	39.	 Srikant R, Agrawal R. Mining sequential patterns: generalizations and
performance Improvements. In: Proceedings of the 5th international
conference on extending database technology: advances in database
technology, EDBT ’96. London: Springer-Verlag; 1996. p. 3–17.

	40.	 Mannila H, Toivonen H, Verkamo AI. Discovery of frequent episodes in
event sequences. Data Min Knowl Discov. 1997;1(3):259–89.

	41.	 Garofalakis MN, Rastogi R, Shim K. SPIRIT: sequential pattern mining with
regular expression constraints. VLDB. 1999;99:7–10.

	42.	 Pei J, Han J, Wang W. Mining sequential patterns with constraints in large
databases. In: Proceedings of the eleventh international conference
on information and knowledge management. New York: ACM; 2002. p.
18–25.

	43.	 Antunes C, Oliveira AL. Generalization of pattern-growth methods for
sequential pattern mining with gap constraints. In: Machine learning and
data mining in pattern recognition. Berlin: Springer; 2003. p. 239–51.

	44.	 Han J, Cheng H, Xin D, Yan X. Frequent pattern mining: current status and
future directions. Data Min Knowl Discov. 2007;15:55–86.

	45.	 Mabroukeh NR, Ezeife CI. A taxonomy of sequential pattern mining
algorithms. ACM Comput Surv. 2010;43:3:1–41.

	46.	 Martin D, Brun C, Remy E, Mouren P, Thieffry D, Jacq B. GOToolBox:
functional analysis of gene datasets based on gene ontology. Gen Biol.
2004;12:101.

	47.	 MacPherson JI, Dickerson J, Pinney J, Robertson D. Patterns of HIV-1
protein interaction identify perturbed host-cellular subsystems. PLoS
Comput Biol. 2010;6(7):e1000863.

	48.	 Mukhopadhyay A, Maulik U, Bandyopadhyay S. A novel biclustering
approach to association rule mining for predicting HIV-1-human protein
interactions. PLoS One. 2012;7(4):e32289.

	49.	 Henriques R. Learning from high-dimensional data using local descriptive
models. PhD thesis, Instituto SuperiorTecnico, Universidade de Lisboa,
Lisboa; 2016.

	50.	 Rosenwald A. dlblc team: the use of molecular profiling to predict sur-
vival after chemotherapy for diffuse large-B-cell lymphoma. N Engl J Med.
2002;346(25):1937–47.

	51.	 Lee W, Tillo D, Bray N, Morse RH, Davis RW, Hughes TR, Nislow C. A
high-resolution atlas of nucleosome occupancy in yeast. Nat Genet.
2007;39(10):1235–44.

	52.	 Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB, Storz G,
Botstein D, Brown PO. Genomic expression programs in the response of
yeast cells to environmental changes. Mol Biol Cell. 2000;11(12):4241–57.

	53.	 Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas
J, Simonovic M, Roth A, Santos A, Tsafou KP, et al. STRING v10: protein–
protein interaction networks, integrated over the tree of life. Nucl Acids
Res. 2015;43:D447–52.

	54.	 Gasch AP, Werner-Washburne M. The genomics of yeast responses
to environmental stress and starvation. Funct Integr Genom.
2002;2(4–5):181–92.

http://dx.doi.org/10.1007/s10618-014-0385-7

	BiC2PAM: constraint-guided biclustering for biological data analysis with domain knowledge
	Abstract
	Background:
	Methods:
	Results:
	Conclusions:

	Introduction
	Background
	Biclustering, full-pattern mining and pattern-based biclustering
	Constraint-based biclustering
	Itemset constraints
	Association rule constraints
	Sequential pattern constraints

	Related work
	Knowledge-driven biclustering
	Domain-driven pattern mining
	Full-pattern mining with constraints

	Solution: Pattern-based biclustering with domain knowledge
	Biclustering with annotations extracted from knowledge repositories and literature
	Biological constraints with properties of interest
	Gene expression data analysis
	Biological network data analysis
	Biological data analysis with full-constraints

	Biclustering with full-constraints
	Exploring efficiency gains from constraints with nice properties
	F2G-Bonsai: F2G with itemset constraints
	Compliance with different types of constraints
	Combination of constraints with nice properties

	IndexSpanPG: IndexSpan with sequential pattern constraints

	BiC2PAM: algorithmic details

	Results
	Results on synthetic data
	Synthetic data
	Uninformative elements
	Incorporating annotations
	Itemset constraints
	Sequential pattern constraints
	Full-pattern growth searches

	Results on biological data
	Real data
	Uninformative elements
	Annotations
	Succinct, monotone and convertible constraints

	Conclusions and future work
	Data and software availability
	Authors’ contributions
	References

