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Abstract 

Background:  Biclustering has been largely used in biological data analysis, enabling the discovery of putative 
functional modules from omic and network data. Despite the recognized importance of incorporating domain 
knowledge to guide biclustering and guarantee a focus on relevant and non-trivial biclusters, this possibility has not 
yet been comprehensively addressed. This results from the fact that the majority of existing algorithms are only able 
to deliver sub-optimal solutions with restrictive assumptions on the structure, coherency and quality of biclustering 
solutions, thus preventing the up-front satisfaction of knowledge-driven constraints. Interestingly, in recent years, 
a clearer understanding of the synergies between pattern mining and biclustering gave rise to a new class of algo-
rithms, termed as pattern-based biclustering algorithms. These algorithms, able to efficiently discover flexible biclus-
tering solutions with optimality guarantees, are thus positioned as good candidates for knowledge incorporation. In 
this context, this work aims to bridge the current lack of solid views on the use of background knowledge to guide 
(pattern-based) biclustering tasks.

Methods:  This work extends (pattern-based) biclustering algorithms to guarantee the satisfiability of constraints 
derived from background knowledge and to effectively explore efficiency gains from their incorporation. In this 
context, we first show the relevance of constraints with succinct, (anti-)monotone and convertible properties for the 
analysis of expression data and biological networks. We further show how pattern-based biclustering algorithms can 
be adapted to effectively prune of the search space in the presence of such constraints, as well as be guided in the 
presence of biological annotations. Relying on these contributions, we propose BiClustering with Constraints using 
PAttern Mining (BiC2PAM), an extension of BicPAM and BicNET biclustering algorithms.

Results:  Experimental results on biological data demonstrate the importance of incorporating knowledge within 
biclustering to foster efficiency and enable the discovery of non-trivial biclusters with heightened biological 
relevance.

Conclusions:  This work provides the first comprehensive view and sound algorithm for biclustering biological data 
with constraints derived from user expectations, knowledge repositories and/or literature.

© 2016 The Author(s). This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Introduction
Biological data are characterized by the presence of local 
patterns, whose discovery has been widely studied and 
motivated in the context of biclustering [1, 2]. In particular, 
the relevance of biclustering has been largely shown in the 

analysis of gene expression data (to discover transcriptional 
modules described by subsets of genes correlated in subsets 
of samples [2]) and biological networks (to unravel mean-
ingfully dense regions from weighted adjacency matrices 
derived from interaction data [3]). A key question in the 
field of biclustering is how to benefit from the increasingly 
available domain knowledge. Initial attempts to incorporate 
background knowledge from user expectations [4–6] and 
knowledge-based repositories [7–10] within biclustering 
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showed its importance to explore efficiency gains and guar-
antee relevant solutions. However, these attempts only sup-
port very specific forms of knowledge and cannot be 
extended to flexibly constrain the desirable properties of 
outputted biclusters. Furthermore, due to the complexity of 
the biclustering task1, most of the existing algorithms: (1) 
are based on greedy or stochastic approaches, producing 
sub-optimal solutions; and (2) usually place restrictions on 
the allowed structure, coherency and quality of biclusters, 
compromising the flexibility of the outputs [2, 11]. In this 
context, these biclustering approaches cannot be extended 
to incorporate knowledge-driven constraints since their 
restrictions may a priori contradict the inputted 
constraints.

Recent attempts to perform biclustering based on 
enhanced pattern mining searches [8, 12, 13], termed as 
pattern-based biclustering, showed the unprecedented 
possibility to efficiently discover arbitrarily positioned 
biclusters with parameterizable size, coherency and qual-
ity [2, 14]. In this context, two valuable synergies can be 
identified between pattern-based biclustering and knowl-
edge incorporation. First, the optimality and flexibility of 
pattern-based biclustering solutions provide an adequate 
basis upon which knowledge-driven constraints can 
be incorporated. Pattern-based biclustering tackles the 
restrictions of peer algorithms, being an adequate candi-
date to flexibly constrain the desirable properties of the 
target solution space. Second, the effective use of domain 
knowledge to guide pattern mining searches has been 
largely studied in the context of domain-driven pattern 
mining [15, 16].

Despite these synergies, two major problems per-
sist. First, there is a lack of understanding on whether 
domain-driven pattern mining and biclustering can be 
consistently integrated. In particular, there is not a solid 
ground on how to map the commonly available back-
ground knowledge in the form of constraints to guide 
the biclustering task. Second, pattern-based bicluster-
ing algorithms depend on a specific variant of pattern 
mining, referred as full-pattern mining, which has been 
scarcely studied in the context of domain-driven pat-
tern mining. In fact, although new full-pattern mining 
searches have been recently proposed to guarantee the 
scalability of the biclustering task over large and dense 
data [17, 18], there are not yet contributions on how 

1  Biclustering involves combinatorial optimization to select and group rows 
and columns and it is known to be a NP-hard problem (proven by mapping 
the problem of finding maximum edge (bi)clique in a bipartite graph into the 
problem of finding dense biclusters with maximum size [2, 10]). The problem 
complexity increases for non-binary data contexts and when elements are 
allowed to participate in more than one bicluster (non-exclusive structure) and 
in no bicluster at all (non-exhaustive structure).

these searches can be adapted to incorporate background 
knowledge.

This work addresses these problems. To this end, it 
extends pattern-based biclustering algorithms using prin-
ciples from domain-driven pattern mining to seize large 
efficiency gains in the presence of background knowl-
edge. Furthermore, it shows how functional annotations 
and constraints with succinct, (anti-)monotone and con-
vertible properties can be used to guide the biclustering 
task. The major contributions are fivefold:

• • integrative view of domain-driven pattern mining 
and (pattern-based) biclustering. The consistency 
of this view is shown for patterns given by frequent 
itemsets, association rules and sequences;

• • principles for biclustering tabular data in the pres-
ence of an arbitrary number of annotations per 
observation (derived from knowledge repositories 
and literature);

• • list of meaningful constraints with succinct, (anti-)
monotone and convertible properties for biological 
data contexts with a focus on gene expression and 
network data;

• • principles to specify, process and incorporate differ-
ent types of constraints;

• • extension of full-pattern miners based on pattern-
growth searches to optimally explore efficiency gains 
from constraints with succinct, (anti-)monotone and 
convertible properties. In particular we show:
–– F2G [17] compliance with state-of-the-art pruning 

principles on pattern-trees; 
–– IndexSpan [18] compliance with prefix-monotone 

checks on pattern-conditional data projections.

Figure 1 provides a structured view on the proposed con-
tributions and their applicability.

In this context, we propose BiClustering with Con-
straints using PAttern Mining (BiC2PAM), an algorithm 
that integrates recent breakthroughs on pattern-based 
biclustering [3, 14, 19, 20] and extends them to effectively 
incorporate constraints and annotations from domain 
knowledge.

Experimental results on synthetic and real data show 
the importance of incorporating background knowledge 
within pattern-based biclustering to seize large efficiency 
gains by adequately pruning the search space and to guar-
antee non-trivial and (biologically) relevant solutions.

This paper is structured as follows. First, we pro-
vide background on domain-driven pattern mining for 
pattern-based biclustering. Second, key contributions 
and limitations from related work  are surveyed. Third, 
we list meaningful constraints in gene expression data 
and biological networks, and describe an algorithmic 
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basis (BiC2PAM) for their incorporation. BiC2PAM is 
further extended to attain efficiency gains from con-
straints with nice properties. Fourth, we provide initial 
empirical evidence of BiC2PAM’s efficiency and ability to 
unravel non-trivial yet biologically significant biclusters. 
Finally, concluding remarks and major implications are 
synthesized.

Background
Biclustering, full‑pattern mining and pattern‑based 
biclustering

Definition 1  Given a real-valued matrix A with n rows 
X = {x1, . . . , xn} and m columns Y = {y1, . . . , ym}, and ele-
ments aij relating row xi and column yj, the biclustering 
task aims to identify a set of biclusters {B1, . . . ,Bp}, where 
each bicluster Bk = (Ik , Jk) is defined by a subset of rows 
Ik ⊂ X and columns Jk ⊂ Y  satisfying specific criteria of 
homogeneity and statistical significance.

The homogeneity criteria determine the structure, coher-
ency and quality of biclustering solutions, while the sta-
tistical significance of a bicluster determines whether its 
probability of occurrence deviates from expectations. 
The homogeneity of a biclustering model is commonly 
guaranteed through a merit function. Following Madei-
ra’s taxonomy [2], existing biclustering algorithms can be 

grouped according to their homogeneity criteria (defined 
by the underlying merit function) and search paradigm 
(determining how the merit function is applied). The 
structure of a biclustering solution is essentially defined 
by the number, size and positioning of biclusters. Flex-
ible structures are characterized by an arbitrary high set 
of (possibly overlapping) biclusters. The coherency of a 
bicluster is defined by the observed correlation of val-
ues (coherency assumption) and by the allowed devia-
tion from expectations (coherency strength). A bicluster 
can have coherency of values across its rows, columns or 
overall elements, where the values typically follow con-
stant, additive, symmetric and order-preserving assump-
tions [2]. Finally, the quality of a bicluster is defined 
by the type and amount of accommodated noise. Defi-
nitions 2 and 3 formalize these concepts, while Fig.  2 
shows a set of biclusters with different coherencies in a 
symbolic dataset.

Definition 2  Let the elements in a bicluster aij ∈ (I , J ) 
have coherency across rows given by aij = kj + γi + ηij, 
where kj is the expected value for column j, γiis the adjust-
ment for row i, and ηij is the noise factor (affecting the 
quality of the bicluster). Let Ā be the amplitude of values 
in a matrix A. Given a matrix A, the coherency strength 
is a real value δ ∈ [0, Ā], such that aij = kj + γi + ηij 
where ηij ∈ [−δ/2, δ/2].

Fig. 1  Proposed contributions to an effective incorporation of constraints with distinct properties into (pattern-based) biclustering tasks
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Definition 3  The γ factors define the coherency 
assumption: constant when γ  =  0, and additive oth-
erwise. Symmetries can be accommodated on rows, 
aij × ci where ci ∈ {1, −1}. Order-preserving assumption 
is verified when the values of rows induce the same linear 
ordering across columns.

Definition 4  Given a bicluster B =  (I,  J), the bicluster 
pattern ϕB is given by the sequence of expected values 
(kj ) according to a permutation of columns in the absence 
of adjustments (γi =  0) and noise (ηij =  0): {kj | yj ∈ J }, 
while its support is given by the number of rows satisfy-
ing the pattern: |I|.

Consider the additive bicluster (I,J) = ({x1, x2} ,{y1, y2, y3})  
in N

+
0

 with coherency across rows. Assuming x1|J

= {1, 3, 2} and x2|J   =  {3, 4, 2}, then this biclusters 
can be described by aij  =  kj  +  γi with the pattern 
ϕ = {k1 = 0, k2 = 2, k3 = 1}, supported by two rows with 
additive factors γ1 = 1 and γ2 = 3.

Despite the relevance of discovering optimal and flex-
ible biclustering solutions to effectively incorporate 
knowledge-driven constraints, most of the existing 
biclustering algorithms are based on greedy or stochas-
tic searches, producing sub-optimal solutions, and place 
restrictions (such as simplistic forms of coherency, fixed 
number of biclusters, non-overlapping structures) that 
prevent the flexibility of the outputs [2, 14].

Pattern-based biclustering. In recent years, a clearer 
understanding of the synergies between pattern mining 
and biclustering gave rise to a new class of algorithms, 
referred as pattern-based biclustering, aiming to address 
these limitations (no guarantees of optimality and flex-
ibility). Pattern-based biclustering is inherently prepared 
to efficiently find exhaustive solutions of biclusters with 
the unprecedented possibility to customize their struc-
ture, coherency and quality. Such behavior explains why 
these algorithms are receiving an increasing attention for 

biological data analysis [3, 8, 12, 14, 19–21]. The major 
potentialities include: (1) efficient searches with opti-
mality guarantees; (2) biclusters with flexible coherency 
strength and assumption [14, 19, 20]; (3) robustness to 
noise, missing values and discretization problems [14] by 
introducing the possibility to assign or impute multiple 
symbols to a single data element; (4) non-fixed number 
of biclusters arbitrarily positioned [12, 21]; (5) applica-
bility to network data and sparse data matrices [3, 22]; 
among others.

At its core, pattern-based biclustering relies on the 
(iterative application of the) full-pattern mining task [14]. 
A full-pattern defines a region from the input data space, 
thus enclosing not only the underlying pattern (itemset, 
association rule, sequential pattern or graph with fre-
quency and length above certain thresholds), but also its 
supporting rows and columns.

Definition 5  Let L be a finite set of items, and a pattern 
P to be a composition of items, either an itemset (P ⊆ L ), 
association rule (P : P1 → P2 where P1 ⊆ L ∧ P2 ⊆ L) 
or sequence ( P = P1 . . .Pn where Pi ⊆ L). Let a trans-
actional database Dbe a finite set of rows/transactions, 
each defining a composition of items. A transaction is 
commonly given by an itemset or sequence. Given D, let 
the coverage �P of pattern P be the set of rows in D in 
which P is satisfied/occurs, and its support supP be the 
coverage size, |�P |. Let the length of a pattern |P| be the 
number of items.

Definition 6  Given a matrix A, let D be a transac-
tional database derived from A: either the concatenation 
of items with their column index (transactions given by 
itemsets) or the ordering of column indexes according 
to the values per row (transactions given by sequences). 
A full-pattern is a tuple (P,�P ,ψP ,ϒP), where P is the 
pattern in D, �P ⊂ X is its coverage (rows satisfying P), 
�P ⊂ Y  is the set of indexes (columns), and ϒP is the 
original pattern in A (the corresponding itemset, rule or 

Fig. 2  Pattern-based biclusters with distinct coherency assumptions
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sequence prior to the concatenation or ordering of col-
umn indexes).

Definition 7  Given a matrix A, the mapped transac-
tional database D, and a minimum support θ1 and pat-
tern length θ2 thresholds, full-pattern mining consists of 
computing: {(P,�P ,ψP ,ϒP) | supP ≥ θ1 ∧ |P| ≥ θ2}.

Figure  3 shows how a symbolic matrix, A, is mapped 
into two distinct transactional databases (given either by 
index concatenations or orderings), D1 and D2, for the 
subsequent discovery of full-patterns. The concatena-
tion of an item σ ∈ L with a column index in yi ∈ Y  is 
represented as yi.σ. The full-pattern in D1 can be formally 
described as ({y1.6, y2.5, y4.3}, {t1, t3}, {y1, y2, y4}, 〈6, 5, 3〉).

Frequent itemsets can be discovered to compose con-
stant, additive and multiplicative models [14]; sequential 
patterns are used to learn order-preserving models [19]; 
and rules can be composed to learn plaid models or tol-
erate parameterizable levels of localized noise [20]. Fig-
ure  3 further illustrates the paradigmatic cases where 
full-pattern mining is applied to discover constant and 
order-preserving biclusters.

In this context, the set of maximal biclusters (biclus-
ter not contained in larger biclusters) are mapped from 
closed full-patterns (frequent yet not contained in larger 
patterns with same support). Definition 8 specifies the 
mapping between a full-pattern and a bicluster. For real-
valued matrices, (real-valued) biclusters are mapped 
from full-patterns discovered under a parameterizable 
coherency strength (δ ∝1/|L| where L is the discretization 
alphabet).

Definition 8  Given a transactional database D derived 
from a real-valued matrix, the set of maximal biclus-
ters ∪k(Ik , Jk) can be derived from the set of closed full-
patterns ∪kPk by mapping Ik = �Pk and Jk = �Pk, where 
ϕBk = ϒPk.

Constraint‑based biclustering
To formalize the task targeted in this work, we introduce 
below the concept of constraint in the context of biclus-
tering, and further describe different types of constraints 
according to the selected full-pattern mining task.

A constraint is traditionally seen as a conjunction of 
relations (predicate) over a set of variables describing a 
given dataset [23]. Definitions 9 and 10 revise this notion 
to guarantee its proper applicability within (pattern-
based) biclustering tasks.

Definition 9  In the context of pattern mining, a con-
straint is a predicate on the powerset of items C: 2L →

{true,false}. In the context of full-pattern mining, 
a full-constraint is a predicate on the powerset of 
original items, transactions, indexes and/or concat-
enations, C : {2Y × 2L, 2X, 2Y , 2L} →{true,false}. A full-
pattern (P,�P ,ψP ,ϒP) satisfies a full-constraint C if 
C(P,�P ,ψP ,ϒP) is true.

Definition 10  A biclustering constraint is a predi-
cate on a bicluster’s values per column, rows I, columns 
J and pattern ϕB, C : {2Y × 2L, 2X, 2Y , 2L} → true, false. 
A bicluster B satisfies a constraint C if C(ϕB · J , I , J ,ϕB) 
is true (or, alternatively, when the associated full-pattern 
satisfies a full-constraint).

Consider a matrix mapped into a transactional data-
base with L  =  {a,b,c}. An illustrative full-constraint is 
y1a ∈ P ∧ {x2, x3} ⊆ �P ∧ y4 ∈ �P ∧ {b} ⊆ ϒP, and the 
associated biclustering constraint is y1a ∈ B ∧ {x2, x3} ⊆ 
I∧ y4 ∈ J ∧ {b} ⊆ ϕB. Minimum support and minimum 
pattern length are the default full-constraints in full-pat-
tern mining: Csupport = |�P | ≥ θ and Clength = |P| ≥ θ.

More interesting constraints with properties of interest 
include regular expressions or aggregate functions. In the 
presence of matrices with numeric or ordinal values, further 
constraints can be specified. In this context, a cost table is 

Fig. 3  Discovery of biclusters with constant and order-preserving assumptions based on full-patterns (itemsets and sequences) discovered from 
transactional databases mapped from the original data matrix
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specified in addition to the alphabet of items (e.g. {a:0, b:1, 
c:2}). Depending on the type of full-pattern, multiple con-
straints can be applied against a cost table, including the 
paradigmatic cases of aggregate functions such as length, 
maximum, minimum, range, sum, mean and variance [24].

Some of these constraints are said to exhibit nice prop-
erties when their input can be effectively pushed deep 
into the pattern mining task [15] to prune the search 
space and therefore achieve efficiency gains. Below, we 
explore different types of constraints according to the 
selected full-pattern mining task for biclustering: itemset, 
rule-based and sequential-pattern constraints.

Itemset constraints
Regular expressions and aggregate functions are the most 
common form of constraints to guide frequent itemset 
mining. In this context, efficiency gains can be seized in 
the presence of constraints with succinct, (anti-)mono-
tone and convertible properties.

Definition 11  Let L be a set of items and P be an 
itemset, P ⊆ L. Let each item σ ∈ L have a correspond-
ence with a real value, c:L → R, according to a well-
defined cost table. Let v be a real-valued constant and 
range(P) = max(P) − min(P), max(P) = max

⋃
σ∈P

c(σ ), 
min(P) = min

⋃
σ∈P

c(σ ) and avg(P) = 
∑

σ∈P
c(σ )
|P|  be well-

defined predicates. In this context:

• • A constraint C is monotone if for any P satisfying C, 
P supersets satisfy C (e.g. range(P) ≥ v).

• • 	 A constraint C is anti-monotone if for any P not satis-
fying C, P supersets do not satisfy C (e.g. max(P) ≤ v).

• • Given a pattern P′ satisfying a constraint C, C is suc-
cint over P if P contains P′ (e.g. min(P) ≤ v).

• • A constraint C is convertible with regards to an 
ordering of items R� if for any itemset P satisfying C, 
the P suffixes satisfy C or/and itemsets with P as suf-
fix satisfy C (e.g. avg(P) ≥ v).

To instantiate the formalized constraints, consider 
three observations (x1 = {a, b, c}, x2 = {a, b, c, d}, 
x3 = {a, d}), a minimum support θ1 = 1 and length θ2 = 2, 
and the cost table {a:0, b:1, c:2, d:3}. The set of closed full-
patterns satisfying: the monotone constraint range(P) ≥ 2 
is {({a, b, c}, {t1, t2}), ({a, d}, {t1, t3}), ({b, d}, {t2})}; the 
anti-monotone constraint sum(P) ≤ 1 is {({a, b}, {t1, t2})} ; 
the succint P ⊇ {c, d} is {({a, b, c, d}, {t2})}; and the con-
vertible constraint avg(P) ≥ 2 is {({b, c, d}, {t2})}.

Association rule constraints
Constraints satisfying these properties can be also effec-
tively applied in the context of association rule mining 
(for the discovery of noise-tolerant biclusters [1, 20]). 

In this context, constraints need to be satisfied by the 
antecedent, consequent, or can be alternatively applied 
during the generation of frequent itemsets, prior to the 
composition of rules.

Additional constraints to guarantee specific correla-
tion/interestingness criteria [25] or the dissimilarity and 
minimality of rules [26] can be specified.

In the context of association rule-based biclustering, 
a full-constraint is evaluated against the union of items 
on the antecedent and consequent as well as the union 
of supporting transactions of the antecedent and con-
sequent. Given P: P1 → P2 and a constraint C, P satis-
fies C if the full-pattern given by (ϒP1∪P2 ,�P1 ∪�P2 , 
ψP1∪P2 ,P1 ∪ P2) satisfies C.

Sequential pattern constraints
The introduced concepts can be further extended for the 
incorporation of constraints in the context of sequential 
pattern mining (for the discovery of order-preserving 
biclusters [19]). A sequence P is an ordered set of itemsets, 
each itemset being a set of indexes in Y. Given a matrix 
(X, Y) with n = 5 rows and m = 3 columns and a minimum 
support θ1 = 3, (y2 ≤ y1 ∧ y2 ≤ y3, {x2, x4, x5}, {y1, y2, y3} , 
〈y2(y1y3)〉) is an illustrative full-pattern. Interestingly, the 
sequential pattern ϒP does not explicitly disclose the value 
expectations ϕB. Instead, ϒP is associated with an ordering 
relation (such as y2 ≤ y1 ∧ y2 ≤ y3). In this context, the 
following constraints can be specified: item constraints 
(e.g. {y1, y3} ⊆ P); length constraints (minimum/maxi-
mum number of precedences and/or co-occurrences); 
super-pattern constraints (patterns that contain a par-
ticular set of patterns as sub-patterns −y2 ≤ y1 ⊆ P ); 
and, more interestingly, regular expressions (e.g. 
P ≡ y• ≤ {y•, y•}). Constraints concerning value expecta-
tions can be also specified using the values from a given 
ordering based on the median of values from the support-
ing rows and columns (e.g. b ≤ a or 1.3 ≤ 0.4). As a result, 
aggregate functions can be additionally specified within 
sequential pattern constraints.

With regards to properties of the aforementioned con-
straints: length constraints are anti-monotonic, while 
super-pattern constraints are monotonic. Item con-
straints, length constraints and super-pattern constraints 
are all succinct. Some aggregate constraints and regular 
expressions can also show nice properties [27].

Related work
Related work is surveyed according to: (1) the contribu-
tions and limitations of existing attempts to perform 
biclustering with domain knowledge; (2) the state-of-the-
art on domain-driven pattern mining; and (3) the existing 
efforts towards full-pattern mining and their adequacy to 
accommodate domain knowledge.
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Knowledge‑driven biclustering
The use of domain knowledge to guide biclustering has 
been increasingly stressed since solutions with good 
homogeneity and statistical significance may not neces-
sarily be biologically relevant. However, few biclustering 
algorithms are able to incorporate domain knowledge.

AI-ISA [7], GenMiner [8] and scatter biclustering [10] 
are able to annotate data with functional terms retrieved 
from repositories with ontologies and use these annota-
tions to guide the search.

COBIC [28] is able to adjust its behavior (maximum-
flow/minimum-cut parameters) in the presence of back-
ground knowledge. Similarly, the priors and architectures 
of generative biclustering algorithms [29] can also be 
parameterized to accommodate specific forms of back-
ground knowledge. However, COBIC and its generative 
peers support only the definition of constraints concern-
ing the algorithm’s behavior and are not able to deliver 
flexible biclustering solutions.

Fang et  al. [4] proposed a constraint-based algorithm 
enabling the discovery of dense biclusters associated 
with high-order combinations of single-nucleotide poly-
morphisms (SNPs). Data-Peeler [5], as well as algorithms 
from formal concept analysis [6] and bi-sets mining [30], 
are able to efficiently discover dense biclusters in binary 
matrices in the presence of (anti-)monotone constraints. 
However, these algorithms impose a very restrictive form 
of homogeneity in the delivered biclusters.

Domain‑driven pattern mining
A large number of studies explored how constraints can 
be used to guide pattern mining tasks. Two major para-
digms are available: constraint-programming (CP) [16] 
and dedicated searches [15, 31]. CP allows pattern min-
ing to be declaratively defined according to sets of con-
straints [16, 32]. These declarative models can allow for 
complex mathematical expressions on the set of full-
patterns. Nevertheless, due to the poor scalability of CP 
methods, they have been only used in highly constrained 
settings, small-to-medium sized data, or to mine approx-
imate patterns [16, 32].

Pattern mining searches have been adapted to seize effi-
ciency gains from different types of constraints [15, 31, 
33]. These efforts aim to replace naïve solutions based on 
post-filtering to guarantee the satisfaction of constraints. 
Instead, the constraints are pushed as deep as possi-
ble within the mining step for an optimal pruning of the 
search space. The nice properties exhibited by constraints, 
such as anti-monotone and succinct properties, have been 
initially seized in the context of frequent itemset mining 
by Apriori methods [31] to affect the generation of can-
didates. Convertible constraints can hardly be pushed 
in Apriori methods but can be adequately handled by 

pattern growth methods such as FP-Growth [15]. FICA, 
FICM, and more recently MCFPTree [15], are FP-Growth 
extensions to further explore opportunities from diverse 
constraints. The inclusion of monotone constraints is 
more complex. Filtering methods, such as ExAnte [34], 
are able to combine anti-monotone and monotone prun-
ing based on reduction procedures. Empirical evidence 
shows that these reductions are optimally handled within 
pattern growth methods by adequately growing and prun-
ing small FP-Trees (referred as FP-Bonsais) [33].

These contributions were extended for association 
rule mining [33, 35]. In particular, nice properties were 
studied for item constraints [35], support constraints 
[36], bounds interestingness criteria [37], and constraints 
on the structure and dissimilarity of rules (respectively 
referred as schema and opportunistic) [38].

Similarly, some studies proposed ways to effectively 
incorporate constraints within Apriori and pattern-
growth searches for sequential pattern mining (SPM) 
[27, 39]. Apriori searches were first extended to incor-
porate temporal constraints and user-defined taxono-
mies [39]. Mining frequent episodes in a sequence of 
events [40] can also be viewed as a constrained SPM task 
by seeing episodes as constraints in the form of acyclic 
graphs. SPIRIT [41] revises the Apriori search to incor-
porate a broader range of constraints with nice proper-
ties and regular expressions. Pattern growth searches 
based on data projections, such as PrefixSpan, were only 
later extended by Pei et al. [27, 42] to support a wide-set 
of constraints with nice properties. Although multiple 
studies have been proposed on the use of temporal con-
straints for SPM, including length and gap constraints 
[27, 43], these constraints are not relevant for the aim of 
learning order-preserving models.

Full‑pattern mining with constraints
There are three major classes of full-pattern mining 
searches [1, 44, 45]: (1) AprioriTID-based searches, gen-
erally suffering from costs of candidate generation for 
dense datasets and low support thresholds; (2) searches 
with vertical projections, which show efficiency bot-
tlenecks for data with a high number of transactions 
since the bitset cardinality becomes large and associated 
intersection procedures expensive; and (3) recently pro-
posed pattern-growth searches based on the annotation 
of original pattern-growth structures with transactions’ 
identifiers. In particular, F2G [17] and IndexSpan [18] 
(default options in BicPAM, BiP, BicNET and BicSPAM 
biclustering algorithms [14, 19, 20, 22]) were the first 
pattern-growth searches for full-pattern mining aiming 
to surpass memory and time bottlenecks associated with 
bitset and diffset structures used by AprioriTID and ver-
tical-based searches.
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Despite the high number of contributions from 
domain-driven pattern mining, the ability of pattern-
growth searches to effectively incorporate full-con-
straints with nice properties (Definition 9) was not yet 
demonstrated.

Solution: Pattern‑based biclustering with domain 
knowledge
This section extends pattern-based biclustering algo-
rithms [1] to accommodate constraints by proposing 
BiC2PAM (BiClustering with Constraints using PAt-
tern Mining). In what follows, we first provide princi-
ples for biclustering annotated biological data. Second, 
meaningful full-constraints with nice properties are 
listed to guide expression data analysis and network 
data analysis. The possibility to specify alternative con-
straints in order to customize the structure, coherency, 
quality and statistical significance of biclustering solu-
tions according to available knowledge is discussed 
in Appendix. Third, we describe a set of principles 
for the specification, processing and incorporation of 
constraints  within pattern-based biclustering. Finally, 
we adapt the full-pattern mining searches used within 
BiC2PAM in order to seize heightened efficiency gains 
by exploring the properties associated with the input-
ted constraints.

Biclustering with annotations extracted from knowledge 
repositories and literature
Domain knowledge comes often in the form of annota-
tions associated with specific rows and columns in a 
matrix (or nodes in a network). These annotations are 
often retrieved from knowledge repositories, seman-
tic sources and/or literature. Annotations can be either 
directly derived from the properties associated with each 
row/column/node (e.g. properties of a gene or a sample 
in gene expression data) or can be implicitly predicted 
based on the observed values by using feature extraction 
procedures. For instance, consider the set of functional 
annotations associated with gene ontology (GO) terms 
[46]. A GO term is associated with an interrelated group 
of genes associated with a specific biological process. 
Since a gene can participate in multiple biological pro-
cesses, genes can have an arbitrary number of functional 
annotations. As such, rows in an expression matrix (or 
nodes in a biological network) can be annotated with a 
non-fixed number of labels.

Pattern-based biclustering supports the integrated 
analysis of matrices and annotations recurring to one of 
two strategies. First, association rules or sequential rules 
can be used to guide the biclustering task in the presence 
of annotations according to the principles introduced by 

Martinez et al. [8]. In this context, annotations can either 
appear in the consequent, antecedent or on both sides 
of an association rule. Biclusters can then be inferred 
from these rules using the principles introduced by Hen-
riques et  al. [1]. Illustrating, a rule {y12, y42} → {T1,T2} 
supported by {x1, x3, x5} rows can be used to compose 
a bicluster ({y1, y4}, {x1, x3, x5}) with elements consist-
ently associated with annotations T1 and T2. Learning 
association rules with levels of confidence (or alternative 
interestingness scores) below 100  % [20] is relevant to 
discover biclusters with consistent annotations without 
imposing a subset of annotations to appear on all rows/
columns of each bicluster.

Second, the annotations can be included directly 
within data since pattern mining is able to rely on 
rows with an arbitrary length. To this aim, annota-
tions are associated with a new dedicated symbol and 
appended to the respective rows, possibly leading to a 
set of observations with varying length. Consider the 
annotations T1 and T2 to be respectively associated with 
genes {x1, x3, x4} and {x3, x5}, an illustrative transac-
tional database of itemsets for this scenario would be 
{x1 = {a11, . . . , a1m,T1}, x2 = {a21, . . . , a2m}, x3 = {a31, . . . ,  
a3m,T1,T2}, . . .} . Databases of sequences (for order-
preserving biclustering) can be composed by appending 
terms either at the end or the beginning of each sequence.

Given these enriched databases, pattern mining can 
then be applied on top of these annotated transac-
tions with succinct, (anti-)monotone and convertible 
constraints. Succinct constraints can be incorporated 
to guarantee the inclusion of certain terms (such as 
P ∩ {T1,T2} �= 0). This is useful to discover, for instance, 
biclusters with genes participating in specific functions 
of interest. (Anti-)monotone convertible constraints can 
be, alternatively incorporated to guarantee, for instance, 
that a bicluster associated with a discovered pattern is 
functionally consistent, meaning that it can be mapped 
to a single annotation. The |P ∩ {T1,T2}| ≥ 1 constraint is 
anti-monotone and satisfies the convertible condition: if 
P satisfies C, the P suffixes also satisfy C.

Interestingly, the two previous strategies can be seen as 
equivalent when assuming that the discovery of the intro-
duced class of association rules is guided by rule-based 
constraints and the discovery of patterns from annotated 
data is guided by itemset/sequence constraints.

Biological constraints with properties of interest
Different types of constraints were introduced in Defini-
tion 11. In order to show how these constraints can be 
specified and instantiated, this section provides examples 
of meaningful constraints for gene expression and net-
work data analysis.
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Note that similar constraints can be formulated for the 
analysis of alternative biological data, including: struc-
tural genome variations to enable the discovery of high-
order single-nucleotide polymorphisms; genome-wide 
data to find promoters where mutations or appearing 
binding sites show properties of interest; or medical data 
to force the inclusion of certain clinical features or to 
focus on less-trivial disease markers.

Gene expression data analysis
For illustrative purposes, consider Fig. 4 to be associated 
with a symbolic expression matrix (and associated “price 
table”), where the rows in the matrix correspond to dif-
ferent genes and their values correspond to the observed 
expression levels for a specific condition (column). The 
{−3,−2}, {−1,0,1} and {2,3} sets of symbols are respectively 
associated with repressed (down-regulated), default (pre-
served) and activated (up-regulated) expression levels.

First, succinct constraints in gene expression analysis 
allow the discovery of genes with specific constrained 
levels of expression across a subset of conditions. Illus-
trating, min(ϕB)  =  −3 implies an interest in biclusters 
(putative biological processes) where genes are at least 
highly repressed in one condition. Alternatively, succinct 
constraints can be used to discover non-trivial biclusters 
by focusing on non-highly differential expression (e.g. 
patterns with symbols {−2,2}). Such option contrasts 
with the large focus on dense biclusters [2], thus enabling 
the discovery of less-trivial yet coherent modules.

Second, (anti-)monotone constraints are key to cap-
ture background knowledge and guide biclustering. For 
instance, the non-succinct monotonic constraint coun-
tVal(ϕB) ≥ 2 implies that at least two different levels of 
expression must be present within a bicluster (putative 
biological process). In gene expression analysis, biclus-
ters should be able to accommodate genes with differ-
ent ranges of up-regulation and/or down-regulation. Yet, 
the majority of existing biclustering approaches can only 
model a single value across conditions [2, 14]. When con-
straints, such as the value-counting inequality, are avail-
able, efficiency bottlenecks can be tackled by adequately 
pruning the search space.

Finally, convertible constraints also play an important 
role in biological settings to guarantee, for instance, that 
the observed patterns have an average of values within a 
specific range. Illustrating, the anti-monotonic convert-
ible constraint avg(ϕB) ≤ 0 indicates a preference for 
patterns with repression mechanisms without a strict 
exclusion of activation mechanisms. These constraints 
are useful to focus the discovery on specific expression 
levels, while still allowing for noise deviations. Under-
standably, they are a robust alternative to the use of strict 
bounds from succinct constraints with maximum–mini-
mum inequalities.

Biological network data analysis
To motivate the relevance of inputting similar constraints 
for the analysis of biological networks, we use again the 
tabular dataset provided in Fig.  4. In this context, rows 
and columns correspond to nodes associated with bio-
logical entities (such as genes, proteins, protein com-
plexes or other molecular compounds), and the values in 
the matrix correspond to the strength of the interactions 
between the nodes. As such, the strength of the interac-
tions is either negative {−3, −2} (e.g. inhibition), weak 
{−1, 0, 1} or positive {2, 3} (e.g. activation).

First, succinct constraints can be specified for the dis-
covery of sets of nodes with specific interaction patterns 
of interest. Illustrating, {−2, 2} ⊆ ϕB implies an interest 
on non-dense network modules (coherent interactions 
with soft inhibition and activation) to disclose non-trivial 
regulatory activity, and min(ϕB) = −3 ∧max(ϕB) = 3 
implies a focus on modules with the simultaneous pres-
ence of highly positive and negative interactions.

Second, (anti-)monotone constraints are key to dis-
cover network modules with distinct yet coherent reg-
ulatory interactions. For instance, the non-succinct 
monotonic constraint countVal(ϕB) ≥ 3 implies that at 
least three different types of interactions must be present 
within a module.

Finally, convertible constraints are useful to place 
non-strict expectations on the desirable patterns, yet 
still accommodating deviations from expectations. Illus-
trating, avg(ϕB) ≤ 0 indicates a preference for network 

Fig. 4  Symbolic dataset and corresponding “price table”
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modules with negative interactions without a strict exclu-
sion of positive interactions.

Constraints with nice properties can be alternatively 
applied for networks with qualitative interactions. 
Regulatory interactions, such as “binds”, “activates” or 
“enhances”, are increasingly observed for a wide-variety 
of protein-protein and gene interaction networks [47, 
48]. In this context, assuming the presence of {a, b, c} 
types of biological interactions, an illustrative anti-mono-
tone constraint is |ϕB ∩ {a, b}| ≥ 0.

Biological data analysis with full‑constraints
Although less motivated, constraints can be also defined 
on the powerset of rows, columns and/or values per 
columns. In fact, the minimum support and minimum 
pattern length can be seen as constraints over I and J 
indexes, respectively. An alternative constraint over I and 
J is to require that biclusters include a minimum number 
rows/columns from a particular subset of rows/columns 
of interest. An illustrative succinct constraint in Y × L is 
P ∩ {y2-3, y23} �= ∅, which implies an interest in biclus-
ters with differential expression (or interactions) associ-
ated with the y2 sample/gene/node.

Please have in mind that the constraints instantiated 
throughout this section represent a small subset of all 
possible constraints of interest, thus being mainly intro-
duced for the sake of motivating the relevance of suc-
cinct, (anti-)monotone and convertible properties. The 
specification of constraints of interest is always depend-
ent on the learning goal and the peculiarities of the input 
data. As such, an exhaustive listing and discussion of rel-
evant constraints for biological data contexts is consid-
ered to be out the scope of this work.

Biclustering with full‑constraints
We propose BiClustering with Constraints using PAt-
tern Mining (BiC2PAM) to effectively incorporate full-
constraints (including the set of constraints motivated in 
previous section). BiC2PAM’s extensions to the existing 
contributions on pattern-based biclustering [12, 14, 19, 
20, 22] are twofold. First, a precise formalism was defined 
to represent full-constraints (with identical notation to 
the one introduced along this work) and new processing 
procedures were implemented for their parsing and inter-
pretation. Under these principles, the desirable proper-
ties of biclustering solutions can be defined with sharp 
usability. BiC2PAM supports not only the specification of 
full-constraints (Definition 10), but further makes availa-
ble the possibility to specify native constraints to custom-
ize the structure, coherency and quality of biclustering 
solutions (as described in Appendix). Second, BiC2PAM 
implements different strategies to incorporate distinct 
types of constraints:

• • if native constraints are inputted, BiC2PAM maps 
them into parameterizations along the mapping, 
mining and closing steps of BicPAMS (Appendix);

• • if constraints without nice properties are inputted, 
BiC2PAM satisfies them recurring to post-filtering 
verifications;

• • if constraints with nice properties are inputted, BiC-
2PAM implements pruning heuristics from previous 
research on constraint-based Apriori-based methods 
[36, 41].

In the context of the formal view on constraint-based 
full-pattern mining introduced in "Constraint-based 
biclustering" section, when constraints over ϒP (con-
straints in 2L) are inputted, they are mapped as con-
straints over P ∈ 2Y×L. For instance, the a ∈ ϒP succinct 
constraint is mapped as P ∩ {y1a, . . . yma} �= ∅.

Similarly, constraints from ψP ∈ 2Y  are mapped to con-
straints over P ∈ 2Y×L. Illustrating, y2 ∈ Y  is mapped as 
P ∩ {y2a, y2b, . . .} �= ∅.

Finally, constraints from �P ∈ 2X are incorporated by 
adjusting the Apriori searches to effectively prune the 
search space. Consider a succinct constraint that speci-
fies a set of transactions to be included in the resulting 
biclusters. In this case, as soon as a generated candidate 
is no longer supported by any transaction of interest, 
there is no need to further generate new candidates and, 
thus, the search space can be pruned at this point.

Understandably, despite the inherent simplicity of 
incorporating constraints with nice properties in Apriori-
based searches, there is a critical drawback: the inabil-
ity to rely on key pattern-growth searches, such as F2G 
(for the discovery of constant/additive/symmetric/plaid 
biclusters) and IndexSpan (for the discovery of order-
preserving biclusters). These pattern-growth searches 
were previously shown to be able to mine large data 
with superior efficiency [17, 18]. Adding to this observa-
tion, there is a considerable agreement that the under-
lying structures of pattern-growth searches, such as 
frequent-pattern trees and prefix-growth trees, provide a 
more adequate representation of the search space for an 
improved pruning.

Exploring efficiency gains from constraints with nice 
properties
Although the incorporation of constraints with nice 
properties can only be easily supported under Apriori-
based searches, there is large consensus that pattern-
growth searches are better positioned to seize efficiency 
gains from these constraints than peer Apriori-based 
and vertical searches. As such, F2G-Bonsai and Index-
SpanPG, described below, extend respectively the 
recently proposed F2G (full-frequent itemset miner) and 
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IndexSpan (full-sequential pattern miner) algorithms to 
guarantee a more effective pruning of the search space 
in the presence of constraints. These extensions are inte-
grated in BiC2PAM. Native constraints are effectively 
incorporated in BiC2PAM through adequate param-
eterizations of pattern-based biclustering algorithms 
(Appendix).

F2G‑Bonsai: F2G with itemset constraints
F2G [17] implements a pattern-growth search that does 
not suffer from efficiency bottlenecks of peer searches 
since it relies on frequent pattern tree structures (FP-
trees) that store transaction-IDs without duplicates. The 
FP-tree is efficiently traversed to enumerate all full-pat-
terns. Full-patterns are generated by concatenating the 
pattern suffixes with the full-patterns discovered from 
conditional FP-trees where suffixes are removed. Figure 5 
instantiates the behavior of F2G. In this section, we first 
show the compliance of F2G with principles to handle 
succinct and convertible constraints [15]. Second, we 
show its compliance to handle difficult combinations of 
monotone and anti-monotone constraints [33].

Compliance with  different types of  constraints  Unlike 
candidate generation methods, pattern growth searches 
provide further pruning opportunities. Pruning principles 
can be standardly applied on both the original database 
(FP-Tree) and on each projected database (conditional FP-
Tree).

The CFG method extends pattern-growth searches [15] 
to seize the properties of nice constraints using simplistic 
principles. Supersets of itemsets violating anti-monotone 
constraints are removed from each (conditional) FP-
Tree. Illustrating, in the presence of sum(ϒP) ≤ 3, when 
analyzing the y12 conditional database, the following 

items ∪m
i=1

{yi2, yi3} can be removed to avoid conflicts 
as their sum violates the given constraint. For an effec-
tive pruning, it is recommended to order the symbols 
in the header table according to their value and support 
[15, 24]. F2G is compliant with these pruning heuristics, 
since it allows the rising of transaction-IDs in the FP-Tree 
according to the order of candidate items for removal in 
the header table (see Algorithms 1 and 2 in [17]).

For the particular case of an anti-monotone convertible 
constraint, itemsets that satisfy the constraint are effi-
ciently generated under a pattern-growth search [24]. This 
is done by assuming that original/conditional FP-trees are 
built according to a price table and by pruning patterns 
that no longer satisfy an anti-monotone convertible con-
straint since the inclusion of new items will no longer sat-
isfy the constraint. Illustrating, since {y1−3, y42, y23} does 
not satisfies avg(ϒP) ≤ 0, there is no need to further build 
{y1−3, y42, y23}-conditional trees. Therefore, this principle 
provides an important criterion to stop FP-tree projec-
tions and/or prune items in a (conditional) FP-tree.

Finally, the transactions and items within a (condi-
tional) FP-tree that conflict with a given constraint can 
be directly removed without causing any changes on 
the resulting set of valid patterns. Illustrating, given 
min(ϒP) = 0 constraint, the transactions x1 = {y1
−1, y23, y31} and x4 = {y11, y2−1, y32} can be directly 
removed as they do not satisfy this succinct constraint. 
Similarly, given the same constraint, min(ϒP) = 0, the 
items with values below 0 can be removed. With regards 
to transactions x1 and x4, this means removing a1,1 = y1
−1 and a4,2 = y2−1 items.

Furthermore, constraint checks can be avoided for sub-
sets of itemsets satisfying a monotone constraint. Illus-
trating, no further checks are needed in the presence of 
countVal(ϒP) ≥ 2 constraint when the range of values in 

Fig. 5  Behavior of F2G (detailed in [17]). The FP-tree is created from the inputted database with transactions annotated in leafs; a conditional pat-
tern is created for each node in the FP-tree; conditional FP-trees are projected from each conditional pattern (transactions moved up along the tree 
to enable the discovery of full-patterns); conditional FP-trees are recursively mined and patterns grown if frequent; whenever a conditional FP-tree 
contains a single path, all frequent patterns are enumerated
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the suffix of a pattern is ≥2 under the {y10, y11}-condi-
tional FP-Tree.

Combination of  constraints with  nice properties  The 
previous extensions to pattern-growth searches are not 
able to effectively comply with monotone constraints 
when anti-monotone constraints (such as minimum sup-
port) are also considered. In FP-Bonsai [33], principles 
to further explore the monotone properties for pruning 
the search space are considered without reducing anti-
monotone pruning opportunities. This method is based 
on data-reduction operations originally implemented in 
ExAnte to seize efficiency gains from the properties of 
monotone constraints. There are two data-reductions: µ
-reduction, which deletes transactions not satisfying C; 
and α-reduction, which deletes from transactions single 
items not satisfying C. Thanks to the recursive projec-
tions of FP-growth, the ExAnte data-reduction methods 
can be applied on each conditional FP-tree to obtain a 
compact number of smaller FP-Trees (FP-Bonsais). The 
FP-Bonsai method can be combined with the previously 
introduced principles, which are particularly prone to 
handle succinct and convertible anti-monotone con-
straints. F2G can be extended to support these reduc-
tions on the (conditional) FP-Trees by guaranteeing that 
transactions consistently rise up. The only requirement 
is to preserve the order of items in the header table [17]. 
As such, F2G complies with the FP-Bonsai extension (see 
Algorithm 2).

IndexSpanPG: IndexSpan with sequential pattern constraints
The work of Pei et al. [27] provides principles to extend 
pattern-growth searches with prefix-based database 
projections and no candidate generation to effectively 
incorporate regular expressions and constraints with 
nice properties. For this aim, the prefix-monotone prop-
erty is defined. A constraint is called prefix-monotone if 
it is prefix anti-monotonic or prefix monotonic. With 
a prefix-monotone constraint, there is only the need to 
search in the projected databases for prefixes that satisfy 
the constraint. When a constraint C is: (1) prefix anti-
monotonic, if C(P) =  false, then there exists no sequen-
tial patterns containing P has a prefix and also satisfies C; 
(2) prefix monotonic, if C(P) = true, then every sequen-
tial pattern having P as a prefix satisfies C; and (3) a regu-
lar expression, if the prefix of a given sequential pattern is 
conflicting with the regular expression C, then there is no 
need to further expand (i.e. there are no sequential pat-
terns with the same prefix that also satisfy C). As such, 
since monotonic, anti-monotonic and regular expres-
sion constraints are prefix-monotone they can be pushed 
deep into the search. Understandably, the efficiency gains 
associated with such constraints cannot be attained 

under Apriori-based searches [41]. Although succinct 
constraints are not necessarily prefix anti-monotonic or 
prefix monotonic, they can also be easily pushed deep 
into the mining process (independently of the applied 
SPM method).

According to these principles, we extended IndexS-
pan [18], an extension of PrefixSpan to explore efficiency 
gains from the intrinsic properties of the order-preserv-
ing biclustering task. IndexSpan is compliant with the 
enumerated principles. The minimalist data structures, 
fast database projections and early pruning techniques 
[18] do not interfere with the underlying prefix-growth 
behavior, the essential requirement to incorporate pre-
fix-monotone constraints. Furthermore, given the fact 
that IndexSpan explores item-indexable properties asso-
ciated with the order-preserving biclustering task, test-
ing constraints is done in an efficient and elegant way 
(see Algorithm 3). This is true with regards to both: (1) 
the validation of whether an anti-monotonic constraint 
(or regular expression) cannot be satisfied by a given 
prefix (in order to stop its growth), and (2) the validation 
of whether a a monotonic constraint cannot be satisfied 
by a given (projected) sequence (in order to prune the 
search).

BiC2PAM: algorithmic details
The algorithmic basis of BiC2PAM is described in 
Algorithm  1. The behavior of BiC2PAM can be divided 
according to four major steps: (1) preprocessing, (2) 
instantiation of constraints, (3) mining and (4) post-
processing. In step 1, the input real-valued matrix is 
discretized (after proper normalization and exclusion of 
outliers) under a given coherency strength, and multi-
ple items assign to values near a boundary of discretiza-
tion (according to [14]). If, instead, a network is given 
as input, it is mapped into a sparse adjacency matrix 
(according to [3]). Still along this first step, transactional 
and sequential databases are mapped from the previous 
data structures. In step 2, the inputted constraints are 
parsed, their soundness checked against the preproc-
essed databases, and used to parameterize BiC2PAM (if 
native) or instantiated (otherwise). In step 3, the pattern 
mining searches proposed in "Exploring efficiency gains 
from constraints with nice properties" section are applied 
over the mapped databases and inputted constraints with 
a decreasing support until a pre-specified number of 
pattern-based biclusters (or coverage of matrix elements) 
satisfying these constraints is achieved. Finally, BiC2PAM 
allows for the postprocessing of the discovered biclus-
ters to guarantee their robustness and dissimilarity by 
recurring to merging, extension, reduction and filtering 
procedures (step 4 according to [14]). Figure 6 provides a 
simplified illustration of these major steps.
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Understandably, the behavior and performance of 
Algorithm  1 is essentially dependent on the underly-
ing domain-driven pattern mining searches. Algorithms 
2 and 3 respectively describe F2G-Bonsai and IndexS-
panPG in accordance with the pruning principles respec-
tively introduced in "F2G-Bonsai: F2G with itemset 

constraints" and "IndexSpanPG: indexSpan with sequen-
tial pattern constraints" sections. In F2G-Bonsai, reduc-
tions of the search space are efficiently applied during 
the creation of the initial FP-tree and of each conditional 
FP-tree (lines 7 and 32). Succinct, monotone, frequency 
and anti-monotone reductions are efficiently applied in 

Algorithm 1: BiC2PAM Core Steps (simplified pseudo-code)
Input: (required) dataset, constraints

(optional) patternMiner, stopCriteria, coherencies, alphabets, normalizer, discretizer, noiseHandler,
extender, merger, reducer, filter, orientation, cost table /*for symbolic data*/, annotations

1 main begin
2 biclusters ← ∅;
3 foreach assumption ∈ coherencies do
4 foreach L /*coherency strength*/ ∈ alphabets do
5 if isMatrix then matrices ← {dataset};
6 else matrices ← mapNetworkIntoAdjacencyMatrices(dataset);
7 foreach matrix ∈ matrices do
8 fullConstraints ← parseAndCheckConstraints(constraints);
9 database ← runMappingStep(matrix, L, normalizer, discretizer, noiseHandler, orientation, fullConstraints);

10 biclusters ← runMiningStep(database, assumption, patternMiner, stopCriteria, L, orientation, fullConstraints);

11 biclusters ← runPostprocessingStep(biclusters, extender, merger, filter);
12 return biclusters;

13 runMappingStep begin
14 mask ← getOutliersMask(adjacencies);
15 discData ← discretize(adjacencies, L, normalizer, discretizer, mask);
16 if isColumn(orientation) then discData ← transpose(discData);
17 treatedData ← generateMultiItems(discData, adjacencies noiseHandler);
18 // mapping data into transactional or sequential databases (observations with possibly varying size)
19 if isOrderPreserving(coherency) then database ← createSequencesByOrderingIndexes(treatedData);
20 else database ← createTransactionsByConcatenatingIndexes(treatedData);
21 database ← removeUninformativeElements(database, fullConstraints);
22 return appendAnnotations(database, annotations, constraints); //optional

23 runMiningStep begin
24 if isConstant(assumption) || isOrderPreserving(coherency) then

patterns ← runPM (patternMiner, database, stopCriteria, fullConstraints);
25 if isAdditive(assumption) || isSym(assumption) then

patterns ← runAdditiveSymmetricPM (patternMiner, database, stopCriteria, fullConstraints);
26 //recover biclusters from patterns either represented as itemsets, sequences or association rules
27 return getBiclustersFromPatterns(patterns, assumption, L, orientation);

28 runPostprocessingStep begin
29 biclusters ← merge(biclusters, merger); //using similarity criteria
30 biclusters ← filter(biclusters, filter); //using dissimilarity criteria
31 return adjust(biclusters, extender, reducer); //using homogeneity criteria

32 runAdditiveSymmetricPM begin
33 allFactors ← ∅;
34 patterns ← ∅;
35 foreach node-index j in database do
36 factors ← computeAlignmentFactors(database,j,coherency); //according to [14]
37 if factors ∈ allFactors then continue;
38 else allFactors ← allFactors ∪ factors;
39 alignedDatabase ← alignDatabase(factors,database);
40 patterns ← patterns ∪ runPM (patternMiner, alignedDatabase, stopCriteria, fullConstraints);
41 if allCombinations(allFactors) then break; /*simple combinatorial calculus to prune the search*/ ;
42 return patterns;

43 runPM begin

44 if isIterativeRun( stopCriteria) /*PM is iteratively applied with decreasing support by default*/ then
45 minSupport ← 0.8;
46 patterns ← ∅;
47 while minAreaPercentageAchieved(patterns, stopCriteria) || minNrBiclusters(patterns, stopCriteria) do
48 //F2G-Bonsai (constraint-based FIM or ARM) for constant/additive/sym coherencies
49 //IndexSpanPG (constraint-based SPM) for order-preserving coherency
50 patterns ← runSinglePM (patterns, patternMiner, minSupport, data, patternRep, constraints);
51 minSupport ← minSupport×0.9;
52 else
53 //simple statistical calculus based on the frequency of items
54 (minRows,minColumns) ← findLowerLimitsExpectations(data);
55 patterns ← runSinglePM (patterns, minRows, minColumns, data, patternRep, constraints);
56 return patterns;

57 runSinglePM with F2G-Bonsai specified in Algorithm 2;
58 runSinglePM with IndexSpanPG specified in Algorithm 3;
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this order. In IndexSpanPG, the pruning of conflicting 
sequences or items with sequential constraints is done 
after the initial construction of the item-indexable data-
base and after each database projection (lines 6, 24 and 
29). Moreover, the growing of a given prefix is stopped 
whenever the prefix contradicts an anti-monotonic con-
straint or regular expression (lines 21 and 26). In order 
to avoid an unnecessary overhead for biclustering tasks 
in the presence of high number of constraints, the prun-
ing principles in F2G-Bonsai and IndexSpanPG might be 
only applied for certain database projections. In this case, 
the periodicity τ of projections eligible for pruning should 
be given as input to the algorithms (τ =  1 by default).

The computational complexity of BiC2PAM is bounded 
by the complexity of the pattern-based biclustering task 
in the absence of constraints. The complexity of pattern-
based biclustering tasks for dense and sparse matrices 
can be respectively consulted in the documentation of 
BicPAM [14] and BicNET [3].

BiC2PAM also provides default behaviors in order 
to guarantee a friendly environment for users without 
expertise in biclustering. For this aim, BiC2PAM makes 
available: (1) default parameterizations (data-independ-
ent setting) and (2) dynamic parameterizations (data-
dependent setting). Default parameterizations include: 
(1) zero-mean row-oriented normalization followed 
by overall Gaussian discretization with n/4 items for 
order-preserving coherencies (for an adequate trade-off 
of precedences vs. co-occurrences) and a set of {3, 5, 7} 
items for the remaining coherencies; (2) iterative dis-
covery of biclusters with distinct coherencies (constant, 
symmetric, additive and order-preserving); (3) F2G-
Bonsai search for closed FIM and association rule min-
ing, and IndexSpanPG search for SPM; (4) multi-item 
assignments; (5) merging of biclusters with over 70  % 
Jaccard-based similarity; (6) a filtering procedure for 
biclusters without statistical significance (according 
to [49]) and a 60  % Jaccard-based similarity against a 
larger bicluster; and (7) no constraints. For the default 

setting, BiC2PAM iteratively decreases the support 
threshold by 10 % (starting with θ = 80 %) until the out-
put solution discovers 50 dissimilar biclusters or a min-
imum coverage of 10 % of the inputted matrix elements 
or network interactions. Dynamic parameterizations 
enable the: (1) selection of data-driven normalization 
and discretization procedures according to their fit-
ting error, and (2) activation of data partitioning pro-
cedures for large matrices: over 100 million elements 
(excluding missing values) for the discovery of constant 
biclusters and over 1 million elements for the remain-
ing coherencies.

Results
This section provides empirical evidence of the sound-
ness of the proposed contributions and of the relevance 
of using constraints within (pattern-based) biclustering 
to prune the search space and guarantee biologically sig-
nificant solutions. To this end, we assessed the perfor-
mance of BiC2PAM on synthetic data, gene expression 
data and biological networks in the presence of domain 
knowledge. BiC2PAM was parameterized with default 
behavior and applied with F2G-Bonsai for the discov-
ery of constant biclusters with itemset constraints and 
with IndexSpanPG for the discovery of order-preserving 
biclusters with sequential pattern constraints. The stop-
ping criteria of BiC2PAM was specified as a minimum of 
20 dissimilar biclusters for synthetic data contexts and 50 
dissimilar biclusters for real data contexts. BiC2PAM is 
implemented in Java (JVM v1.6.0-24). The experiments 
were computed using an Intel Core i5 2.30GHz with 6GB 
of RAM.

Results on synthetic data
Synthetic data
Table 1 describes the generated data settings, with prop-
erties resembling the regularities of gene expression 
data. Constant and order-preserving biclusters with 
varying quality and coherency strength were generated. 

Fig. 6  Simplified illustration of BiC2PAM behavior: (1) transactional and sequential databases are derived from a multi-item matrix; (2) constraints 
are processed; (3) pattern mining searches are applied with a decreasing support; and (4) the discovered pattern-based biclusters that satisfy the 
inputted constraints are postprocessed
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Noise factors (±20  % of the range of inputted values) 
were imputed and overlaps between biclusters allowed. 
The selected number of rows and columns per biclus-
ter follows a Uniform distribution using the ranges in 
Table 1 in order to guarantee the inclusion of biclusters 
with dissimilar shapes. Reported results are the average 
of performance views collected from 30 data instances 
per setting.

Uninformative elements
A simplistic yet relevant form of domain knowledge is 
the knowledge regarding the uninformative elements of 
a given dataset. To this end, the ranges of values (or sym-
bols) to remove can be specified under a succinct con-
straint S /∈ P where S ⊆ R

+ (or S ⊆ L). The application 
of this constraint within BiC2PAM leads to the removal 
of these elements prior to the mining step, resulting in 

Algorithm 2: F2G-Bonsai (Constraint-based Frequent Full-pattern Growth Bonsai)

1 Method: runSinglePM using F2G-Bonsai
Input: Transactions data, double θ /*support*/, C constraints

2 Map<Int,Int> mapSup ← getItemsFrequency(data);
3 data ← removeInfrequentItemsAndSort(data,mapSup,θ); //sort items in desc. freq. order
4 FPTree tree;
5 foreach Transaction t : data do tree.addTransaction(t.itemset,t.id); //annotate TIDs on leafs
6 tree.createHeaderList(mapSup);
7 exAnteReductions(tree.getPaths(),null,constraints,mapSup,θ);
8 F2G(tree,∅,mapSup,constraints);

9 Method: F2G
Input: FPTree tree, Itemset α, Map<Int,Int> mapSup, C constraints

10 if tree.hasSinglePath() then addAllCombForPath(tree.path, α);
11 else FPGrowthMultiplePaths(tree, α, mapSup,constraints);

12 Method: FPGrowthMultiplePaths
Input: FPTree tree, Itemset α, Map<Int,Int> mapSup, C constraints

13 foreach Int item : tree.headerList /*items in reverse order*/ do
14 if mapSup[item] < θ then
15 foreach Node node : tree.getItemNodes(item) do
16 node.parent.trans←node.parent.trans ∪ node.trans;
17 node.trans = ∅;
18 continue;
19 β.values ← α ∪ item;
20 β.support ← min(α.support,mapSup[item]);
21 foreach Node node : tree.mapItemNodes.get(item) do
22 node.parent.trans ← node.parent.trans ∪ node.trans;
23 β.trans ← β.trans ∪ node.trans;
24 fullPatterns.add(β);
25 Path[] prefixPaths; //β cond. base (prefixes co-occuring with suffix pattern)
26 foreach Node node: tree.getItemNodes(item) do
27 Path path = node.getParentsUntilRoot();
28 path.trans ← node.trans;
29 prefixPaths.add(path);
30 Map<Int,Int> mapβSup ← getItemsSup(prefixPaths);
31 exAnteReductions(prefixPaths,β,constraints,mapβSup,θ);
32 FPTree βtree; //β conditional FP-Tree
33 foreach Path path : prefixPaths do
34 βtree.addPrefixPath(path, mapβSup, θ);
35 βtree.addTransactionIDs(path.getTransactions());
36 βtree.createHeaderListSortedByIndex(mapβSup, tree.headerList);
37 if βtree.hasNodes() then F2G(βtree, β, mapβSup);

38 Method: addAllCombForPath //recursively adds path nodes with prefix
Input: Path path, Itemset α

39 Node node ← path.retrieveFirst();
40 β.items ← α ∪ node.item; β.support ← node.counter; β.trans ← node.trans;
41 fullPatterns.add(β);
42 if path.hasMoreNodes() then
43 addAllCombForPath(path, α);
44 addAllCombForPath(path, β);

45 Method: exAnteReductions //pruning space using the inputted constraints
Input: Path[] paths, Itemset prefix /*optional*/, C constraints, Map<Int,Int> mapSup, double θ

46 //pruning from succinct constraints
foreach constraint ∈ constraints.getSuccinct() do

47 for each path ∈ paths do path.prune(prefix,constraint,prefixmapSup);
48 //pruning from monotone constraints

foreach constraint ∈ constraints.getMonotone() do
49 foreach path ∈ paths do
50 if path.notSatisfies(prefix,constraint) then paths.remove(path,mapSup);
51 //alpha reduction (discard infrequent items)

for each path ∈ paths do path.removeInfrequentItems(θ,mapSup);
52 //pruning from anti-monotone constraints

foreach constraint ∈ constraints.getAntiMonotone() do
53 for each path ∈ paths do path.pruneConflictingItems(prefix,constraint,θ,mapSup);
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Table 1  Properties of the generated dataset settings.

where µ defines the flexibility of the underlying coherency assumption (µ = 1 for constant and µ = 2 for order-preserving)

Additional properties (default settings in bold):

Coherency strength δ = {5, 10, 15, 20, 25, 33 %} (or symbols |L| = {20, 10, 7, 5, 4, 3})

Deviations on data values in {0, δ/2, δ, 2δ}, and degree of noisy and missing elements in {0, 2, 5, 10 %}

Overlapping degree θ = {0, 0.1, 0.2, 0.4} with plaid effects2 described by f = {sum, product, weighted} (cumulative function) ν = {1, 0.7, 0.4} (cumulative effect), 
ǫ = {0.1, 0.2} (noise), κ = {0.5, 0.3, 0.1 K} (average number of interacting biclusters) and φ = {1, 0.8, 0.5} (distribution of overlapping areas between the κ bics)— 
variables according to [20]

Non-exhaustive list of matrices (♯rows × ♯columns) 500 × 50 1000 × 100 2000 × 200 4000 × 400

Number of hidden biclusters (K) 6× 1

µ
10× 1

µ
15× 1

µ
20× 1

µ

Number of rows per hidden bicluster µ[50,70] µ[70,100] µ[100,200] µ[200,300]

Number of columns per hidden bicluster µ[5,7] µ[7,10] µ[8,12] µ[10,15]

Algorithm 3: IndexSpanPG (Indexable Prefix-Span with Sequential Pattern Constraints)
Input: sequential database D, minimum support θ1, minimum sequence length θ2, constraints
Output: set of sequential patterns S
Note: α is a sequence, Dα is the α-projected database

(Dα simply maintains a reference to the current sequences)

1 Method: runSinglePM using IndexSpan begin
2 foreach sequence s in D /*add array of item indexes per sequence*/ do
3 foreach item c do
4 s.indexes[c] ← position(s,c);
5 α.items ← φ; α.trans ← φ;
6 fastPruning(D,α,constraints); //remove sequences and items that conflict with the constraints
7 indexSpan(α,D,constraints);

8 indexSpan(α,Dα,constraints) begin
9 foreach frequent item c in Dα do

10 β.items ← α.items ∪ c; //co-occurrence (c is added to the last α itemset)
11 γ.items ← α.items · c; //α precedes c (c is inserted as a new itemset)

12 //pruning and fast gathering of supporting transactions (for efficient data projections)
13 foreach sequence s in Dα do
14 currentIndex ← s.indexes[c];
15 upperIndex ← s.indexes[αn] /*αn is the last item*/ ;
16 if leftPositions(currentIndex)≥ θ2 − |α| /*pruning*/ then
17 if currentIndex > upperIndex then
18 γ.trans ← γ.trans ∪ s.ID;
19 else
20 if currentIndex=upperIndex ∧ c>αn then β.trans ← β.trans∪s.ID;

21 if supβ(Dα) ≥ θ1 ∧ notConflicts(β,constraints.getAntiMonotonic()) then
22 S ← S ∪ {β};
23 Aβ ← fastProjection(β,Dα);
24 fastPruning(Dβ ,β,constraints);
25 indexSpan(β,Dβ);
26 if supγ(Dα) ≥ θ1 ∧ notConflicts(γ,constraints.getAntiMonotonic()) then
27 S ← S ∪ {γ};
28 Dγ ← fastProjection(γ,Dα);
29 fastPruning(Dγ ,γ,constraints); //remove conflicting sequences and items
30 indexSpan(γ,Dγ);

31 fastProjection(β,Dα) begin
32 foreach sequence s in Dα do
33 currentIndex ← s.indexes[βn];
34 upperIndex ← s.indexes[βn−1];
35 if leftPositions(currentIndex)≥ θ2 − |α| /*pruning*/ then
36 if currentIndex > upperIndex then
37 Dβ ← Dβ ∪ s;
38 else
39 if currentIndex=upperIndex ∧ βn > βn−1 then Dβ ← Dβ ∪ s;
40 return Dβ ;
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significantly large efficiency gains as shown by Fig.  7. 
This figure describes the impact of removing a varying 
extent of uninformative elements from synthetic data on 
the biclustering task. Despite the simplicity of this con-
straint, existing biclustering algorithms are not able to 
support this behavior, which undesirably impacts their 
efficiency and the adequacy of the outputted biclustering 
solutions.

Incorporating annotations
Figure  8 assesses the ability of BiC2PAM to discover 
biclusters with functional consistency from annotated 
data. Functional consistency is observed when the major-
ity of rows in a bicluster share one or more annotations. 
To this end, we annotate 2000 × 200 matrices with a var-
ying number of annotations per row2, {10 ±  4, 4 ±  2}, 
where each annotation is observed on a varying number 
of rows, {200 ± 10, 100 ± 10}. For this analysis, we guar-
anteed that the hidden biclusters have a high degree of 
functional consistency by imposing that the majority 
(85 % ± 10 pp) of their rows share a common annotation. 
As such, BiC2PAM was parameterized with succinct 
constraints guaranteeing that at least one annotation is 
consistently observed for all the rows of each bicluster 
before postprocessing (before the application of exten-
sion, merging and reduction procedures). Despite the 

2  Datasets available in http://web.ist.utl.pt/rmch/software/bic2pam/.

higher complexity from mining heterogeneous data 
(input data plus a large amount of annotations), results 
show that BiC2PAM is in fact more efficient than the 
baseline option. Furthermore, the observed match scores 
suggests that the presence of annotations may play an 
important role in guiding the recovery of true biclusters.

Itemset constraints
In order to test the ability of BiC2PAM to seize efficiency 
gains in the presence of itemset constraints with nice prop-
erties, we applied BiC2PAM over the 2000 × 200 data set-
ting (generated with 5 background symbols L =  {−2, −1, 
0, 1, 2} and hidden biclusters with constant assumption) in 
the presence of succinct, monotone and convertible con-
straints. For the baseline performance, constraints were 
satisfied using post-filtering procedures. Figure 9 shows the 
impact of inputting disjunctions of succinct constraints in 
the performance of BiC2PAM. As observed, the ability of 
BiC2PAM to effectively prune the search space in the pres-
ence of these constraints is associated with significant effi-
ciency gains. Moreover, they enable a focus on less-trivial 
regions from the input data space (e.g. −1 ∈ ϕB ∨ 1 ∈ ϕB).

Figure  10 measures the performance of BiC2PAM 
when constraints with monotone, anti-monotone and 
convertible properties are inputted. To this end, we show 
the efficiency gains from parameterizing the underly-
ing F2G miner with diverse principles, and further test 
F2G’s ability to deal not only with constraints satisfying 

Fig. 7  Efficiency gains of BiC2PAM from succinct constraints specifying uninformative elements for varying data settings with constant and order-
preserving biclusters and coherency strength defined by |L| = 7

Fig. 8  BiC2PAM ability to biclustering data with varying distributions of annotations (efficiency and Jaccard-based match scores [14] collected for 
the 2000 × 200 setting)

http://web.ist.utl.pt/rmch/software/bic2pam/
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a single property but multiple properties of interests (e.g. 
γ1 < sum(ϕB) < γ2). Results confirm that the proposed 
enhancements can lead to a substantial pruning of the 
search space. In particular, CFG principles [15] are used 
to seize efficiency gains from convertible constraints and 
FP-Bonsai [33] to seize efficiency gains from monotonic 
constraints.

Sequential pattern constraints
Figure  11 extends the previous analyses towards the 
constraint-guided discovery of order-preserving biclus-
ters with regular expressions. For this analysis, BiC2PAM 
was parameterized with IndexSpan and IndexSpanPG 
and applied over the 1000 ×  100 setting with a varying 
set of constraints (minimum number of precedences and 
ordering constraints). Results show that increased effi-
ciency gains can be attained from pruning data regions 
that do not satisfy these constraints.

Full‑pattern growth searches
The previous results highlight the relevance of full-pat-
tern growth searches for biclustering (F2G-Bonsai and 
IndexSpanPG) to adequately prune the search space. 
Figure  12 further motivates the importance of the pro-
posed F2G-Bonsai against AprioriTID and Eclat (F2G 
is able to surpass efficiency bottlenecks associated with 
bitset data structures), and the relevance of IndexSpanPG 
against PrefixSpan (IndexSpan is able to explore further 

efficiency gains from the item-indexable properties of the 
biclustering task). Results show the relevance of parame-
terizing BiC2PAM with the proposed full-pattern growth 
searches for large data and for hidden biclusters with 
loose coherency strength (highly dense data).

Results on biological data
Real data
To assess BiC2PAM over real data, we selected expres-
sion and network datasets with varying properties. Four 
gene expression datasets were considered: dlblc (660 
genes, 180 conditions) with human responses to chem-
otherapy [50], hughes (6300 genes, 300 conditions) to 
study nucleosome occupancy [51], and yeast-cycle (6221 
genes, 80 conditions) and gasch (6152 genes, 176 con-
ditions) measuring yeast responses to environmental 
stimuli [52]. Three biological networks from STRING 
v10 database [53] were additionally considered. These 
networks capture the gene interactions within human 
(6314 nodes, 423,335 interactions), Escherichia coli (8428 
nodes, 3,293,416 interactions) and yeast (19,247 nodes, 
8,548,002 interactions) organisms. The scores in these 
networks are inferred from literature and multiple data 
sources, revealing the expected strength of correlation 
between genes.

Uninformative elements
In gene expression data analysis, elements from the input 
matrix with default/non-differential expression are gen-
erally less relevant. Similarly, in the context of network 
data analysis, interactions with low weights are gener-
ally of reduced interest for module discovery. In these 
contexts, these data elements can be removed from the 
learning under a succinct constraint. Figures  13 and 14 
measures the impact of inputting such succinct con-
straints on the efficiency of BiC2PAM and on the prop-
erties of the outputted biclusters (assuming constant 
coherency). For this analysis, we analyze performance 

Fig. 10  BiC2PAM’s efficiency with (combined) anti-monotone, monotone and convertible constraints (2000 × 200 setting with constant coher-
ency). Impact of enhancing BiC2PAM with CFG [15] and FP-Bonsai [33] principles

Fig. 9  BiC2PAM’s efficiency in the presence of succinct constraints 
(2000 × 200 setting with constant assumption)
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of BiC2PAM on both expression data (Fig. 13) and net-
work data (Fig.  14) from different organisms. Results 
show that by inputting such simplistic constraints, very 

high efficiency gains can be obtained. Additionally, the 
removal of uninformative elements allows the focus on 
more relevant regions of the input data space and is asso-
ciated with slightly smaller biclusters due to the greater 
ability to exclude such elements from the solution space.

Annotations
Figure  15 measures the impact of incorporating func-
tional terms from ontologies for the analysis of biologi-
cal data (assuming an underlying constant coherency). 
To this end, we collected for each gene from human 
and yeast organisms the set of functional terms associ-
ated with the biological processes represented in gene 

Fig. 11  BiC2PAM performance with sequence constraints when 
learning order-preserving solutions (1000 × 100 setting)

Fig. 12  Impact of full-pattern growth searches in the performance of BiC2PAM for data with varying size (under a fixed coherency strength δ = 
20 %) and for fixed data settings with varying coherency strength

Fig. 13  Efficiency of BiC2PAM with knowledge regarding the uninformative elements for the analysis of expression data (hughes, dlblc, yeast-cycle) 
when assuming a constant coherency with |L|  = 5

Fig. 14  Efficiency of BiC2PAM with knowledge regarding the uninformative elements for the analysis of network data (human, Escherichia coli, yeast 
from STRING [53]) when assuming constant coherency with |L| = 5
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ontology from GOToolBox [46]. BiC2PAM was then 
applied over expression and network data in the presence 
of these annotations. Results confirm that BiC2PAM 
is able to integratively learn from data and annotations 
without further costs in efficiency, and to guarantee the 
functional consistency of the outputted biclusters (as 
expectedly demonstrated by the analysis of the enriched 
terms).

Succinct, monotone and convertible constraints
Figures 16 and 17 show the impact of inputting biologi-
cally meaningful constraints in the efficiency and effec-
tiveness of BiC2PAM. For this purpose, we used the 
complete gasch dataset (6152  ×  176) [54] with five 
levels of expression (|L|  =  6). The impact of consider-
ing a diverse set of constraints in the efficiency levels of 

BiC2PAM is provided in Fig.  16. The observed results 
demonstrate the relevance of using meaningful con-
straints with succinct, (anti-)monotone and convertible 
properties not only to guarantee a user-guided focus on 
specific regions of interest, but also to promote the trac-
tability to perform biclustering to solve computationally 
complex biological problems and analyzes.

The impact of these constraints in the relevance of pat-
tern-based biclustering solutions is presented in Fig. 17. 
The biological relevance of each bicluster was derived 
from the analysis of functionally enriched GO terms 
based on the application of hypergeometric tests [46]. A 
bicluster is considered significantly enriched if it has a 
set of correlated over-represented terms with Bonferroni 
corrected p values below 10−3. Two major observations 
can be retrieved. First, when focusing on properties of 

Fig. 15  Performance of BiC2PAM for biclustering biological datasets (yeast-cycle and dlblc) annotated with representative human and 
yeast GO terms (terms associated with biological processes with more than 50 genes)

Fig. 17  Biological relevance of BiC2PAM for different constraint-based profiles of expression

Fig. 16  Efficiency gains from using biologically meaningful constraints with succinct/monotone/convertible properties within BiC2PAM for the 
analysis of the gasch dataset (6152 × 176)
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interest (e.g. differential expression), the average signifi-
cance of biclusters increases as their genes have higher 
propensity to be functionally co-regulated. This trend 
is observed despite the smaller size of the constrained 
biclusters. Second, when focusing on rare expression 
profiles (≥3 distinct levels of expression), the average 
relevance of biclusters slightly decreases as their co-reg-
ulation is less obvious. Yet, such non-trivial biclusters 
hold unique properties with potential interest that can be 
further investigated. To our knowledge, BiC2PAM is the 
only available biclustering algorithm able to rely on user 
expectations and other forms of knowledge to focus the 
search on these non-trivial yet coherent and potentially 
interesting regions from the input data space.

Conclusions and future work
This work motivates the relevance of constraint-guided 
biclustering for biological data analysis with domain 
knowledge. To answer this task, we explored the syner-
gies between pattern-based biclustering and domain-
driven pattern mining. As a result, BiC2PAM algorithm 
was proposed with two major goals: (1) to learn biclus-
tering models in the presence of an arbitrary number of 
annotations from knowledge repositories and literature, 
and (2) to effectively incorporate constraints with nice 
properties derived from user expectations. BiC2PAM can 
therefore be applied in the presence of domain knowl-
edge to guarantee a focus on relevant regions and explore 
potentially high efficiency gains.

We further demonstrated the consistency between 
domain-driven pattern mining and pattern-based biclus-
tering based on the notion of full-patterns; surveyed the 
major drawbacks of existing research towards this end; and 
extended pattern-growth searches with state-of-the-art 
principles to prune the search space by pushing constraints 
with nice properties deep into the mining process. In par-
ticular, we showed the compliance of F2G searches with 
principles to effectively prune (conditional) FP-Trees, and 
the compliance of IndexSpan searches with principles to 
effectively prune prefix-growth structures. These searches 
were respectively extended to support pattern-based biclus-
tering with constant and order-preserving assumptions.

Meaningful constraints with succinct, monotone, anti-
monotone and convertible properties were presented for 
distinct biological tasks (gene expression analysis and 
network data analysis) in order to focus the search space 
on less-trivial yet coherent regions.

Results from synthetic and real data show that the 
incorporation of background knowledge leads to large 
efficiency gains that turn the biclustering task tractable for 
large-scale data. We further provide initial evidence of the 
relevance of the supported types of constraints to discover 

non-trivial yet meaningful biclusters in expression and 
network data with heightened biological significance.

Four major directions are identified for future work. 
First, the extension of the proposed contributions 
towards classification tasks based on the discrimina-
tive properties of biclusters in labeled data contexts. 
Second, an in-depth systematization of constraints with 
nice properties across biological data domains, including 
a structured view on their relevance for omic, genome-
wide and chemical data analysis. Third, a broader quanti-
fication of the impact of incorporating constraints across 
these data domains. Finally, the extension of the pro-
posed framework for the tasks of biclustering time series 
data and triclustering multivariate time series data in the 
presence of temporal constraints.

Data and software availability
The datasets and BiC2PAM software are available in 
http://web.ist.utl.pt/rmch/software/bic2pam/.
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Appendix: Native constraints
In addition to the incorporation of functional annota-
tions and specification of constraints with properties of 
interest, further possibilities can be explored within BiC-
2PAM to guarantee its ability to learn biclustering solu-
tions with customizable structure, coherency and quality 
in accordance with domain knowledge. Below we list a 
set of native constraints to this end that are effectively 
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incorporated within BiC2PAM by adapting the param-
eters that control its behavior along its preprocessing, 
mining, postprocessing steps.

Relevant constraints provided in the preprocessing step 
include:

• • Minimum coherency strength of the target biclusters 
(Definition 2). Decreasing the coherency strength 
(increasing the number of symbols) reduces the 
allowed deviations from value expectations and it is 
often associated with solutions composed by a higher 
number of smaller biclusters;

• • Tolerance to noise ηij (Definition 2). This constraint is 
used to adjust the behavior of BiC2PAM in the pres-
ence of noise, missing values or discretization draw-
backs. BiC2PAM enables the possibility to assign a 
parameterizable number of symbols to a given data 
element when its value is near a boundary of discre-
tization. By assigning two or more symbols guaran-
tees a higher robustness to noise (proof in [14]).

Relevant constraints provided in the mining step include:

• • Coherency assumption and orientation: Currently, 
BiC2PAM supports the selection of constant, addi-
tive, multiplicative, symmetric, order-preserving and 
plaid models with coherency on rows or columns. 
An in-depth view on the relevance of non-constant 
coherency assumptions for expression and network 
data analysis was previously provided in [14, 19, 20, 
22].

• • Minimum pattern length and/or support (minimum 
number of columns and/or rows in the bicluster).

• • Pattern representation: simple (all coherent biclus-
ters), closed (all maximal biclusters), or maximal 
(solutions with a compact number of biclusters with 
a preference towards a high number of columns).

• • Stopping criteria: minimum number of biclusters 
able to satisfy the inputted constraints, or minimum 
area of the input matrix covered by the discovered 
valid biclusters.

Understandably, constraints addressed at the post-
processing stage are not desirable since they are not able 
to seize major efficiency gains. Nevertheless, BiC2PAM 
supports three key types of constraints that could imply 
additional computational costs, but are addressed with 
heightened efficiency: (1) maximum percentage of noisy 
and missing elements per bicluster (based on merging 
procedures [14]), (2) minimum homogeneity of the tar-
get biclusters (using extension and reduction procedures 
with a parameterizable merit function [14]) and (3) mini-
mum dissimilarity criteria to guarantee compact outputs.

Previous work from Henriques and Madeira [1, 14, 19, 
20, 22] provide an in-depth description of how pattern-
based biclustering algorithms implement this wide-set of 
customization possibilities.

The listed native constraints can be specified in declar-
ative form. As such, BiC2PAM provides the possibil-
ity to affect structural aspects of its outputs with sharp 
usability.
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