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Abstract 

Nitrogen (N), phosphorus (P), and potassium (K) contents are crucial quality indicators for forage in alpine natural 
grasslands and are closely related to plant growth and reproduction. One of the greatest challenges for the sustain-
able utilization of grassland resources and the development of high-quality animal husbandry is to efficiently and 
accurately obtain information about the distribution and dynamic changes in N, P, and K contents in alpine grasslands. 
A new generation of multispectral sensors, the Sentinel-2 multispectral instrument (MSI) and Tiangong-2 moderate-
resolution wide-wavelength imager (MWI), is equipped with several spectral bands suitable for specific applications, 
showing great potential for mapping forage nutrients at the regional scale. This study aims to achieve high-accuracy 
spatial mapping of the N, P, and K contents in alpine grasslands at the regional scale on the eastern Qinghai-Tibet Pla-
teau. The Sentinel-2 MSI and Tiangong-2 MWI data, coupled with multiple feature selection algorithms and machine 
learning models, are applied to develop forage N, P, and K estimation models from data collected at 92 sample sites 
ranging from the vigorous growth stage to the senescent stage. The results show that the spectral bands of both 
the Sentinel-2 MSI and Tiangong-2 MWI have an excellent performance in estimating the forage N, P, and K contents 
(the R2 values are 0.68–0.76, 0.54–0.73, and 0.74–0.82 for forage N, P, and K estimations, respectively). Moreover, the 
model integrating the spectral bands of these two sensors explains 78%, 74%, and 84% of the variations in the forage 
N, P, and K contents, respectively. These results indicate that the estimation ability of forage nutrients can be further 
improved by integrating Tiangong-2 MWI and Sentinel-2 MSI data. In conclusion, integration of the spectral bands of 
multiple sensors is a promising approach to map the forage N, P, and K contents in alpine grasslands with high accu-
racy at the regional scale. This study offers valuable information for growth monitoring and real-time determination of 
forage quality in alpine grasslands.
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Introduction
The Qinghai-Tibet Plateau’s grassland area accounts 
for approximately 44% of all grassland in China, mak-
ing it not only the most extensive high-altitude pas-
ture in the world but also an essential production base 
for animal husbandry [1, 2]. The health and quality of 
alpine grassland are directly correlated with the sustain-
able utilization of grassland resources. The nitrogen (N), 
phosphorus (P), and potassium (K) contents of forage 
in alpine grasslands are crucial factors limiting grass-
land productivity and ecosystem function. In addition, 
they are also important indicators to evaluate grassland 
quality. N is the most abundant element in plant protein, 
which not only participates in the formation of plant 
enzymes, hormones, and chlorophyll but also has a close 
relationship with the photosynthesis of grassland [3–5]. It 
is essential for enhancing the nutrition and productivity 
of grasslands and plays a significant role in plant-critical 
activities. P is primarily involved in the synthesis of vital 
life substances in plants, such as nucleic acids, ATP, and 
phospholipids [6]. K is an indispensable mineral nutri-
ent in plant metabolism and synthesis and can enhance 
plant photosynthesis and stress resistance to a certain 
extent [7, 8]. The traditional methods for estimating for-
age mineral nutrients mainly depend on field sampling 
and spatial interpolation techniques with relevant data, 
which are time-consuming, labor-intensive, and costly; 
in addition, they have poor spatial representations and 
accuracy [9, 10]. Therefore, there is an urgent need and 
it is particularly important to explore an effective method 
for accurately capturing the dynamic changes and spa-
tial–temporal distribution patterns of forage N, P, and K 
contents in alpine grasslands.

With the development of remote sensing technology, 
multispectral, hyperspectral, and chlorophyll fluores-
cence data are widely used in the quantitative analysis of 
plant physicochemical parameters. In contrast to tradi-
tional methods, these approaches provide a more effec-
tive and practical method to estimate forage nutrient 
content at the regional scale [11, 12]. Previous research-
ers used the hyperspectral absorption features of the 
vegetation canopy and the corresponding vegetation 
index, combined with a variety of statistical models (e.g., 
gaussian process regression, random forest (RF), and lin-
ear mixed effects model), to obtain satisfactory estima-
tion accuracy of plant N, P and K contents [13–15]. For 
instance, the variables R′708.88, R′704.85, and R′697.36 
in the red-edge (RE) region had outstanding contribu-
tions to the estimations of forage N, P, and K contents, 
and the estimation accuracy of these parameters reached 
80% [16]; the spectral bands centered at 700 nm, 710 nm, 
1160 nm, 1170 nm, and 1180 nm were sensitive to crude 
protein (CP) content of Mediterranean grasslands and 

obtained a relatively high estimation accuracy of CP 
(coefficient of determination (R2) ≥ 0.7) [17]. In addi-
tion, previous studies have demonstrated that the status 
of plant growth and the reflectivity of the RE band had 
a significant relationship [18]. The feature parameter 
from the RE position have been widely applied to assess 
the quality and quantity of vegetation in farmland, forest, 
and grassland ecosystems [11, 19]. The RE band describes 
the spectral characteristics between the maximum chlo-
rophyll absorption in the red region and the reflection 
peak in the near-infrared (NIR) region, which is closely 
related to vegetation growth and environmental stress 
and shows potential in the assessment of forage quality 
[17, 20]. For instance, Raab et  al. [21] studied the abil-
ity of combined radar and multispectral data to predict 
the CP (R2 = 0.72 and RMSE = 1.70%) concentration of 
forage in southeastern Germany, and the results indi-
cated that the ratio of the NIR and RE regions exhibited 
a strong contribution to the model performance. There-
fore, remote sensing technology has been shown to be an 
effective way to estimate forage quality in alpine grass-
lands. Compared with multispectral data, hyperspectral 
data has richer spectral bands and thus can detect weak 
spectral features that cannot be detected with the utiliza-
tion of traditional multispectral sensors (such as MODIS) 
[22]. Hyperspectral data has been extensively used for 
modeling estimation and spatial and temporal inversion 
of vegetation physicochemical parameters, such as N and 
chlorophyll [15, 23]. The multispectral imagery of Senti-
nel-2 and the hyperspectral imagery captured by a hyper-
spectral sensor (OCI-F-Imager) were utilized by Askari 
et al. [24] to estimate the CP concentration of grassland 
in Ireland. The results indicated that hyperspectral data 
(residual predictive deviation (RPD) ≥ 2.5 and R2 ≥ 0.8) 
performed better than Sentinel-2 multispectral data 
(estimated model performance reached a moderate level, 
1.4 ≤ RPD < 2.0 and R2 ≥ 0.6) in the estimation of forage 
CP. However, due to the expense of obtaining hyperspec-
tral satellite and airborne data, their applications in the 
real-time monitoring of grass growth conditions and for-
age nutrient estimation are greatly limited, especially at a 
large scale.

In recent years, a new generation of multispectral sen-
sors (i.e., Rapid Eye and WorldView-2) equipped with 
RE bands significantly related to plant N and chlorophyll 
has shown great potential and advantages in the long-
term monitoring of vegetation growth [25]. Several satel-
lite sensors with a single RE band have been utilized for 
local assessments of natural grassland forage quality, and 
some practical and innovative results have been achieved 
[26–28]. However, some limitations remain for mapping 
alpine grassland forage nutrients with high accuracy at 
a large scale, such as the high data acquisition cost and 
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limited mapping scope, which restrict the high-frequency 
and dynamic monitoring of forage growth conditions at 
the regional scale. Therefore, considering cost and feasi-
bility, Tiangong-2 moderate-resolution wide-wavelength 
imager (MWI) and Sentinel-2 A/B multispectral instru-
ment (MSI) data are more suitable for collaborative 
monitoring of grassland nutrients at the regional scale 
because their data are freely available and are easy to 
obtain. Moreover, the band configurations of these two 
data types are similar. The Tiangong-2 space laboratory 
launched successfully on September 15, 2016, is the sec-
ond space laboratory launched by China following the 
successful mission of the Tiangong-1 space laboratory 
[29]. The MWI carried by the Tiangong-2 space labora-
tory, as the core sensor for Earth observation, has a high 
spectral and temporal resolution. It has been widely used 
in ecological environment protection and assessment, 
land cover classification, lake, and ocean monitoring, and 
other applications [30, 31]. Tiangong-2 MWI data have a 
300 km image width and 14 bands ranging from the vis-
ible region to the NIR region, with most of these bands 
located in the 400–990 nm range, making them ideal for 
mapping large-scale vegetation growth. Two satellites, 
Sentinel-2 A/B, were launched in June 2015 and March 
2017, respectively, and carry a MSI that covers the visible, 
NIR, and shortwave infrared (SWIR) regions.

Sentinel-2 MSI has three RE bands and two NIR bands, 
which have been shown to be closely related to plant 
nutrient contents, such as chlorophyll, N, and cellulose. 
These spectral bands have shown significant importance 
in estimating plant physicochemical parameters and have 
been extensively used in vegetation growth monitoring 
[32, 33]. Fernández-Habas et  al. [34] utilized Sentinel-2 
MSI multispectral data to retrieve the CP and neutral 
detergent fiber (NDF) of Mediterranean permanent 
grasslands and found that the variables located in the RE 
and SWIR were the most sensitive to CP and NDF con-
tent, and the blue and red spectral bands played a certain 
role in the estimation process. Using simulated Sentinel-2 
data, Ramoelo et  al. [35] demonstrated that the RE and 
SWIR regions were reliable predictive factors for spatially 
mapping N and CP in a savanna in southern Africa. In 
addition, the calculation of the N and chlorophyll con-
tents in grassland and crops using Sentinel-2 MSI data 
has been explored. The MERIS terrestrial chlorophyll 
index, the green chlorophyll index and the RE chloro-
phyll index worked well in the assessment of the chloro-
phyll and N contents [25], and the spectral bands of MSI, 
which are centered on 705  nm and 740  nm were well 
positioned for deducing these vegetation indices. These 
studies attest to the value of RE bands from MSI in veg-
etation monitoring. Notably, the Tiangong-2 MWI has 
rich spectral information and a large image width, and 

its application in estimating the physicochemical param-
eters of grassland is not yet mature. Therefore, the poten-
tial of Tiangong-2 MWI data for monitoring vegetation 
growth at the regional scale needs to be further explored.

Traditional multivariate regression analysis methods 
can readily result in overfitting and are susceptible to the 
multicollinearity of variables [36, 37]. In addition, these 
methods require that the data follow a normal distribu-
tion. In contrast, machine learning algorithms, such as 
RF and support vector machine (SVM), can address these 
problems well [38]. SVM algorithm can effectively pre-
vent the influence of high-dimensional data, small sam-
ples, and local optimization problems [23]. In the case of 
a small sample size, SVM is superior to the other mod-
eling approache. The multicollinearity of variables can be 
reduced by the RF algorithm, which is suitable for explor-
ing the relationships between specific vegetation bio-
chemical parameters and multiple spectral variables [26, 
39].

In addition, to our knowledge, there are very few stud-
ies that focus on using the Tiangong-2 MWI data to 
estimate the quality of alpine grasslands. Moreover, the 
feasibility of integrating Sentinel-2 MSI and Tiangong-2 
MWI data to map forage nutrients in alpine grasslands 
has not been successfully confirmed. Our study was car-
ried out in an alpine grassland on the eastern Qinghai-
Tibet Plateau. The forage N, P, and K contents of the 
alpine grassland were estimated using remote sensing 
data combined with observation data. To do so, two fea-
ture selection algorithms (i.e., RFFS and LASSO) and 
two machine learning models (i.e., RF and SVM) were 
employed in this study. The primary goals of this paper 
are (1) to test whether the spectral band configuration of 
Sentinel-2 MSI can effectively estimate the forage N, P, 
and K contents in alpine grasslands; (2) to verify whether 
Tiangong-2 MWI has the potential to estimate the forage 
N, P and K contents; and (3) to explore whether the esti-
mation performance of the forage N, P and K contents in 
alpine grasslands can be improved by the integrated use 
of Sentinel-2 MSI and Tiangong-2 MWI data.

Materials and methods
Study area
The study area is situated on the eastern Qinghai-Tibet 
Plateau with an altitude of 1966–4639  m (Fig.  1). The 
grassland resources in this region are rich, and animal 
husbandry is the leading industry. In addition, the main 
vegetation types in this region are grassland, forest, and 
shrub, among which the grassland area is the largest, 
providing a material guarantee for the development of 
animal husbandry. The primary grassland classifications 
in the research region include alpine meadow, moun-
tain meadow, temperate grassland, and alpine grassland, 
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among others. The alpine meadow dominates the sur-
rounding area, making up 52.80% of the total grassland 
area in this region, and the dominant genera in this 
region are Carex parvula, Bistorta vivipara, and Carex 
capillifolia. The mountain meadow is the second most 
extensive grassland type, making up 19.32% of the grass-
land area in the research region overall; the predominant 
genera in mountain meadow are Carex duriuscula and 
Elymus nutans. In general, grassland vegetation mainly 
undergoes vegetative and reproductive growth from May 
to August and gradually enters the senescent stage begin-
ning in September. The study area has a typical plateau 
continental climate and is located in a humid alpine cli-
mate zone. The annual average temperature ranges from 
1 to 3 °C, and precipitation is abundant, with an average 
of between 400 and 700 mm of precipitation falling each 
year. The rainfall in this region is usually concentrated in 
July–September, and then the precipitation and tempera-
ture gradually decrease. Due to the influence of mon-
soons, the distribution of precipitation shows a pattern of 
being higher in the south and lower in the north [40]. In 
addition, as a result of the high average altitude, low sur-
face pressure, complex terrain, and changeable climate, 
disastrous weather, including droughts and floods, cold 
weather in late spring, snow disasters, and cold waves 
occur frequently. Under the influences of overgrazing and 
extreme climates, combined with the extremely extensive 
management mode of animal husbandry, the vegetation 

community structure in this region has become singular, 
the conflict between forage and livestock has intensified, 
the quality of grassland has decreased, and the function 
of the grassland ecosystem has been seriously damaged, 
hindering the healthy development of animal husbandry 
in grassland areas.

Grassland observation data
Three field campaigns were carried out in the study 
area in July (when the forage is in the vigorous growth 
stage), September (when the forage is gradually enter-
ing the senescent stage), and November (when the forage 
is completely in the senescent stage) 2017, and a total of 
92 sample sites were observed (Fig. 1). According to the 
distribution characteristics and utilization pattern of the 
grassland, three typical areas were selected as fixed mon-
itoring sample areas; these areas were located in Gan-
jia Township and Yaliji Township in Xiahe County and 
Xicang Township in Luqu County. In addition, 5 fixed 
sample sites (100 × 100  m) were established within each 
fixed sample area. Moreover, to understand the overall 
forage growth, some sampling sites (100 × 100  m) were 
randomly set up in the study area. Each sample site con-
sisted of 5 subplots (0.5 × 0.5  m) to represent site vari-
ability. For each quadrat, the factional coverage, height, 
and species number of the vegetation in the community, 
the proportion of nonphotosynthetic vegetation, longi-
tude, latitude, and other relevant information were first 

Fig. 1  Spatial distribution of fixed monitoring sample areas and random sample sites in the study area (a) and land use (b) [41]
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obtained. Then, the forage samples in the quadrats were 
cut to ground level, placed in a quadrat bag, and trans-
ported to the laboratory.

Forage samples collected from the field were dried in 
an oven at 65  °C for 48 h to a consistent weight; subse-
quently, the forage samples from the same site were 
mixed, crushed, and sieved, and then, their nutrient con-
tents were quantitatively analyzed by chemical analysis. 
First, digestion, dehydration, carbonization, and a series 
of oxidation reactions were conducted on grass samples 
using H2SO4–H2O2 solution. The N and P contents of the 
forage were measured using the flow injection analyzer 
(Fia-star 5000, Foss Tecator, Sweden); at the same time, 
a flame spectrophotometer was used for quantitative 
analysis of the K content. The N, P, and K contents were 
measured using the Bertfelot reaction, phosphomolyb-
date blue reaction, and flame reaction, respectively [42, 
43]. The chemical analysis method adopted in this study 
is simple to perform and has high accuracy and monitor-
ing efficiency, making it ideal for the analysis of numer-
ous plant samples.

Satellite image and processing
The satellite data utilized in this study include Tiangong-2 
MWI and Sentinel-2 MSI images. The Tiangong-2 MWI 
data were acquired from the China Manned Space Appli-
cation Data Promotion Service Platform (http://​www.​
msadc.​cn/​sjfw/), and the Copernicus Open Access Hub 
(https://​scihub.​coper​nicus.​eu/) was used to gather the 
Sentinel-2 MSI data. The images taken closest to the time 
of sampling were preferentially selected in this study, and 
these data were nearly cloud- and cloud-shadow-free. A 
total of 20 Tiangong-2 MWI images and 36 Sentinel-2 
MSI images were selected.

The wide-wavelength imager carried by the Tian-
gong-2 satellite consists of four different types of cam-
eras (i.e., a visible/NIR camera, SWIR camera, thermal 
infrared camera, and visible polarized camera). The data 
from the visible/NIR camera were used in this study; 
these data consists of 14 bands with a spatial resolution 
of 100  m and are primarily centered between 400 and 
990  nm (Table  1). The Tiangong-2 MWI images down-
loaded from the data platform are radiance products, 
that have been preprocessed with systematic radiomet-
ric correction and geometric correction. The FLAASH 
atmospheric correction module in ENVI 5.3 (Exiles Vis-
ual Information Solutions, USA) was utilized for image 
atmospheric correction by setting the orbit parameters of 
Tiangong-2 and importing its spectral response function. 
Finally, masking and resampling (20 m) were conducted 
for these images in ENVI 5.3. All 14 spectral bands were 
selected as independent variables for modeling.

The Sentinel series satellites are the component con-
stellation launched by the ESA for the Copernicus pro-
gram. The MSI multispectral sensor has 13 spectral 
bands with spatial resolutions of 10  m (B2, B3, B4, and 
B8), 20  m (B5, B6, B7, B8a, B11, and B12), and 60  m. 
These bands are located from 430 to 2190  nm, and the 
RE bands include B5, B6, and B7 (Table 1). The Sentinel-2 
images downloaded from the data platform are the Level-
1C orthorectified TOA reflectance product. Some initial 
data processing, such as atmospheric correction, geo-
metric correction, and resampling (20 m), was conducted 
in SNAP (European Space Agency, France). Finally, 10 
bands excluding the B1, B9, and B10 bands were selected 
as independent variables for modeling [44].

Statistical methods
Feature band selection
Two feature band selection algorithms were adopted in 
this study: the first is the random forest feature selection 
algorithm (RFFS) [39], and the second is the least abso-
lute shrinkage and selection operator (LASSO) algorithm 
proposed by statistics professor Tibshirani [45] at Stan-
ford University in 1996. For RFFS, the variables are first 
ranked by their importance score, and then, the sequen-
tial backward selection method is used to eliminate the 
variables with the lowest score. The importance score of 
variables generated by each iteration can be used as the 
basis for feature elimination, and the R2 is calculated after 
each iteration to evaluate the model performance. The 
variable set with a higher R2 value and a smaller number 

Table 1  Spectral bands of Sentinel-2 MSI and Tiangong-2 MWI

Sentinel-2 MSI Tiangong-2 MWI

Band Central 
wavelength 
(nm)

Band 
width 
(nm)

Band Central 
wavelength 
(nm)

Band 
width 
(nm)

B2 490 65 V1 413 20

B3 560 35 V2 443 20

B4 665 30 V3 490 20

B5 705 15 V4 520 20

B6 740 15 V5 565 20

B7 783 20 V6 620 20

B8 842 115 V7 665 10

B8a 865 20 V8 682.5 10

B11 1610 30 V9 750 20

B12 2190 142 V10 820 20

V11 865 40

V12 905 20

V13 940 20

V14 980 20

http://www.msadc.cn/sjfw/
http://www.msadc.cn/sjfw/
https://scihub.copernicus.eu/
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of variables is selected as the final result of the feature 
selection after several iterations.

The LASSO is a regression method with feature selec-
tion and regularization performed simultaneously to 
enhance the interpretability and accuracy of statistical 
models [46]. In addition, the algorithm achieves compres-
sion by generating a penalty function, which is the varia-
ble coefficient. The regression coefficient of independent 
variables with little or no influence is compressed to 0 to 
solve the overfitting problem of models and effectively 
reduce the complexity and instability of the models.

Modeling
To effectively overcome the uncertainties brought about 
by using single regression models for prediction, two 
machine learning models, RF and SVM, were utilized in 
this study. The RF regression model is a supervised learn-
ing algorithm proposed by Breiman [47], which trains 
samples based on multiple decision trees and then uti-
lizes the trained model to predict the categories of the 
tested samples. The bootstrap sampling method is used 
by the RF model to extract multiple sample sets with the 
same number of samples from the original samples to 
form sample subsets, and the number of samples in each 
sample subset is the same as that in the initial data sam-
ple set. Then, each sample subset is used to build a deci-
sion tree, and the predicted results of multiple decision 
trees are integrated to acquire the final result; thus, the 
final result of the established model is jointly determined 
by each decision tree. The two main parameters (ntree 
and mtry) selected the default values [48, 49].

SVM is a machine learning model developed from sta-
tistical theory that has a good function for small sample 
classification and regression [50]. Its goal is to establish 
the best classification hyperplane to improve the gen-
eralization ability of the model. Concurrently, the origi-
nal data space is mapped to a higher dimensional space 
through the kernel function to effectively solve nonlinear 
problem. Due to the excellent performance of the radial 
basic function (RBF) in several studies, RBF was selected 
as the kernel function of our model [51], and the genetic 
algorithm was used to optimize the two key parameters 
in SVM. The above training and optimization of the SVM 
and RF models were performed using MATLAB 2016a 
software (Math Works, USA).

Accuracy assessment
The performance of the established models for forage 
nutrient content estimation was assessed by a tenfold 
cross validation (CV) procedure. All the variables were 
separated into ten subsets, of which nine were chosen as 
training data to establish the models, and one was uti-
lized as test data (the sample size for the first nine folds, 

and the last fold is 9 and 11, respectively). This procedure 
was repeated 10 times to obtain the R2 and root mean 
square error (RMSE) between the estimated and meas-
ured values. The R2, normalized root mean square error 
(NRMSE), RMSE, and RPD were employed to assess the 
performance of the N, P, and K content estimation mod-
els. Each model was repeated 50 times to reduce acci-
dental error, and the final outcome was determined by 
averaging all the results. Furthermore, the Akaike infor-
mation criterion (AIC) and Bayesian information crite-
rion (BIC) values were utilized for the assessment of the 
complexity of the models established in this study. AIC 
and BIC are criteria used to weigh the complexity of the 
established models and the goodness-of-fit of the data 
[52, 53]. The best model must strike the correct balance 
between model complexity and data fitting prowess, and 
this balance is determined by using both criteria. If sev-
eral models have the same accuracy, the model with a 
smaller BIC is preferred. R2, RMSE, NRMSE, RPD, AIC, 
and BIC are calculated as follows:

where yi and ŷi denote the actual measured and model 
simulated values of forage nutrient content in the test set, 
respectively; ȳ denotes the average value of the actual 
measured forage nutrient content; n denotes the sample 
size of the test dataset; SD is the standard deviation; RSS 
denotes the sum of squared residuals; and k denotes the 
number of model variables. According to the NRMSE 
grading criteria, the model accuracy is excellent when 
NRMSE is less than or equal to 10%, good when it is 
greater than 10% and less than or equal to 20%, average 
when it is greater than 20%, and less than or equal to 30%, 
and poor when it is greater than 30%. The RPD grad-
ing criteria are as follows: “better” accuracy (RPD ≥ 2.0, 

(1)R2 =

(

1−
∑n

i=1 (yi−ŷi)
2

∑n
i=1 (yi−y)

2

)

(2)RMSE =

√

∑n
i=1 (yi−ŷi)

2

n

(3)MSE = RMSE
y

(4)RPD = SD/RMSE

(5)RSS =
n
∑

i=1

(

yi − ŷi
)2

(6)AIC = 2k + nln(RSS/n)

(7)BIC = nln(RSS/n)+ kln(n)
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R2 ≥ 0.70), “moderate” accuracy (1.4 ≤ RPD < 2.0, 
R2 ≥ 0.60), and “poor” accuracy (RPD < 1.4, R2 < 0.6).

Results
Statistics of the forage N, P, and K contents during various 
growth stages
The descriptive statistics of the forage N, P, and K con-
tents during various developmental stages and actual 
photos of the alpine grassland are provided in Fig.  2. 
As the different growth stages progress, the contents of 
N, P, and K decrease significantly. The average contents 
of N, P, and K are highest during the vigorous growth 
stage (1.91%, 0.17%, and 2.12%, respectively) and low-
est during the senescent stage (0.88%, 0.06%, and 0.54%, 
respectively).

Estimation of the forage N, P, and K contents based 
on Tiangong‑2 MWI data
The estimation results of the N, P, and K contents in the 
forage obtained by utilizing various band combinations 
of MWI data are shown in Table 2. Compared with the 
model established using all 14 MWI spectral bands, the 
model developed by the feature bands selected by the 
RFFS and LASSO algorithms has higher accuracy and 
lower complexity (the model has low AIC and BIC). 
Overall, in contrast to the SVM model, the RF model 
yields a better estimation accuracy, demonstrating 
that the RF model performs better in the estimation 

of forage N, P and K contents. Furthermore, through 
comparison analysis, we find that the estimation model 
for the N content (NRMSE ≤ 0.20) has higher accuracy 
than that for the P and K contents. Among all mod-
els, the RF model with the TG-LASSO variable set as 
an independent variable is the optimal model for N 
estimation. The optimal model for P and K estimation 
is the RF model with the TG-RFFS variable set as the 
independent variable.

The importance score of various bands from the 
Tiangong-2 MWI for the estimation of the forage N, P, 
and K contents is illustrated in Fig. 3. The V1 (blue), V7 
(red), and V8 (RE) bands are chosen as sensitive vari-
ables in the estimation of forage N, P and K contents; 
in particular, V7 (red) band has a higher importance in 
the estimation model. However, although the V1 (blue) 
and V8 (RE) bands are less important in the estima-
tion models, their contributions should not be ignored. 
The V9 (RE) band has a prominent contribution to the 
estimation of the forage N and K contents but does not 
have a significant contribution to the estimation of the 
P content. Furthermore, the V6 (red) band is of some 
importance for estimating the P and K contents of for-
age, while the V3 (blue) band has a weak contribution 
to estimating the P content. In summary, the spectral 
bands covering the blue, red, and RE regions are most 
suitable for estimating the N, P, and K contents are 
most sensitively estimated.

Fig. 2  Descriptive statistics of forage N (a), P (b), and K (c) contents and actual photos of the alpine grassland taken in July, September, and 
November. The triangles indicate the mean values of the N, P, and K contents in different growth stages, and the red dashed lines are the trend lines 
of the mean nutrient contents
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Estimation of the forage N, P, and K contents based 
on Sentinel‑2 MSI data
The forage N, P, and K content estimation results utiliz-
ing different band combinations of MSI data are shown in 
Table 3. Compared with the model established using all 
10 MWI spectral bands, the model developed by the fea-
ture bands selected by the RFFS and LASSO algorithms 
has a marginally higher accuracy and a higher operat-
ing efficiency (the AIC and BIC values are low). Overall, 
compared to the SVM model, the RF model has a higher 
estimation accuracy, indicating that the RF model is more 
robust in the estimation of forage nutrient contents. In 
summary, the RF model with the S2-LASSO variable set 
as independent variables is the optimal model for the N 
content estimation. The RF model with the S2-RFFS vari-
able set as independent variables is the optimal model for 
the P and K estimation.

The importance score of various bands from Sentinel-2 
MSI in the estimation of the forage N, P, and K contents 
are shown in Fig.  3. B7 (RE) is selected as the suitable 
band for the estimation of all nutrient contents and has 
a strong contribution to the estimation model. The B2 
(blue) and B4 (red) bands play important roles in estimat-
ing the forage N content but contribute little to estimat-
ing the P and K contents. The B11 (SWIR) band is also 
selected as a suitable band in the estimation of the N con-
tent; although its importance score is low, its contribu-
tion should not be ignored. In addition, the B6 (RE) band 
has good potential for the estimation of the forage P and 
K contents. In summary, the spectral bands sensitive to 
the estimation of the N content are located in the blue, 

red, RE, and SWI regions. The spectral bands with out-
standing contributions to the estimation of P and K con-
tents are mostly located in the RE region. In addition, the 
spectral variables from the red, NIR, and SWIR regions 
also play an important role in the estimation of P and K 
contents.

Estimating the forage N, P, and K contents by integrating 
Sentinel‑2 MSI and Tiangong‑2 MWI data
The spectral bands of the MSI and MWI sensors are 
integrated to establish the models for the estimation of 
the forage N, P, and K contents, and the model output 
results are shown in Table 4. Compared with the use of 
spectral bands from a single sensor (MSI or MWI), the 
combined use of the MSI and MWI spectral bands for 
estimating all nutrient contents has a higher accuracy. 
The estimation accuracy (R2) of the N, P, and K con-
tents increases by 0.04, 0.04, and 0.03, and the NRMSE 
decreases by 0.01, 0.02, and 0.02, respectively; in addi-
tion, the RMSE of the N and K content estimation mod-
els decreases by 0.01 and 0.03 with the combined use of 
the MSI and MWI data. These results indicate that the 
model performance for estimating the forage N, P, and K 
contents can be marginally improved through the inte-
gration of multisource remote sensing data. In compari-
son, the RF model is more robust than the SVM model 
(Fig.  4 shows higher R2 and lower NRMSE). In the RF 
models established with the variable set obtained by the 
feature selection algorithm, the estimation models of the 
N and K contents perform slightly better than those of 
the P content. The R2 values of the K content estimation 

Fig. 3  Analysis of the relative importance of different forage nutrient differences to Tiangong-2 MWI (a) and Sentinel-2 MSI (b) spectral bands. For 
comparison, the importance of both MSI and MWI spectral bands for nitrogen, phosphorus, and potassium was normalized to between 0 and 1. TG 
Tiangong-2, S2 Sentinel-2
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models are the highest, with values in the range of 0.83 
to 0.85, and the R2 values of the N and P content estima-
tion models are in the ranges of 0.78–0.80 and 0.72–0.77, 
respectively. The N content estimation models perform 
at a good level (0.10 < NRMSE ≤ 0 0.20), while the P and 
K content estimation models perform at an average level 
(0.20 < NRMSE ≤ 0.30). In terms of predictive ability, 
the models estimating all kinds of forage nutrient con-
tents perform at a moderate level (1.4 ≤ RPD < 2.0 and 
R2 ≥ 0.60).

Considering the complexity and efficiency, the model 
with the lowest AIC and BIC is always selected as the 
optimal model when the accuracy of the models is simi-
lar. Consequently, taking the models’ functionality, stabil-
ity, and simplicity into account, the model occupied with 

the RF and LASSO algorithms is finally confirmed as the 
optimal model for forage N content estimation, and the 
model occupied with the RF and RFFS algorithm is con-
firmed as the optimal estimation model of the forage P 
and K contents. To evaluate the accuracy of the optimal 
estimation models, the estimated values are contrasted 
with the actual measured values. In Fig. 5, the points of 
the estimated values of the optimal model vs. the meas-
ured values are uniformly distributed on both sides of 
the 1:1 line, indicating an excellent fitting result. The 
optimal estimation model of the N content has the best 
fitting result with an NRMSE of 0.19, while the optimal 
estimation models of the P and K contents have a fitting 
result with an average level, with NRMSE values of 0.26 
and 0.25, respectively. To further evaluate the prediction 

Fig. 4  Density distribution of the R2, RMSE, and RPD in the validation dataset (30% of the data) according to the SVM and RF models. The solid line 
indicates the average and the dashed line indicates the confidence interval (2.5 and 97.5 percentile)
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accuracy of the determined optimal model in differ-
ent grassland vegetation growth stages, we compare the 
observed values with the simulated results (Fig.  6). The 
results showed that the optimal estimation models for 
forage N, P, and K presented satisfactory accuracy for 
different growth stages (July to November) (R2 are 0.53–
0.56, 0.40–0.43, and 0.53–0.66, respectively). This indi-
cates that the inversion model developed in this study is 
expected to be used to estimate the N, P, and K contents 
in different growth stages of alpine grassland.

Spatial prediction
Based on the optimal models of various nutrient con-
tents, the spatial distributions of the forage N, P, and K 
contents at different growth stages (from the vigorous 
growth stage to the senescent stage) in the study area are 
mapped (Fig. 7). As shown in Fig. 8, the spatial mapping 
accuracy of all nutrients is good, with distinctive ground 
features during different reproductive periods, and all 
the nutrient contents decline significantly as the repro-
ductive period progresses. During the vigorous growth 
stage, a relatively even distribution is observed in the N 
content, and the average N content is 1.28% (SD = 0.08%). 
In contrast, at the beginning of and during the senescent 
growth stage, the spatial distribution of the N content 
varies greatly, with average values of 1.15% (SD = 0.12%) 
and 1.04% (SD = 0.15%), respectively. The variation trend 
of the N content is almost the same as that of the aver-
age N content at different growth stages (Fig. 2). Except 
for the northernmost part of the study area, the spatial 
mapping of the P content resembles that of the N content 
during the vigorous growth stage, with an average P con-
tent of 0.15% (SD = 0.03%). During the beginning of the 
senescent growth stage, the spatial mapping of the P con-
tent indicates a clear distinction between areas, with an 
average P content of 0.11% (SD = 0.02%), and a relatively 

high P content is concentrated in the western and central 
regions of the study area. The distribution of the P con-
tent during the senescent growth stage is the most even, 
with an average P content of 0.08% (SD = 0.02%). The dis-
tribution of the K content during the vigorous growth 
stage is similar to that of the P content, and the average 
K content is 1.40% (SD = 0.21%). During the beginning of 
the senescent growth stage, the distribution of the K con-
tent is similar to that of the N content, with an average K 
content of 1.13% (SD = 0.22%). The distribution of the K 
content during the senescent growth stage is even, with 
an average K content of 0.89% (SD = 0.24%). In summary, 
the distribution of the N content during the vigorous 
growth stage and the distribution of the K content dur-
ing the senescent stage are even. The distribution of vari-
ous nutrient contents at the beginning of the senescent 
growth stage shows the greatest differentiation among 
areas, which may be due to the influence of the complex 
climate of the Qinghai-Tibet Plateau. In addition, natural 
factors, such as temperature and precipitation, in differ-
ent regions differ greatly, leading to a slight difference in 
vegetation yellowing time.

Discussion
The variation of forage N, P, and K contents
The results show that the forage N, P, and K contents 
decreased during the vegetation growing season (July 
to November) (Fig.  2) [39]. This suggests that as the 
growth stage of grassland progresses, forage grass 
gradually withers, leaves tend to senesce, and the for-
age has a diminishing capacity to absorb mineral 
nutrients. Vegetative and reproductive growth occur 
simultaneously during the vigorous growth stage, and 
forage growth and development advance with vigor-
ous metabolic activities [54]; thus, forage has a strong 
absorption and utilization capacity of N, P, K, and other 

Fig. 5  Scatter plots of measured nutrient content and nutrient content (%) estimated from optimal estimation models: optimal nitrogen estimation 
model based on S2TG-LASSO (a); optimal phosphorus (b) and potassium (c) estimation models based on S2TG-RFFS. The purple dashed line 
represents the 1:1 line, and the gray area represents the 95% confidence interval
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mineral nutrients during this stage. As the forage grad-
ually withers, plant leaves tend to senesce, vegetative 
growth weakens continuously, and chlorophyll decom-
poses gradually during the senescent stage; thus, the 
highly mobile N, P, and K in the leaves are gradually dis-
tributed to other organs. Moreover, the cell senescence 
rate exceeds the cell renewal rate; thus, the absorp-
tion capacity of forage for mineral nutrients weakens 
continuously. As a result, the N, P, and K contents in 
the aboveground part of the forage during this stage 
decrease to a certain extent compared with the vigor-
ous growth stage [55]. Until the forage is completely 
senescent, the N, P, and K from the leaves and stems 
are gradually allocated to the roots, resulting in signifi-
cantly lower N, P, and K contents in the aboveground 

part of the forage during the senescent stage compared 
with those in the two previous periods.

The potential of the Tiangong‑2 MWI and Sentinel‑2 MSI 
configuration to estimate the forage N, P, and K contents 
in alpine grassland
In this study, Sentinel-2 MSI and Tiangong-2 MWI data 
are developed to estimate the N, P, and K contents of 
alpine grassland. In addition, the Tiangong-2 MWI and 
Sentinel-2 MSI data are also combined to investigate ways 
to further increase the accuracy of nutrient estimation in 
alpine grassland. These results demonstrate that com-
pared with the use of spectral bands from a single sensor, 
the estimation accuracy of the N (R2 = 0.78), P (R2 = 0.74), 
and K (R2 = 0.84) contents in forage are improved by 

Fig. 6  Relationships between actual observations of forage N, P and K and optimal model simulations for different grassland growth periods: (a) 
N in July, (b) N in September, (c) N in November, (d) P in July, (e) P in September, (f) P in November, (g) K in July, (h) K in September, and (i) K in 
November (the size and color of the circles in the figure are related to the actual observations of forage N, P, and K). The red line indicates the linear 
fit of the model-simulated values to the actual observations. The red line shows the results of the linear fit between model simulations and actual 
observations, and the gray area represents the 95% confidence interval
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integrating the sensitive Tiangong-2 and Sentinel-2 spec-
tral bands (Table  4). Sentinel-2 data have been widely 
used for vegetation monitoring, and the spectral con-
figuration of the Sentinel-2 MSI sensor has been shown 
to perform well in estimating vegetation physicochemi-
cal parameters [26, 56]. In this research, the estimation 
models of the N, P, and K contents developed with MSI 
spectral bands also have ideal performances (R2 between 
0.71 and 0.76). These results further demonstrate that 

the Sentinel-2 MSI data has an excellent performance 
in estimating the forage N, P, and K contents in alpine 
grasslands. As part of a new generation of multispectral 
sensors launched by China, Tiangong-2 MWI has abun-
dant spectral information from the visible to the NIR 
region with two RE bands. The band configuration of the 
Tiangong-2 MWI provides a new option for monitor-
ing forage quality in alpine grasslands. According to our 
results, the R2 values for the estimation models of various 

Fig. 7  Spatial predictions of nitrogen (N) (a–c), phosphorus (P) (d–f), and potassium (K) (g–i) in July, September, and November 2017 using optimal 
estimation models (Fig. 5). The white area is where the nongrassed areas and clouds were removed
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nutrient contents based on the MWI spectral bands are 
higher than 0.70. Moreover, the estimation accuracy of 
models developed using Tiangong-2 data is nearly iden-
tical to that of models based on Sentinel-2 data (Fig. 9), 
indicating that the Tiangong-2 sensor has the potential to 
estimate forage quality in alpine grasslands. In contrast 
to data from traditional multispectral satellites (such as 
Landsat and MODIS), Sentinel-2 MSI data with a high 
spatial–temporal-spectral resolution (10/20/60  m, 5/10 
days) improves the estimation ability for vegetation phys-
icochemical parameters [57], and the Tiangong-2 MWI 
data with a large image width (300 × 300 km) improve the 
monitoring efficiency of vegetation at a large scale.

Moreover, to meet the requirements of estimation 
with high accuracy for vegetation nutrients at a large 
scale, the integration of multisource remote sens-
ing data is utilized to further increase the precision of 
nutrient estimates in alpine grasslands. The integration 

of multisource remote sensing data has been exten-
sively applied to estimate the physicochemical parame-
ters of vegetation [13, 28]. Previous studies have shown 
that in contrast to the estimation of acid detergent fiber 
and CP using derived variables alone, the performance 
of the model could be slightly improved by the integra-
tion of Sentinel-1 SAR and Sentinel-2 MSI data [21]. 
The combination of Sentinel-2 MSI spectral bands and 
vegetation indices increased the model performance 
when estimating the N:P ratio even more [23]. In addi-
tion, the N and P contents of grassland could be more 
accurately monitored by combining the measured 
canopy reflectance data and the environmental vari-
ables (e.g. climatic factors, topographic factors) [58]. 
The combination of multisource remote sensing data 
can help to highlight some significant variables, and 
effective information can be integrated to achieve bet-
ter performance of the estimation model. The spectral 

Fig. 8  Inverse detail maps of the different growth stages of nitrogen (N) (b, e), phosphorus (P) (c, f), and potassium (K) (d, g). a Location of zone1, 
zone2 within the study area. b–g Detailed maps of N, P, and K inversions at different growth stages, 1, 2, and 3 refer to July, September, and 
November, respectively
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band configurations of the MWI and MSI sensors are 
similar and complementary (Table 1), and the integra-
tion of the data from these two sensors can improve the 
spectral resolution of models. As a result (Table 4), the 
potential for the estimation of vegetation physicochem-
ical parameters is improved. As shown in our results, 
by combining the MSI and MWI data, the estimated 
models for forage N, P, and K contents all reached 
a moderate level of performance (1.4 ≤ RPD < 2.0, 
R2 ≥ 0.6). The estimation accuracy of forage nutrients 
is marginally increased by integrating data from mul-
tiple remote sensing sources, in contrast to the single-
sensor approach (the R2 increase by 0.04, 0.04 and 
0.03 for forage N, P, and K, respectively). These results 
indicate that the combination of MWI and MSI data 

can effectively increase the predictive ability for forage 
nutrient content in alpine grasslands.

The importance of MSI and MWI spectral bands 
in the estimation of the forage N, P, and K contents 
in alpine grasslands
The results of this study show that the Sentinel-2 MSI 
spectral bands located in the RE region (B7) and the 
Tiangong-2 MWI spectral band located in the red 
region (V7) have significant contributions to forage 
nutrient estimation in alpine grasslands. The spectral 
bands in the RE, visible, and SWIR regions have cer-
tain contributions to the N content estimation, and the 
spectral bands in the RE (V8 and V9), NIR (V1, B2, and 
B4), and SWIR (B11) regions contribute to the P and 

Fig. 9  Density distribution of R2, RMSE, and RPD in the validation dataset (30% of the data) according to the optimal estimation model established 
using MSI and MWI bands. The predicted parameters are nitrogen (N), phosphorus (P), and potassium (K). The solid line indicates the mean and the 
dashed lines indicate the confidence intervals (2.5 and 97.5 percentiles)
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K content estimation (Fig. 3). Previous studies showed 
that N content was highly correlated with the spectral 
reflectance in the visible, RE, NIR and SWIR regions 
[34, 59–61], and the spectral bands sensitive to the P 
and K contents were mainly the RE, NIR and SWIR 
bands [12, 16, 62], which is consistent with the findings 
of our study.

The estimation of forage N content by remote sensing 
technology is usually based on its relationship with chlo-
rophyll. The relationship between CP and N can also be 
employed for the N content estimation. In addition, the 
reactions of C–O, N–H, C=O, O–H, and C–H are linked 
to the N content within the SWIR region [24, 59, 63–65], 
which can explain why the Tiangong-2 MWI V1 band 
was selected as the feature band (absorption feature at 
410  nm) [66]. Moreover, the V1 band has an important 
contribution to the estimation of the P and K contents. 
Previous research found that the bands that are more 
sensitive to various physicochemical parameters are 
often not related to their best-known absorption features 
but rather have some correlation with the absorption fea-
tures of other parameters [12]. As P and K do not pos-
sess strong absorption characteristics in the spectrum, 
the screened P- and K-sensitive bands also do not always 
correlate with the best-known absorption characteris-
tics but have some similarity to those of N. This finding 
might be a result of plants’ ability to absorb N, P, and K 
in ways that reinforce one another. Figure  3 shows that 
the contribution of the B11 band to N content estima-
tion is relatively small; this could be a result of the overall 
water content of leaves affecting the spectral reflectance 
characteristics of vegetation in the SWIR region, which 
obscures the influences of other biochemical substances, 
thus affecting the estimation accuracy and reducing the 
importance of this band in N content estimation [37]. 
Fernández-Habas et al. [34] found that Sentinel-2 B2 and 
B4 bands were equally important in the estimation of for-
age quality in Mediterranean permanent grasslands, and 
this finding was somewhat consistent with the results of 
our study. The B2 and B4 bands of the Sentinel-2 data are 
also selected as feature bands for the estimation of the N 
content in our study. In addition, the V3 band of the Tian-
gong-2 data is similar to the B2 band of the Sentinel-2 
data, thus also playing a significant role in estimating the 
P content. Using hyperspectral data, Mutanga [11] found 
that the bands strongly related to the P and K contents 
of natural pasture were mainly distributed in the RE 
region. Moreover, the RE region is also closely related to 
the physicochemical parameters of vegetation. Gao et al. 
[16] found a significant relationship between the K con-
tent and variables derived from the RE and NIR regions, 
which strongly supports our findings. Moreover, similar 
to our results, previous studies have demonstrated that 

the red, NIR, and SWIR bands play significant roles in P 
content estimation [23, 37].

Limitations and future prospects
This study shows that it is feasible to estimate the forage 
nutrient contents in the alpine grassland of the Qinghai-
Tibet Plateau by using Sentinel-2 and Tiangong-2 images 
(R2 of 0.78, 0.74, and 0.84 for forage N, P, and K estima-
tion, respectively) (Table  4). This suggests that by using 
multispectral satellites, the results can be expanded to 
regional scale mapping. By using Sentinel-2 MSI and 
Tiangong-2 MWI data, spatial maps of forage nutrient 
contents in alpine grasslands can be obtained quickly 
and accurately. This approach can significantly reduce 
the cost of forage quality surveys while providing reli-
able data support for herders and managers to evaluate 
pasture capacity, plan grazing systems in pasture areas, 
and fine-tune the management of grassland resources. 
The estimation model for the N, P, and K contents of for-
age in this study is influenced by grassland heterogeneity 
to some extent, and its performance and generalization 
need to be further verified in other regions. In addition, 
optical satellite images are susceptible to light and cli-
matic conditions, leading to a decrease in the availabil-
ity of satellite images. The dense cloudiness and frequent 
rainfall on the eastern edge of the Qinghai-Tibet Plateau 
have severely limited the study of vegetation physico-
chemical parameters in this region. Therefore, free, open 
and easily accessible multispectral remote sensing data 
with a high temporal resolution (e.g. Sentinel-2 and Tian-
gong-2) are preferred for use in this type of study, and the 
short revisit period of these sensors further improves the 
data availability in cloudy areas. The band configurations 
of the Tiangong-2 MWI and Sentinel-2 MSI sensors are 
similar, and the integration of these two sensors’ data can 
improve the spectral resolution in a model; as a result, it 
is easier to capture the weak spectral information of the 
forage N, P, and K in alpine grasslands.

The primary goal of our investigation is to evaluate 
the potential of Sentinel-2 MSI and Tiangong-2 MWI 
configurations and integrating multisource remote sens-
ing data to estimate N, P, and K contents. However, the 
performances of vegetation indices based on different 
sensor spectral bands in estimating forage nutrients are 
not discussed in this study, and thus, the integration of 
various vegetation indices will be taken into account in 
future studies. Furthermore, there is a certain correlation 
between ecological factors (i.e., temperature, precipita-
tion, altitude, solar radiation, and physical and chemical 
parameters of soil) and the accumulation of vegetation 
nutrients [5, 67, 68]. For instance, a lower temperature 
and a higher clay content are beneficial to the accumu-
lation of vegetation nutrients in grassland. In addition, 
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geographical factors can reflect the difference in hydro-
thermal conditions and thus affect the nutrient quality of 
vegetation. Adequate illumination can ensure that veg-
etation accumulates more nonstructural carbohydrates, 
which is conducive to improving forage nutrients [23, 
36, 69, 70]. Therefore, identifying the key ecological fac-
tors influencing vegetation nutrients and developing an 
estimation model of vegetation nutrients by integrating 
multisource remote sensing data and ecological data is 
a significant approach to further improve the monitor-
ing accuracy of forage quality. Moreover, because of its 
high flexibility, low operating cost and small size, UAV 
remote sensing has been widely used in field surveys, 
and the combination of UAV data with multispectral 
data through techniques such as upscaling can further 
improve the estimation accuracy of vegetation physi-
cal and chemical parameters in large-scale monitoring 
applications [71, 72]. Other studies have also found that 
synthetic aperture radar (e.g., Sentinel-1) is widely used 
for pasture quality and quantity monitoring [21], and its 
independence from light and climatic conditions is par-
ticularly suitable for the Qinghai-Tibet Plateau, where 
clouds and rainfall are frequent. Therefore, the combined 
use of near-surface UAV remote sensing data, synthetic 
aperture radar data, multispectral satellite data and field 
data to monitor forage growth in alpine grasslands will be 
investigated in future studies.

Conclusions
In this study, multispectral satellite data with a high spa-
tial–temporal resolution are employed to evaluate the 
potential of new-generation sensors to accurately esti-
mate and map forage N, P, and K contents in alpine grass-
lands at the regional scale. The following are the primary 
conclusions:

1.	 The spectral bands from the red and RE regions play 
a prominent role in the forage N, P, and K contents 
estimation. The spectral bands from the blue region 
are sensitive to the N content, the spectral bands 
from the NIR region play important roles in P and K 
content estimation, and those located in the SWIR 
region contribute less to N, P, and K content estima-
tion.

2.	 Sentinel-2 MSI and Tiangong-2 MWI data perform 
well in the estimation of the forage N, P, and K con-
tents in alpine grasslands. Comprehensively consid-
ering the evaluation indicators of the model, the for-
age N, P, and K content estimation model developed 
with suitable spectral bands from the Sentinel-2 MSI 
sensor performed better than that developed with 
suitable spectral bands from the Tiangong-2 MWI.

3.	 Compared with using spectral bands from a single 
sensor, the estimation performance of the forage N, 
P, and K contents is improved by the integrated use 
of suitable spectral bands from the Tiangong-2 and 
Sentinel-2 sensors.

In general, the selection of suitable spectral bands is 
very important for reducing redundancy in models. For 
high-accuracy growth monitoring of alpine grassland 
at a large scale, the focus of future studies should be to 
make full use of the advantages of multisource remote 
sensing information to develop more economical, sim-
ple, and generalized monitoring methods.
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