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Field‑measured canopy height may not be 
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Abstract 

Canopy height (CH) is an important trait for crop breeding and production. The rapid development of 3D sensing 
technologies shed new light on high-throughput height measurement. However, a systematic comparison of the 
accuracy and heritability of different 3D sensing technologies is seriously lacking. Moreover, it is questionable whether 
the field-measured height is as reliable as believed. This study uncovered these issues by comparing traditional height 
measurement with four advanced 3D sensing technologies, including terrestrial laser scanning (TLS), backpack laser 
scanning (BLS), gantry laser scanning (GLS), and digital aerial photogrammetry (DAP). A total of 1920 plots covering 
120 varieties were selected for comparison. Cross-comparisons of different data sources were performed to evalu-
ate their performances in CH estimation concerning different CH, leaf area index (LAI), and growth stage (GS) groups. 
Results showed that 1) All 3D sensing data sources had high correlations with field measurement (r > 0.82), while 
the correlations between different 3D sensing data sources were even better (r > 0.87). 2) The prediction accuracy 
between different data sources decreased in subgroups of CH, LAI, and GS. 3) Canopy height showed high heritability 
from all datasets, and 3D sensing datasets had even higher heritability (H2 = 0.79–0.89) than FM (field measurement) 
(H2 = 0.77). Finally, outliers of different datasets are analyzed. The results provide novel insights into different methods 
for canopy height measurement that may ensure the high-quality application of this important trait.

Highlights 

•	 The effects of canopy height, leaf area index, and growth stage on the accurate monitoring of canopy height with 
different 3D sensors were systematically evaluated.

•	 Field-measured canopy height may not be as accurate as believed, especially in the plots with higher canopy 
height and at later growth stages.

•	 3D sensing methods achieved higher heritable canopy height estimation than field measurement.
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Introduction
Canopy height (CH) is an important and heritable agro-
nomic trait for breeding and field management [34]. 
Breeders have paid much effort to selecting the ideal 
plant height to maximize light interception, increase 
yield [43], enhance logging resistance [57, 77], and facili-
tate mechanical harvesting. Agronomists often use CH to 
indicate the growth of other complicated and difficultly 
accessible traits, such as phenology [72], leaf area index 
(LAI) [11], and biomass [50]. Therefore, high-throughput 
and accurate evaluation (e.g., ensuring high heritabil-
ity) of CH are critical for accelerating crop breeding and 
production.

Traditional CH estimation methods mainly use rul-
ers by selecting a few representative positions within 
a canopy. Manual measurement is time-consuming, 
labor-intensive, tedious, and error-prone due to subjec-
tive selection and visual observation. However, it is still 
the most widely adopted way due to its visibility and reli-
ability during the past decades. Recently, many studies 
have demonstrated CH can be efficiently acquired from 
advanced three-dimensional (3D) sensing techniques [28, 
30, 43, 59, 68]. It brings us naturally to a fundamental and 
essential question: are 3D sensing techniques as accurate 
as field measurement?

Recent studies have explored the applicability of some 
mainstream 3D sensing techniques for CH measure-
ments in agriculture, including LiDAR (light detection 
and management) and multi-view images [25]. LiDAR is 
an active sensing technology that records 3D structure 
information of objects by measuring the distance with 
the laser [8, 30]. LiDAR has many advantages, including 
(1) strong penetration ability that can characterize the 
inner structure of the canopy, (2) real and direct 3D char-
acterization of an object without a complicated recon-
struction process, and (3) insensitive to illumination. 
According to different mounting platforms, LiDAR sys-
tems used for crop height measurement mainly include 
terrestrial laser scanning (TLS) [14, 64], backpack laser 
scanning (BLS) [78], gantry laser scanning (GLS) [36, 61], 
and unmanned-aerial-vehicle laser scanning (ULS) [40, 
54, 77]. In contrast to the active LiDAR sensing technolo-
gies, passive sensing-based methods (e.g., Multi-view 
images) can also measure 3D structure through meth-
ods like structure from motion (SFM) [3, 18, 45, 69]. 
Among the passive sensing-based techniques, digital 
aerial photogrammetry (DAP) is one of the most popu-
lar ways for field CH estimation due to its low cost, high 
efficiency, and high accuracy comparable to ULS [17, 21, 
75, 76]. These 3D sensing techniques have been success-
fully applied to CH measurement, including the adop-
tion of TLS for accurate height measurement of maize 
(R2 = 0.93) [64], cotton (R2 = 0.97) [60], rice (R2 = 0.91) 

[63], barley (R2 = 0.95), pea (R2 = 0.93), and bean 
(R2 = 0.91) [9], the use of BLS for efficient height meas-
urement of large-scale wheat [78] and forest [22, 32, 58]; 
the exploration of ULS for estimating CH of sugar beet 
(R2 = 0.70), wheat (R2 = 0.78), and potato (R2 = 0.50) [24], 
and DAP for measuring corn CH (R2 = 0.78) [57]. In all, 
current studies demonstrated that TLS and BLS usually 
performed better than ULS and DAP due to their close 
range of sensing, and the accuracy of DAP was compara-
ble to ULS (Additional file 1: Table S1).

In addition to the exploration of high estimation accu-
racy, more and more studies are attempting to explore 
the genetic bases (e.g., heritability) of high-throughput 
phenotype [56, 62, 73]. CH is a high heritability trait, as 
effective as yield [53]. Higher heritability indicates that 
the environment has less influence on the trait, and fur-
ther describes the value of breeding [5, 48]. Several stud-
ies have already verified the potential of CH from many 
3D sensing platforms, including the use of LiDAR [33, 
68] and UAV imagery [67]. Interestingly, recent stud-
ies declared 3D sensing-derived CH showed better her-
itability than field measurement. For example, Madec 
et  al. [43] proved high heritability values (H2 > 0.90) of 
CH derived from both LiDAR and DAP; Volpato et  al. 
[67] compared the height heritability from UAV imagery 
(H2 = 0.71–0.97) and field measurement (H2 = 0.62–0.96) 
across four different growth stages (GS), which showed 
the UAV imagery had better heritability. These novel 
studies inspire us to rethink a questionable and challeng-
ing question: is field-measured CH as accurate and herit-
able as believed?

Some critical discussions about the accuracy of field-
measured CH have been raised in recent years. On the 
one hand, field measurements are believed as accu-
rate benchmarks. For example, Wang et  al. [70] found 
the heights measured by the LIDAR-Lite v2, the Kinect 
v2 camera, ultrasonic, and the imaging array sensors 
had high correlations (r ≥ 0.90) with manual measure-
ments. They believed that the errors among sensors and 
field measurements come from the sensor’s error. On 
the other hand, more and more studies emphasized that 
there may be systematic errors in the ground truth val-
ues. For example, Maesano et  al. [44] pointed out that 
LiDAR can detect more precise height differences than 
field measurement by comparing the accuracy of grass 
CH derived from ULS and field measurement. The inac-
curacy of field-measured CH may be attributed to the 
variations of CH [68] and canopy structure [77]. Simi-
larly, the heritability between 3D sensing and field meas-
urement is also worth exploring.

This study aims to compare CH extraction accuracy 
and heritability from field measurements and four dif-
ferent proximal 3D sensing technologies, including TLS, 
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BLS, GLS, and DAP in a wheat field of different varieties 
across different growth stages. Unlike previous studies, 
we make the following contributions: 1) systematically 
evaluating the accuracy of different data sources (TLS, 
BLS, GLS, DAP, and FM/field measurement) in estimat-
ing CH, 2) exploring the variations of height measure-
ment accuracy concerning different CH, LAI, and the GS 
groups, 3) deciphering the error sources of CH measure-
ment among different data sources, and 4) exploring the 
heritability of 3D sensing data sources in estimating CH.

Materials and data collection
Study area and experimental design
The study area was located at the Baima Experimen-
tal Station (119°18′71″E, 31°62′00″N) of Nanjing Agri-
cultural University, China. A total of 480 plots were 
cultivated with 120 wheat varieties, two treatments of 
nitrogen fertilization (0 and 240  kg/ha), and two rep-
lications. The plot size is 1  m × 1  m with a plot spac-
ing of 0.5 m, row spacing of 0.25 m, and sowing density 
of 300 seeds/m2 (Fig.  1a). Different varieties, nitrogen 
treatments, and growth stages provided diverse canopy 

structure for further comparison of CH from different 
data sources.

Data collection
To make a systematic comparison of different height 
measurement methods, TLS, BLS, GLS, and DAP were 
selected to collect 3D data at four key growth stages 
that were jointing (134 days after seeding/DAS), head-
ing (151 DAS), flowering (174 DAS), and maturity 
stages (188 DAS). These data were collected around 
noon (10:00–14:00) on sunny days, when the light and 
wind conditions are stable and preferred for optical 
image collection (e.g., DAP), although LiDAR sensors 
are insensitive to light conditions. Some important 
technical specifications used by the four 3D sensing 
systems are presented in Table  1. Meanwhile, field-
measured CH and LAI were implemented with a ruler 
and the Sunscan Canopy Analyzer (Delta-T Devices 
Ltd, U.K.). Finally, different data sources were col-
lected within one day at each growth stage to ensure 
cross-comparability.

Fig. 1  a Study area and data collection by b terrestrial laser scanning (TLS), c backpack laser scanning (BLS), d gantry laser scanning (GLS), and 
e digital aerial photogrammetry (DAP); Manual measurement of f canopy height (CH) with a ruler and g leaf area index (LAI) with the SunScan 
Canopy Analyzer
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TLS data
The TLS data was collected using the FARO 
Focus3D S70 scanner (FARO Technology Inc, FL, 
USA). The sensor weight is 4.2  kg with a size of 
240  mm × 200  mm × 100  mm. The field of view is 
360° × 300°. The sensor emits lasers at a wavelength 
of 1550  nm and a pulse emitting rate of 244  kHz. The 
detection range is 0.6 -70 m with upright incidence to a 
10% reflective surface. The scanning accuracy is 0.3 mm 
@10 m @ 90% reflectance (Table 1).

The LiDAR sensor was mounted on a tripod (around 
1.8 m above the ground) that was placed uniformly in the 
study area (Fig. 1b). The north–south and east–west dis-
tances between the two scanning locations were around 
4 m and 7.5 m, respectively. The operating mode of the 
sensor was set as “Outdoor within 10 m Scanning Profile” 
without color information, which is suitable for acquiring 
detailed information with high efficiency (~ 5 min/scan) 
within a short distance (< 10 m) [26]. A total of 65 scans 
were implemented over the entire wheat field (Fig.  2b), 
taking around 6 h.

BLS data
The BLS data was acquired using the LiBackpack D50 sys-
tem (Green Valley International Ltd., Beijing, China) that 
was equipped with two Velodyne VLP-16E sensors (Velo-
dyne Lidar Inc., San Joe, CA, USA). The system weight is 
about 8 kg with a size of 960 mm × 300 mm × 318 mm. 
The field of view is 360° × 180° (− 90º ~  + 90º). The sen-
sor emits lasers at a wavelength of 905  nm and a pulse 
emitting rate of 30  kHz. The detection range is 100  m 
with upright incidence to a 20% reflective surface. The 
scanning accuracy is ± 3 cm (Table 1).

BLS was carried on the shoulder (Fig. 1c), enabling effi-
cient and flexible mobile acquisition. Because BLS uses 
the SLAM (simultaneous location and mapping) algo-
rithm for data acquisition, the moving trajectory was 

designed like a series of closed “triangles” (Fig.  2c). The 
collection time was around 20 min for the whole field.

GLS data
The GLS data were acquired by using the FieldScan 
Phenotyping Platform (Fig.  1c), which is equipped 
with four high-resolution 3D laser scanners, Plant-
Eye F500 (Phenospex Inc, Heerlen, The Netherlands) 
(Fig. 1d). The sensor weight is around 8.3 kg with a size 
of 440  mm × 210  mm × 99  mm, and the field of view is 
around 53°. The sensor emits lasers with a wavelength 
of 940 nm and a pulse emitting rate of 50 XZ-profiles/s. 
The ranging distance is between 0.4–1.5 m. The sensors 
scanning accuracies will decrease with the increase of 
distance along the vertical height range. The average hor-
izontal and vertical resolutions are around 0.59 mm and 
1.62 mm, respectively (Table 1).

The sensor system was carried by a gantry at a height 
of 1.5 m, and the maximum scan range is 1.1 m. The GLS 
system traveled automatically in the field with a defined 
regular trajectory (Fig.  2e). The system repeatedly col-
lected data day and night for the whole field. Each round 
of collection took around 4.5 h, and then the system slept 
1.5  h before the next round of collection. Notably, the 
integrated software system will remove ground points 
(i.e., filtering) by setting a height threshold of the lowest 
0.28  m in this study, so the maximum detected canopy 
height of the GLS system is 0.82 m.

DAP data
The DAP data was collected using the DJI Phantom4 
drone (SZ DJI Technology Co., Shenzhen, China) by carry-
ing an RGB camera (Fig. 1e). The camera has a resolution 
of 4000 pixels × 3000 pixels. The field of view is 94°. Flight 
missions were planned using the Pix4D Capture soft-
ware (PIX4D S.A., Lausanne, Switzerland). To balance 
the problem of acquisition accuracy and efficiency [31], 
we carried out comparisons at different flight altitudes, 

Table 1  Technical specifications of TLS, BLS, GLS, and DAP systems

TLS BLS GLS DAP

System FARO Focus3D S70 LiBackpack D50 PlantEye F500 DJI Phantom4

Laser wavelength, nm 1550 905 940 RGB image

Field of view, º H: 360º
V: 300º

H: 360º
V: − 90º ~  + 90º

 ~ 53º 94º

Detection range, m 0.60–70 @10% ref 100 @ 20% ref 0.40–1.50 Flight altitude: 10–6000

Data resolution 0.30 mm @ 10 m@ 90% ref 30 mm H: ~ 0.59 mm
V: ~ 1.62 mm

4000 × 3000 pixels

Weight, kg 4.20 8 8.30 0.138

Size, mm 240 × 200 × 100 960 × 300 × 318 440 × 210 × 99 Wheelbase: 350

Battery capacity, h 4.50 2 unlimited 0.50
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including 10  m, 20  m, 30  m, and 40  m. The 20  m was 
selected because its accuracy is comparable to 10 m and 
higher than 30  m and 40  m (Additional file  1: Fig. S1). 
Oblique imageries were collected to ensure substantial 
overlap and reduced systematic errors [23]. Meanwhile, 
the cross fight was set up, covering an east–west and a 
north–south flight trajectories, to improve 3D recon-
struction accuracy from images (Fig.  2g). Specifically, 
the forward and side overlaps were both set as 80%. The 
camera angle during the flight was set to 80° by referring 
to Rosnell and Honkavaara [51]. Seven ground control 
points were set up for image quality control in the field. A 
total of 216 images were collected during a 20 min flight.

Field measurements
In this study, the field CH is defined as the vertical dis-
tance from the ground to the highest point of a canopy 
in the natural growth state. In each plot, CHs were meas-
ured with a ruler of mm precision at three locations 
that look uniform and representative. The three repli-
cated measurements were averaged as the reference CH 
(Fig. 1f ) [68]. LAI was defined as half the total intercept-
ing leaf area pre-unit ground area [6]. LAI was measured 

with a SunScan Canopy Analyzer (Delta-T Devices Ltd, 
Cambridge, U.K.) that has a 1-m light-sensitive probe 
with 64 equally spaced photodiodes. The SunScan Can-
opy Analyzer estimates LAI by measuring the gap frac-
tion [49]. In each plot, the probe was inserted into the 
bottom of the canopy and parallel to the row direction 
[47, 55]. Three replicated measurements were imple-
mented and averaged as the reference LAI (Fig. 1g).

Methods
Data preprocessing
Different 3D sensing data need to be first processed into 
point clouds with different methods before sharing simi-
lar point processing methods. TLS data at different scan-
ning locations were automatically registered to generate 
a point cloud using SCENE software (FARO Technology 
Inc, FL, USA). BLS was registered during data collec-
tion because the system used the SLAM algorithm [58]. 
GLS data registration was implemented according to the 
relative position of sensors and the point features using 
the commercial HortControl software (Phenospex Inc, 
Heerlen, The Netherlands). DAP images were used to 
reconstruct the 3D point cloud using the PiX4D mapper 

Fig. 2  Data acquisition schemes and point clouds collected by different 3D sensing techniques. a scanner positions and b point cloud of TLS; c 
trajectory and d point cloud of BLS; e trajectory and f point cloud of GLS; and g trajectory and h point cloud of DAP
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software (Pix4D, Lausanne, Switzerland). Once the 3D 
point clouds were generated, the following data process-
ing processes were similar (Fig. 3).

The generated 3D point cloud data were further pro-
cessed with a standard pipeline using the LiDAR360 soft-
ware (Green Valley International Ltd., Beijing, China), 
including clipping, denoising, filtering, and normali-
zation (Fig.  3). Clipping and denoising were manually 
implemented to ensure better accuracy, especially avoid-
ing the loss of points in the sparse DAP and BLS point 
cloud. Filtering was first implemented using an inte-
grated algorithm (i.e., improved progressive triangulated 
irregular network densification filtering algorithm), and 
the automatic results were carefully checked and revised 

to decrease process errors. Normalization was achieved 
by subtracting the height of each point from the height of 
its nearest ground point in the horizontal direction. Spe-
cifically, GLS data was filtered with a given height thresh-
old of 0.28 m and normalized during data collection. The 
normalized 3D point clouds of TLS, BLS, GLS, and DAP 
were shown in Fig. 2b, d, f, h. Taking pre-processed data 
at the heading stage as an example, the point density of 
TLS data is the highest (929,021.12 pts/m2), followed by 
GLS (697,092.18 pts/m2), DAP (40,051.30 pts/m2), and 
BLS (17,761.30 pts/m2). Meanwhile, the final point reso-
lution, denoted by the average adjacent point distance, 
from fine to coarse was GLS (1.07 mm), TLS (2.46 mm), 
DAP (12.73 mm), and BLS (15.02 mm) (Table 2).

Fig. 3  Processing of TLS, BLS, GLS, and DAP data. The processing pipeline was demonstrated using GLS data at the heading stage. SLAM means 
simultaneous location and mapping

Table 2  Key information about the data quality of the preprocessed point clouds (taking data at the heading stage as an example) 
and the roughly estimated platform cost and data cost

Data sources Point density, pts/m2 Point 
resolution, mm

Data volume, GB Platform cost, $ Data Cost, h

Collection Preprocessing Total

TLS 929,021.12 2.46 11.40 46,010.00 5.00 79.20 84.20

BLS 17,761.30 15.02 0.22 70,515.00 0.30 2.30 2.60

GLS 697,092.18 1.07 8.68 1,567,000.00 8.00 2.00 6.50

DAP 40,051.30 12.73 0.48 1253.60 0.50 15.70 16.20
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Plot extraction is the prerequisite for CH extraction 
of each plot. Because different sources of point clouds 
have their sensor coordinate systems, this study manu-
ally aligned these data into the same coordinate origin 
and north–south directions in LiDAR360 software. After 
that, 480 plots of different source data at each growth 
stage can be extracted using a shared plot bounding box 
map defined manually (Fig. 3).

Canopy height extraction
CH can be extracted from the normalized point cloud 
using different statistical metrics. In this study, Hmax, 
the maximum z value of all normalized points, was 
extracted. Meanwhile, difference height quantiles from 
99% quantile height (i.e., H99) to 80% quantile height 
(i.e., H80) with an interval of 1% were also extracted [27]. 
These different height representations are compared and 
the optimal one was selected for comparing different 
sensing technologies.

Cross‑comparisons of canopy height estimates from field 
measurement and 3D sensing
The accuracies of the CH measured by different 3D sens-
ing data were compared with the field measurement, 
and the cross-comparisons of different 3D sensing per-
formances were also evaluated. Specifically, the com-
parisons between sensor data with field measurement 
include TLS vs.FM, BLS vs.FM, GLS vs.FM, DAP vs.FM, 
and the cross-comparisons include TLS vs. BLS, BLS vs. 
DAP, DAP vs. TLS, TLS vs. GLS, BLS vs. GLS, and DAP 
vs. GLS.

This study further evaluated the accuracy of different 
methods with respect to different field-measured CH 
groups, LAI groups, and GS groups, which are impor-
tant indicators of canopy structure [41, 42] and affect the 
accuracy of CH monitoring. Four CH groups were con-
sidered, including 0.3–0.6  m (CH1), 0.6–0.8  m (CH2), 
0.8–1 m (CH3), and 1–1.4 m (CH4). Each height group 
contains 360, 918, 501, and 141 plots, respectively. Four 
LAI groups were separated at 0–2 m2/m2 (LAI1), 2–4 m2/
m2 (LAI2), 4–6 m2/m2 (LAI3), and 6–8 m2/m2 (LAI4). 
Each group contains 874, 641, 340, and 65 plots, respec-
tively. Four compared growth stages were jointing stages, 
heading stages, flowering stages, and maturity stages.

Specifically, considering the scanning range and height 
threshold setting in filtering, the effective maximum 
height of the GLS system is 0.82 m. Therefore, only the 
plots that have a maximum measured height lower than 
0.82  m were selected for comparison with GLS (1365 
plots) in this study. Because there are a few plots belong-
ing to the CH3 group and no plots belonging to the CH4 
group, we only evaluated the GLS accuracies of CH1 and 
CH2 (360 and 918 plots, respectively).

The accuracy between the two compared groups was 
evaluated by Pearson’s correlation coefficient (r), root 
mean square error (RMSE), relative RMSE (RMSE%), 
Bias, and relative Bias (Bias%).

where i represents a sample index, n represents the num-
ber of samples, yi represents reference measurements 
(e.g., FM), ŷi represents predicted CH from different 3D 
sensing datasets, and yi is the mean of yi.

Moreover, the CHs of different data sources were 
compared in terms of broad-sense heritability (H2). 
Broad-sense heritability was defined as the proportion 
of heritability variance, which was computed as the ratio 
between the genotypic to the total variance [65, 66]. In 
this study, the interaction effect of different varieties and 
N treatments was considered, i.e., G by E.

where H2 is broad-sense heritability, σ 2
G , σ 2

E , and σ 2
GE are 

genotypic variance, environmental variances, and geno-
type-by-environment interaction variance, respectively. g 
is the number of genotypes, i is the index of genotype; e 
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is the number of N treatments, j is the index of N treat-
ments, and r is the number of replications per genotype.

Error source analysis
As we know, CHs measured by different methods will 
not be exactly the same. This study analyzed which data 
source the error comes from by referring to the method 
of Wang et al. [71]. First, we calculate the relative residual 
between the 3D sensing estimated CHs and FM (Eq. 10). 
Then, screening out the plots where the above calculated 
relative residuals greater than 20% as the suspicious cases 
(S) (Eq. 11). The intersections of STLS, SBLS, SGLS, and SDAP 
were defined as the errors due to FM (Error_FM) (Eq. 12). 
Based on Error_FM, the intersection of STLS, SBLS, SGLS, 
SDAP, and non-Error_FM was defined as the errors due to 
TLS (Error_TLS), BLS (Error_BLS), GLS (Error_GLS), 
and DAP (Error_DAP), respectively (Eq. 13–16). Notably, 
when regarding TLS or any other 3D sensing datasets as 
the errors, it is not mean the other three 3D sensing data-
sets do not contain outliers because the conditions for 
Error_FM are very strict.

(10)�i
(a,field)

=

∣∣∣Hi
a −Hi

filed

∣∣∣/Hi
field

(11)Sa =

{
Pi
|�i

(a,field)
≥ 0.2

}

where i is the sample index and Pi represents sampled 
data (i.e., a plot). �i

(a,field)
 is the relative residual between 

3D sensing-derived CH and FM, Hi
a represent predicted 

CH, where a can be TLS, BLS, GLS, and DAP. Mean-
while, the exclamation mark (!) is the “NOT” in logic 
operations

Results
Canopy height from different 3D sensing datasets
To fairly compare different 3D sensing datasets for CH 
estimation, it is important to first explore which height 
representation metric is optimal according to their corre-
lations with FM. In this study, the influences of different 

(12)Error_FM =

{
Pi
|STLS ∩ SBLS ∩ SGLS ∩ SDAP

}

(13)Error_TLS =

{
Pi
|STLS ∩ (!Error_field)

}

(14)Error_BLS =

{
Pi
|SBLS ∩ (!Error_field)

}

(15)Error_GLS =

{
Pi
|SGLS ∩ (!Error_field)

}

(16)Error_DAP =

{
Pi
|SDAP ∩ (!Error_field)

}

Fig. 4  Correlation values between FM and height quantiles (e.g., Hmax and H99) derived from the different 3D sensing data, including TLS, BLS, 
GLS, and DAP. The green triangle, blue diamond, dark orange circle, and baby blue square represent correlations of TLS vs. FM, BLS vs. FM, GLS vs. FM, 
and DAP vs. FM, respectively
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height quantiles for CH extraction were evaluated using 
point clouds of all stages. The results showed that the 
evaluation accuracy of TLS, BLS, and GLS were all high 
and stable when using different height quantiles (Fig. 4). 
By contrast, height estimation accuracy from DAP data 
was lower and more sensitive to the selection of height 
quantiles. According to the highest correlation (Fig.  4) 
and the lowest error metrics (Additional file 1: Fig. S2), 
H99 was selected as the best representation of CH for 
TLS, GLS, and DAP, while H96 was the best for BLS. 
These best height quantiles (H99 or H96) for each data 
source was used for all subsequent analysis.

The best correlations of TLS vs. FM, BLS vs. FM, GLS 
vs. FM, and DAP vs. FM were 0.89, 0.89, 0.82, and 0.83, 
respectively (Fig.  5). The fitted lines of TLS, BLS, and 
DAP were close to the reference lines (1:1) except a little 
overestimation when CH was small (Fig. 5). In contrast, 
GLS showed an overall underestimation (Fig. 5c).

Cross-comparisons among different sensor datasets 
showed higher correlations (r) ranging from 0.87 to 0.97, 

which was much higher than the above comparisons 
with FM (0.82–0.89). The highest correlation value is 
0.97 between TLS and BLS (Fig. 6a), followed by TLS vs. 
GLS (r = 0.94) (Fig. 6d), BLS vs. GLS (r = 0.93) (Fig. 6e), 
DAP vs. TLS (r = 0.90) (Fig.  6c), BLS vs. DAP (r = 0.90) 
(Fig.  6b), and DAP vs. GLS (r = 0.87) (Fig.  6f ). Among 
them, DAP had a relative lager RMSE with other sens-
ing datasets (RMSE > 0.05 m, Fig. 6b, c, f ), especially the 
comparison with BLS (RMSE = 0.08 m, Fig. 6b). Moreo-
ver, the fitting Bias are all very small (0.01  m) except 
for comparisons with GLS (Fig. 6d, e, f ). Although GLS 
showed an overall underestimation, it still keeps a low 
RMSE (0.04 m-0.05 m) with other 3D sensing datasets.

Comparing canopy height measurement of different 
methods among different canopy height groups
The correlation coefficients of CHs derived from 3D sens-
ing and FM decreased obviously when evaluated with 
respect to different subgroups of CH (r < 0.71). Similarly, 

Fig. 5  Correlations between FM and predicted heights by different 3D sensing technologies. a–c, and d represent TLS vs. FM, BLS vs. FM, GLS vs.FM, 
and DAP vs. FM, respectively. The solid line represents the fitted line, and the dashed line represents the 1:1 line. The color bar shows the kernel 
density value of the point distribution, and the green to yellow represents the increase in kernel density
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the correlation coefficients of cross-comparisons of dif-
ferent 3D sensing also decreased, although the largest r 
was up to 0.93 (Table 3).

As for comparing 3D sensing with FM, GLS was the 
best according to the highest mean r (0.60), followed 
by BLS (mean r = 0.59), TLS (mean r = 0.58), and DAP 
(mean r = 0.52) (Table  3). From the prospect of sub-
group comparisons, the best methods for estimating 
CH1, CH2, CH3, and CH4 were DAP (mean r = 0.71), 
TLS (mean r = 0.56), BLS (mean r = 0.52), and BLS 
(mean r = 0.64), respectively (Table 3). The fitting lines 
of TLS, BLS, and DAP were very close to the reference 
lines in CH3 and CH4 groups, while slight overestima-
tion appeared in CH1 and CH2 groups (Fig.  7). Con-
sistently, GLS showed underestimation in both CH1 
and CH2 groups (Fig. 7c).

The cross-comparisons of different 3D methods 
showed much higher correlation values. Among them, 
TLS vs. GLS showed the highest correlation (mean 
r = 0.90), followed by TLS vs. BLS (mean r = 0.89), BLS 
vs. GLS (mean r = 0.85), DAP vs. GLS (mean r = 0.76), 
DAP vs. TLS (mean r = 0.74), and BLS vs. DAP (mean 
r = 0.74). From the perspective of subgroup compari-
sons, the most consistent method for estimating CH1 
was TLS vs. GLS, and the most consistent methods for 
estimating CH2, CH3, and CH4 were always TLS vs. 
BLS (Table 3).

The fitted lines for TLS vs. BLS and BLS vs. DAP 
were both close to 1:1 for different CH groups (Addi-
tional file  1: Fig. S3 a, b). DAP vs. TLS showed over-
estimation at low heights and underestimation at high 
heights for each height group (Additional file  1: Fig. 
S3 c). Underestimations also almost existed in com-
parisons between GLS and other 3D sensing datasets 
at every CH group (Additional file 1: Fig. S3 d-f ). The 
fitted line of GLS vs. TLS was nearly parallel to the ref-
erence line, while underestimations to other 3D data 
become more obvious with height growth.

Comparing canopy height measurement of different 
methods among different LAI groups
The correlation coefficients of CHs derived from 3D 
sensing and FM only decreased slightly (mean r = 0.79 to 
0.87) with respect to different LAI groups. Likewise, the 
correlation coefficients of cross-comparisons of different 
3D sensing also decreased slightly (mean r = 0.84 to 0.96), 
with little change for TLS vs. BLS (Table 4).

As for comparing 3D sensing with FM, TLS was the 
best according to the highest mean r (0.87), followed 
by BLS (mean r = 0.85), DAP (mean r = 0.81), and GLS 
(mean r = 0.79). From the presence of subgroup com-
parisons, the best method for estimating the height of 
the LAI1 group were BLS (mean r = 0.93) and TLS (mean 
r = 0.93), while the best method for LAI2, LAI3, and 

Fig. 6  Canopy height correlations between different 3D sensing estimates. a–e, and f represent TLS vs. BLS, BLS vs. DAP, DAP vs. TLS, TLS vs. GLS, BLS 
vs. GLS, and DAP vs. GLS, respectively. The solid line represents the fitted line, and the dashed line represents the 1:1 line. The color bar shows the 
kernel density value of the point distribution, and the green to yellow represents the increase in kernel density
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LAI4 was always TLS (mean r > 0.83) (Table 4). The fitting 
lines of TLS, BLS, and DAP were very close to the refer-
ence lines in all LAI groups, while GLS showed underes-
timation in all LAI groups (Fig. 8).

As for cross-comparison of different 3D methods, TLS 
vs. BLS showed the highest correlation (mean r = 0.96), 
followed by TLS vs. GLS (mean r = 0.91), BLS vs. GLS 
(mean r = 0.87), DAP vs. TLS (mean r = 0.87), BLS vs. 
DAP (mean r = 0.86), and DAP vs. GLS (mean r = 0.84). 
From the perspective of subgroup comparisons, the most 
consistent methods for estimating LAI1 were TLS vs. 
BLS and TLS vs. GLS (mean r = 0.97). Besides, the most 

consistent methods for estimating LAI3 and LAI4 were 
still TLS vs. BLS (mean r = 0.94 and 0.95) (Table 4).

The fitted line for TLS vs. BLS almost coincided with 
the reference line (Additional file  1: Fig. S4 a). The fit-
ted lines for BLS vs. DAP and DAP vs. TLS were also 
relatively close to the reference line, but they became 
worse when LAI increased (Additional file 1: Fig. S4b, c). 
Underestimations also existed in comparisons between 
GLS and other 3D sensing datasets at all LAI groups, and 
the correlations decreased when LAI increased (Addi-
tional file 1: Fig. S4d-f ).

Table 3  Detailed statistics on comparing canopy height measurement methods

The top side of the table showed the evaluation results of 3D sensing datasets with FM; the bottom side of the table showed the results of 3D sensing datasets cross-
comparisons. RMSE and RMSE%, Bias and Bias%, and correlation coefficient (r) were given for distinct canopy height (CH) groups. The underlined values were the best 
result for each CH group among different comparisons

- represents the comparison was not available due to the limited ranging ability of the GLS system

CH group RMSE, m
(RMSE%)

Bias, m
(Bias%)

r RMSE, m
(RMSE%)

Bias, m
(Bias%)

r

TLS vs. FM BLS vs. FM

CH1 0.06 (10.92) 0.05 (10.24) 0.66 0.07 (13.65) 0.06 (12.60) 0.65

CH2 0.07 (10.48) 0.05 (6.79) 0.56 0.08 (10.96) 0.06 (7.85) 0.54

CH3 0.08 (9.57) 0.01 (0.95) 0.49 0.08 (8.75) 0.01 (1.48) 0.52

CH4 0.09 (7.98) 0.01 (0.86) 0.59 0.08 (7.58) 0.01 (0.99) 0.64

Mean 0.08 (9.74) 0.03 (4.71) 0.58 0.08 (10.23) 0.04 (5.73) 0.59

GLS vs. FM DAP vs. FM

CH1 0.06 (11.39) − 0.09 (− 17.96) 0.64 0.07 (12.91) 0.04 (8.15) 0.71

CH2 0.07 (9.82) − 0.11 (− 15.49) 0.56 0.09 (13.10) 0.05 (6.76) 0.51

CH3 – – – 0.11 (12.79) 0.00 (− 0.17) 0.36

CH4 – – – 0.14 (12.25) 0.02 (− 1.49) 0.50

Mean 0.06
(10.6)

− 0.10
(− 16.72)

0.60 0.10 (12.76) 0.02 (3.31) 0.52

TLS vs. BLS TLS vs. GLS

CH1 0.05 (8.89) 0.01 (2.15) 0.84 0.03 (5.32) 0.14 (− 25.57) 0.92

CH2 0.04 (4.98) 0.01 (0.99) 0.91 0.04 (5.21) 0.16 (− 20.86) 0.88

CH3 0.04 (4.30) 0.00 (0.52) 0.91 – – –

CH4 0.04 (3.71) 0.00 (0.13) 0.93 – – –

Mean 0.04 (5.47) 0.01 (0.95) 0.89 0.03 (5.27) − 0.15 (− 23.22) 0.90

BLS vs. DAP BLS vs. GLS

CH1 0.06 (10.80) − 0.02 (− 3.95) 0.75 0.04 (7.47) 0.16 (− 27.14) 0.82

CH2 0.07 (8.98) − 0.01 (− 1.00) 0.77 0.04 (5.31) 0.17 (− 21.64) 0.88

CH3 0.09 (9.80) − 0.01 (− 1.62) 0.69 – – -

CH4 0.11 (9.46) − 0.03 (− 2.45) 0.74 – – -

Mean 0.08 (9.76) − 0.02 (− 2.26) 0.74 0.04 (6.39) − 0.16 (− 24.39) 0.85

DAP vs. TLS DAP vs. GLS

CH1 0.04 (7.58) 0.01 (1.93) 0.83 0.06 (13.67) 0.13 (31.82) 0.79

CH2 0.06 (7.83) 0.00 (0.03) 0.75 0.07 (12.38) 0.16 (26.33) 0.73

CH3 0.07 (8.36) 0.01 (0.01) 0.65 – – –

CH4 0.07 (6.66) 0.03 (0.03) 0.75 – – –

Mean 0.06 (7.61) 0.01 (1.37) 0.74 0.05 (7.95) − 0.15 (− 22.49) 0.76
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Comparing canopy height measurement of different 
methods among different GS groups
The correlation coefficients of CHs derived from 3D 
sensing and FM were less accurate (mean r = 0.65 to 
0.83) with regard to different GS groups, especially for 
GLS vs. FM. By contrast, the correlation coefficients of 
cross-comparisons of different 3D sensing data decreased 
slightly (mean r = 0.80 to 0.94) (Table 5).

As for comparing 3D sensing with FM, TLS was the 
best according to the highest mean r (0.83), followed 
by BLS (mean r = 0.81), DAP (mean r = 0.76), and GLS 
(mean r = 0.65) (Table  5). From the perspective of sub-
group comparisons, DAP was the best method for 
estimating CH at the jointing stage (mean r = 0.89). 
Moreover, TLS was also the best method for the head-
ing, flowering, and maturity stages (Table 5). The fitting 
lines of TLS, BLS, and DAP were very close to the refer-
ence lines, especially at the heading stage (r = 0.72–0.92). 

However, GLS showed underestimation at all growth 
stages, which was more obvious at late stages (Fig. 9c).

As for cross-comparison of different 3D methods, TLS 
vs. BLS showed the highest correlation (mean r = 0.94), 
followed by TLS vs. GLS (mean r = 0.88), BLS vs. GLS 
(mean r = 0.86), DAP vs. TLS (mean r = 0.86), BLS vs. 
DAP (mean r = 0.84), and DAP vs. GLS (mean r = 0.80). 
From the perspective of subgroup comparisons, the most 
consistent method for estimating the jointing stage was 
TLS vs. GLS (mean r = 0.93), while the best methods for 
heading, flowering, and maturity stages were TLS vs. BLS 
(mean r = 0.92–0.98) (Table 5).

The fitted lines of TLS vs. BLS and BLS vs. DAP were 
closer to the reference line than DAP vs. TLS (Additional 
file  1: Fig. S5 a, c, e). Underestimations also existed in 
comparisons between GLS and other 3D sensing datasets 
at every GS group, especially at the maturity stage (Addi-
tional file 1: Fig. S5 d-f ).

Fig. 7  Correlations between FM heights and predicted heights by different 3D sensing technologies under four canopy height (CH) groups. a–d 
represent TLS vs. FM, BLS vs. FM, GLS vs. FM, and DAP vs. FM, respectively. The green triangle, blue diamond, dark orange circle, and baby blue 
square represent the CH1, CH2, CH3, and CH4 groups, respectively. The solid line represents the fitted line, and the dashed line represents the 1:1 
line
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Comparing the broad sense heritability of canopy height 
measurement from different methods
This study found the H2 of CH derived from 3D sensing 
datasets was overall higher than FM no matter analyzed 
with CH, LAI, or GS groups (Table  6). At different CH 
groups, TLS showed the highest H2 (mean H2 = 0.73), fol-
lowed by BLS (mean H2 = 0.70), GLS (mean H2 = 0.66), 
DAP (mean H2 = 0.66), and FM (mean H2 = 0.60). The 
H2 of the lower CH group (CH1) derived from 3D sens-
ing was much larger than the higher CH group (CH2). 
At different LAI groups, TLS also showed the highest H2 
(mean H2 = 0.90), followed by GLS (mean H2 = 0.86), BLS 
(mean H2 = 0.85), DAP (mean H2 = 0.84), and FM (mean 
H2 = 0.83). At different GS groups, TLS also showed the 

highest H2 (mean H2 = 0.89), followed by BLS (mean 
H2 = 0.85), GLS (mean H2 = 0.81), DAP (mean H2 = 0.79), 
and FM (mean H2 = 0.77). Overall, H2 of LiDAR-derived 
CH was larger than that derived from DAP, and H2 of all 
3D sensing-derived CH was larger than FM. The overall 
heritability in the later growth period decreased, espe-
cially in the maturity stage.

Discussions
Height quantities of 3D point cloud affect the best 
estimates of canopy height
Height quantities have been widely used for depicting 
CH due to their insensitivity to noisy points [19]. How-
ever, it has been found that different height quantiles may 

Table 4  Detailed statistics on comparing canopy height measurement methods

The top side of the table showed the evaluation results of 3D sensing datasets with FM; the bottom side of the table showed the results of 3D sensing datasets cross-
comparisons. RMSE and RMSE%, Bias and Bias%, and correlation coefficient (r) were given for distinct leaf area index (LAI) groups. The underlined values were the best 
result for each LAI group among different comparisons

LAI group RMSE, m
(RMSE%)

Bias, m
(Bias%)

r RMSE, m
(RMSE%)

Bias, m
(Bias%)

r

TLS vs. FM BLS vs. FM

LAI1 0.07 (9.11) 0.03 (4.71) 0.93 0.06 (8.78) 0.04 (5.13) 0.93

LAI2 0.09 (11.43) 0.04 (5.32) 0.86 0.09 (11.74) 0.05 (7.11) 0.85

LAI3 0.07 (9.79) 0.03 (3.88) 0.83 0.08 (10.64) 0.03 (4.68) 0.79

LAI4 0.07 (8.98) 0.04 (5.46) 0.86 0.07 (9.10) 0.05 (6.16) 0.84

Mean 0.07 (9.83) 0.04 (4.84) 0.87 0.07 10.06) 0.04 (5.77) 0.85

GLS vs. FM DAP vs. FM

LAI1 0.05 (7.66) − 0.09 (− 14.98) 0.91 0.08 (11.51) 0.02 (2.43) 0.89

LAI2 0.08 (12.05) − 0.10 (− 14.99) 0.73 0.13 (16.53) 0.04 (5.61) 0.77

LAI3 0.06 (8.86) − 0.14 (− 19.58) 0.78 0.07 (9.89) 0.03 (4.09) 0.77

LAI4 0.06 (7.85) − 0.13 (− 18.74) 0.73 0.06 (8.55) 0.04 (5.78) 0.82

Mean 0.06 (9.10) − 0.12 (− 17.07) 0.79 0.09 (11.62) 0.03 (4.48) 0.81

TLS vs. BLS TLS vs. GLS

LAI1 0.04 (5.05) 0.00 (0.40) 0.97 0.03 (4.46) − 0.15 (− 21.93) 0.97

LAI2 0.04 (5.25) 0.01 (1.70) 0.97 0.04 (5.40) − 0.15 (− 20.89) 0.94

LAI3 0.04 (5.68) 0.01 (0.77) 0.94 0.04 (6.02) − 0.16 (− 22.76) 0.90

LAI4 0.04 (4.74) 0.01 (0.67) 0.95 0.05 ( 6.33) − 0.17 (− 22.32) 0.82

Mean 0.04 (5.18) 0.01 (0.88) 0.96 0.04 (5.55) − 0.16 (− 21.98) 0.91

BLS vs. DAP BLS vs. GLS

LAI1 0.07 (8.64) 0.02 (− 2.56) 0.93 0.04 (5.48) − 0.15 (− 22.54) 0.95

LAI2 0.09 (11.08) 0.01 (− 1.40) 0.89 0.04 (5.51) − 0.17 (− 22.21) 0.94

LAI3 0.06 (8.52) 0.00 (− 0.56) 0.82 0.05 (7.00) − 0.17 (− 23.52) 0.86

CH4 0.07 (8.33) 0.00 (− 0.36) 0.80 0.06 (7.38) − 0.18 (− 23.24) 0.74

Mean 0.07 (9.14) − 0.01 (− 1.22) 0.86 0.05 (6.34) − 0.17 (− 22.88) 0.87

DAP vs. TLS DAP vs. GLS

LAI1 0.06 (8.21) 0.02 (− 2.18) 0.94 0.04 (6.48) − 0.13 (− 20.08) 0.93

LAI2 0.10 (12.06) 0.00 (0.28) 0.87 0.07 (9.79) − 0.15 (− 21.10) 0.80

LAI3 0.06 (8.14) 0.00 (0.20) 0.84 0.06 (7.96) − 0.17 (− 23.75) 0.81

LAI4 0.06 (8.12) 0.00 (0.31) 0.82 0.05 (6.33) − 0.18 (− 23.65) 0.81

Mean 0.07 (9.32) 0.00 (0.36) 0.87 0.06 (7.64) − 0.16 (− 22.14) 0.84
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be suitable for different 3D data with regard to different 
crop types [38] and sensor types [43].

In this study, we explored the effects of height quan-
tities on the accuracy of height estimation from four 
kinds of 3D sensing techniques by collecting 1920 wheat 
plots of various varieties and nitrogen treatments at four 
growth stages. Our results found that H99 was the best 
CH quantile of TLS, GLS, and DAP, while H96 was the 
best for BLS data (Fig.  4). These results are reasonable 
considering previous studies found the best height quan-
tiles mainly located between H90 and H99, especially 
near H99, such as the best height quantile for maize was 
H99 (R2 = 0.9) [46] and H99.9 [39], for wheat was H99.5 
(R2 = 0.90) [43], and for soybean was H99.9 (R2 > 0.85) 
[38].

Although the best height quantiles are similar, the 
influences of height quantile selection on height esti-
mation are different. DAP was easy to lose small tar-
gets such as the leaf tips of the canopy [46]. Meanwhile, 

DAP was difficult to capture the internal structure of 
the canopy [13], which leads to sparse point density 
(Fig.  10) and may illustrate why DAP-predicted CH 
accuracy was more sensitive to height quantiles (Fig. 4) 
and had a relative lager RMSE with other sensing data-
sets (RMSE > 0.05  m, Fig.  6b, c, f ). By contrast, TLS, 
BLS, and GLS can generate high-density point clouds, 
enabling the characterization of inner canopy struc-
ture (Fig. 10). This may illustrate why GLS are less sen-
sitive to the selection of height quantities, so are TLS 
and BLS (Fig.  4). Additionally, the GLS system used 
in this study may lose points near the ground due to 
the filtering method (Fig.  10b), which illustrated the 
overall underestimation and relative high bias of GLS-
predicted data (Fig. 5c, Fig. 6d-f, Fig. 7c, Fig. 8c). How-
ever, it had a slight influence on the overall trend of 
CH assessment and RMSE (r = 0.82, Fig.  5c). Notably, 
despite the high point resolution of GLS, its ranging 
extent is much closer, making it easier to be saturated 

Fig. 8  Correlations between FM heights and predicted heights by different 3D sensing technologies under four leaf area index (LAI) groups. a–d 
represent TLS vs. FM, BLS vs. FM, GLS vs.FM, and DAP vs. FM, respectively. The green triangle, blue diamond, dark orange circle, and baby blue square 
represent the LAI1, LAI2, LAI3, and LAI4 groups, respectively. The solid line represents the fitted line, and the dashed line represents the 1:1 line
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when predicting higher canopies, which can be seen if 
all the plots are used for height estimation in this study 
(Additional file 1: Fig. S6). This suggests that the choice 
of laser ranging extent is as important as the sensor res-
olution for high-precision crop phenotyping.

In conclusion, selecting the optimal height quantiles 
is critical in the evaluation of CH. Despite subtle differ-
ences, these best height metrics were very close in per-
formance. Considering the more diverse datasets used in 
this study than in previous studies [38, 39, 43], the sys-
tematic evaluation of 3D sensing methods were unprec-
edented, which lays reliable foundations for the further 
cross-comparisons.

CH estimation under various height groups, LAI groups, 
and GS groups
The CH estimate accuracies will obviously decrease 
when evaluated at CH subgroups (Fig. 7). This has been 
rarely reported in agriculture, but some similar find-
ings have been drawn in forest CH estimation [31, 71]. 
The subgroup of lower CH plots (e.g., CH1) showed 
higher correlations (Table  3), which are consistent with 
previous studies that indicated the uncertainty of CH 
assessment by 3D sensing increased with height [59]. 
This may attribute to the increasing canopy complexity 
(e.g., crop canopy cover and plant density) with height 
[4, 15]. Meanwhile, canopy senescence and logging may 

Table 5  Detailed statistics on comparing height measurement methods

The top side of the table showed the evaluation results of 3D sensing datasets with FM; the bottom side of the table showed the results of 3D sensing datasets cross-
comparisons. RMSE and RMSE%, Bias and Bias%, and correlation coefficient (r) were given for distinct growth stage (GS) groups. The underlined values were the best 
result for each GS group among different comparisons

J, H, F, and M represent jointing, heading, flowering, and maturity stages

GS group RMSE, m (RMSE%) Bias, m (Bias%) r RMSE, m (RMSE%) Bias, m (Bias%) r

TLS vs. FM BLS vs. FM

J 0.04 (6.69) 0.02 (3.37) 0.88 0.05 (9.58) 0.03 (5.32) 0.81

H 0.05 (6.64) 0.04 (5.42) 0.92 0.05 (6.49) 0.04 (4.89) 0.91

F 0.10 (11.82) 0.03 (4.10) 0.76 0.10 (12.03) 0.05 (6.41) 0.76

M 0.08 (9.85) 0.05 (5.99) 0.76 0.07 (9.16) 0.05 (6.26) 0.75

Mean 0.07 (8.75) 0.04 (4.72) 0.83 0.07 (9.32) 0.04 (5.72) 0.81

GLS vs. FM DAP vs. FM

J 0.05 (8.96) − 0.13 (− 22.39) 0.79 0.05 (8.94) 0.03 (5.25) 0.89

H 0.05 (7.00) − 0.10 (− 13.84) 0.72 0.05 (6.56) 0.05 (5.75) 0.92

F 0.08 (10.96) − 0.08 (− 10.99) 0.45 0.14 (16.58) 0.03 (4.13) 0.64

M 0.06 (7.94) − 0.11 (− 14.74) 0.62 0.11 (14.18) 0.01 (0.85) 0.60

Mean 0.06 (8.71) − 0.10 (− 15.49) 0.65 0.09 (11.57) 0.03 (3.99) 0.76

TLS vs. BLS TLS vs. GLS

J 0.04 (7.61) 0.01 (1.89) 0.87 0.03 (5.15) − 0.15 (− 24.93) 0.93

H 0.03 (3.33) 0.00 (− 0.50) 0.98 0.03 (3.88) − 0.15  (− 20.19) 0.91

F 0.04 (4.44) 0.02 (2.22) 0.97 0.03 (4.28) − 0.17 (− 20.79) 0.92

M 0.04 (5.26) 0.00 (0.25) 0.92 0.05 (6.07) − 0.16 (− 20.44) 0.76

Mean 0.04 (5.16) 0.01 (0.97) 0.94 0.04 (4.84) − 0.16 (− 21.59) 0.88

BLS vs. DAP BLS vs. GLS

J 0.06 (9.68) 0.00 (− 0.07) 0.85 0.04 (6.58) − 0.16 (− 26.33) 0.88

H 0.05 (5.81) 0.01 (0.82) 0.93 0.04 (4.78) − 0.15 (− 20.42) 0.86

F 0.08 (9.24) − 0.02 (− 2.15) 0.89 0.03 (3.49) − 0.18 (− 22.29) 0.95

M 0.10 (11.93) − 0.04 (− 5.09) 0.70 0.05 ( 6.65) − 0.16 (− 20.92) 0.70

Mean 0.07 (9.17) − 0.01 (− 1.62) 0.84 0.04 (5.51) − 0.16  (− 22.52) 0.86

DAP vs. TLS DAP vs. GLS

J 0.03 (5.10) − 0.01 (− 1.78) 0.92 0.04 (7.05) − 0.16 (− 26.27) 0.86

H 0.04 (5.27) 0.00 (-0.31) 0.95 0.03 (4.54) − 0.15 (− 20.41) 0.87

F 0.07 (8.52) 0.00 (− 0.02) 0.87 0.05 (5.87) − 0.17 (− 21.14) 0.84

M 0.09 (10.98) 0.04 (5.10) 0.68 0.06 (7.76) − 0.13 (− 17.09) 0.61

Mean 0.06 (7.47) 0.01 (0.74) 0.86 0.05 (6.30) − 0.15 (− 21.23) 0.80
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also influence height estimation accuracy at high-height 
groups.

This study found the TLS, BLS, and DAP showed 
overestimation in low CH groups (i.e., CH1 and CH2 
groups) but are closer to field measurement in CH3 
and CH4 groups (Figs. 7, 11). The possible reason is the 
canopy surface is not closed and looks uneven at the 
early stage. In this case, field measurement was hard to 
capture the highest CHs (observation) while the sensor 
measured height is the globally ranked height quanti-
ties (real max. height) of a plot. Although GLS had 
systematic underestimation due to its limited ranging 
extent, it had a better fitting effect with TLS and BLS 
(Additional file 1: Fig. S3), demonstrating the high reli-
ability of ranging precision of 3D sensing technologies 
under different canopy structures. It is also the high 
precision of the GLS system (Table  1) that may illus-
trate why GLS keeps a low RMSE (0.04  m—0.05  m) 
with other 3D sensing datasets (Fig. 6d–f ).

In addition, DAP-estimated height showed lower 
correlations with other 3D sensing datasets (Addi-
tional file 1: Fig. S3). This may be caused by the rela-
tively lower data quality of the DAP point cloud. DAP 
point cloud was reconstructed from images, which are 
sensitive to environmental illumination, image quality, 
and reconstruction algorithms [2, 12, 16]. Some stud-
ies have demonstrated that the DAP has comparable 
accuracy with LiDAR in monitoring canopy height 
[10]. In this study, we further proved that DAP showed 
similar better results with LiDAR in field plots with 
lower CH (e.g., CH1), and found the accuracy would 
decrease at higher CH groups (Fig. 7). The decreasing 
accuracy may be caused by the large variations of esti-
mated height at large CH groups where canopy struc-
tures are denser and complicated (Fig. 11).

By contrast, the CH estimate accuracies did not 
show an obvious decrease when evaluated at LAI or 
GS groups (Figs. 8 and 9). The possible reasons are the 
height range of data within each LAI or GS subgroup 

Fig. 9  Correlations between FM heights and predicted heights by different 3D sensing technologies under four growth stages (GS) groups. a–d 
represent TLS vs. FM, BLS vs. FM, GLS vs.FM, and DAP vs. FM, respectively. The green triangle, blue diamond, dark orange circle, and baby blue square 
represent the jointing stage, heading stage, flowering stage, and maturity stage respectively. The solid line represents the fitted line, and the dashed 
line represents the 1:1 line
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was relatively large. However, the accuracy at high LAI 
or late GS was also relatively lower, which may attribute 
to the more complex canopy structure [18, 45].

Outlier analysis of different datasets
Error source analysis revealed that 8 plots existed FM 
error according to our definitions in Sect.  "Error source 
analysis" (Fig. 12a). In these plots, heights estimated from 
all 3D sensing methods were 20% greater than FM, and 
the heights between different 3D sensing methods were 
closer. This indicated that FM may be inaccurate. By con-
trast, there are more potential suspicious CH results esti-
mated from GLS (451), DAP (253), BLS (224), and TLS 
(164) (Fig. 12). Reasons for why the number of suspicious 
FM is fewer than other sensors may attribute to the strict 
judging conditions in Eq.  12. A FM value is suspicious 
only when it is suspicious to TLS, BLS, GLS, and DAP 
at the same time. In other words, if a FM is suspected 
as long as there are more than two suspects in the four 
kinds of comparisons (FM v.s. TLS, FM v.s. BLS, FM v.s. 
GLS, FM v.s. DAP), then the number of suspicious FMs 
will be more (Fig. 12).

In fact, there should be more errors coming from FM. 
For example, Fig.  12b shows the error source case of 
TLS, but it can be easily found that most TLS measure-
ments were very consistent with BLS and DAP. This may 
imply FM and GLS are both suspicious, instead of TLS. 
Similar more suspicious cases of FM can be found in 
Fig. 12c–e. Although the overall underestimation of GLS 
data brought challenges for the above outlier analysis, the 

Table 6  The values of Broad-sense heritability (H2) from different 
3D sensing datasets with regard to different canopy height (CH), 
leaf area index (LAI), and growth stage (GS) groups

The calculation of H2 of a variety was based on the variety’s four plot CHs, 
including two N treatments and two replicates. Because only CHs under 0.82 m 
of FM were used for comparison, the H2 value of varieties can be calculated only 
when all four plots’ CH of a variety were below 0.82 m. - represents no varieties 
within the group that meet the above conditions. The underlined values 
represent the best results among different height measurement methods (each 
row) with regard to different subgroups of CH, LAI, and GS. The bold values 
were the mean vaules of different 3D sensing datasets (each column) across all 
subgroups of CH, LAI, and GS 

FM TLS BLS GLS DAP

CH group

 CH1 0.58 0.81 0.77 0.73 0.74

 CH2 0.61 0.65 0.64 0.59 0.57

 CH3 – – – – –

 CH4 – – – – –

 Mean 0.60 0.73 0.70 0.66 0.66
LAI group

 LAI1 0.83 0.90 0.85 0.86 0.84

 LAI2 – – – – –

 LAI3 – – – – –

 LAI3 – – – – –

 Mean 0.83 0.90 0.85 0.86 0.84
GS group

 Jointing 0.79 0.90 0.85 0.86 0.83

 Heading 0.83 0.90 0.85 0.86 0.84

 Flowering 0.77 0.94 0.86 0.79 0.85

 Maturity 0.70 0.82 0.85 0.73 0.62

 Mean 0.77 0.89 0.85 0.81 0.79

Fig. 10  a Front view and b frequency distribution of points’ height value of TLS, BLS, GLS, and DAP data in the same plot
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general trends still exist. As for the outlier estimations of 
GLS, most relative residuals were below −20% (Fig. 12d), 
which was mainly caused by the lack of ground point 
(Fig.  10b), indicating the importance of ground filtering 
in CH estimation.

Field‑measured canopy height may not be as accurate 
as believed
Our results showed that the height correlations between 
different 3D sensing (r = 0.87–0.97) are much better than 
the correlations between 3D sensing and FM (r = 0.82–
0.89). The reasons may be two aspects. On the one 
hand, LiDAR and DAP are both accurate surveying and 

mapping technologies, they have good repeatability and 
consistency despite a wide variety of sensors and plat-
forms. The TLS, BLS, and GLS systems with centimeter 
and millimeter resolutions have been proven accurate for 
estimating not only height but also other 3D traits [68, 
76]. On the other hand, FM may be suspicious because it 
is based on subjective samples and is easily influenced by 
the terrain and other factors [1]. Some studies have also 
indicated that LiDAR may be more accurate than manual 
inspection [44].

Heritability quantifies the repeatability of the canopy 
height trait estimation, which is another prospect to 
evaluate the reliability of phenotyping methods and their 

Fig. 11  Canopy height (CH) observations from TLS (in the green triangle), BLS (in the blue rhombus), GLS (in the orange circle), DAP (in the blue 
light square), and FM (in the orange-red point) for a CH1, b CH2, c CH3, and d CH4 group. The x-axis represents the sorting order of field plots, and 
the y-axis represents the value of canopy height
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Fig. 12  Relative canopy height residuals between 3D sensing-derived canopy height (CH) and FM. Suspicious results existed in a FM, b TLS-derived 
CH, c BLS-derived CH, d GLS-derived CH, and e DAP-derived CH according to Eq. 12–16. The x-axis represents the ID of field plots, and the y-axis 
represents the value of relative residuals. The green triangle, blue rhombus, orange circle, light blue square, and orange-red point represent the 
relative residuals of ∆(TLS, FM), ∆(BLS, FM), ∆(GLS, FM), ∆(DAP, FM), and ∆(FM, FM) in each subplot. Among them, the ∆(FM, FM) value is zero, which 
looks like a horizontal reference line in red
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potential for the breeding program [52]. On the one 
hand, the differences in the heritability of different data 
reflect their ability to characterize the subtle differences 
of CH among different varieties, as mentioned by Vol-
pato et  al. [67]. Our results proved that H2 of 3D sens-
ing, especially H2 of LiDAR-derived CH, was larger than 
that derived from FM (Table  6), which may be deter-
mined by the higher accuracy of LiDAR systems. Higher 
H2 of the advanced 3D sensing tools indicate that they 
will facilitate better trait extraction for breeding. On the 
other hand, the overall heritability in the later growth 
period decreased, which may attribute to the prominent 
environmental impact of nitrogen treatment in the later 
growth period (e.g., logging). The environmental effects 
on the heritability of LiDAR-derived plant height have 
been proved by Madec et al. [43]. The dynamic change of 
H2 would be interested by plant breeders for selecting the 
right time to study the genotypic and/or environmental 
influences on phenotype [67].

Contributions and implications
This study systematically evaluated the accuracy of CH 
estimation from advanced 3D sensing systems (TLS, 
BLS, GLS, and DAP) and FM using wheat plots of differ-
ent varieties, fertilization levels, and growth stages. To 
our knowledge, this is the first effort that uses multiple 
3D sensing technologies to evaluate their reliability for 
estimating CH with regard to different CH, LAI, and GS 
groups. Moreover, we analyzed the heritability from 3D 
sensing datasets and FM, proving the potential advan-
tages of 3D sensing technologies in crop breeding.

However, there are still some interesting and important 
directions that need to be explored in the future. First, 
it is meaningful to deeply analyze the effect of operating 

modes of different 3D sensing technologies on CH moni-
toring. As for TLS, the scanning location settings (e.g., 
positions and total numbers) is important for acquiring 
a high-quality (higher density and less occlusion) point 
cloud [14, 68]. Although some pioneer studies have been 
conducted in forestry [74], it is still needed to have a 
scientific workflow of TLS in agriculture to ensure not 
only high accuracy but also improve efficiency. BLS is an 
economically friendly and easy-to-use platform. Design-
ing the routine is critical and it has been discussed by Su 
et  al. [58]. GLS is a kind of emerging phenotyping plat-
form, which is mainly designed for crop phenotyping and 
has less been explored. This study highlights the necessity 
to integrate suitable sensors (e.g., longer-ranging ability) 
for different crop types, provide access to raw data, and 
enable more intelligent custom algorithms (e.g., filter-
ing algorithm) for accurate phenotype extraction [29]. 
DAP is a low-cost system that has been widely used in 
phenotyping. However, the point cloud quality gener-
ated from DAP is affected by parameters such as sensor 
quality, camera shooting angle, routine overlap, and flight 
speed. This study determined the optimal flight height by 
a preliminary comparison experiment (Additional file 1: 
Fig. S1). More parameter comparison studies are worth 
exploring and can refer to Hu et  al. [20]. Additionally, 
considering the UAV-LiDAR systems are more expensive 
than DAP and do not have obvious advantages in data 
quality [76], this study did not compare the UAV-LiDAR 
systems. However, we believe UAV-LiDAR systems are 
getting cheaper and the data quality is a good comple-
ment to DAP due to its higher penetration ability and 
robustness to light environments.

Secondly, the tradeoff between precision and efficiency 
is worth studying. Generally, data precision was depicted 

Fig. 13  a Point accuracy and point density and b collection time and processing time from TLS (in the green triangle), BLS (in the blue rhombus), 
GLS (in the orange circle), and DAP (in the blue light square)
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by point density and resolution. High point density usu-
ally has a high resolution (Fig. 13a). The possible reason 
why TLS has a higher point density but a lower resolu-
tion is the multi-scan registration [37]. More importantly, 
this study highlights that higher precision always needs a 
longer collection time, but does not mean more process-
ing time (e.g., GLS) (Fig. 13). Among them, TLS has the 
longest data acquisition and processing time, because the 
reference targets and scanner need to be laboriously laid 
out during the scanning, and multi-scan data registra-
tion is time-consuming during reprocessing [7]. BLS has 
the shortest time (collection plus preprocessing), impli-
cating this type of mobile mapping technology is worth 
promoting in the future, especially as cost decreases and 
accuracy increases. GLS not only has the highest point 
resolution but also has the shortest preprocessing time 
and affordable collection time, which benefits from the 
automatic data collection system and processing soft-
ware [36]. However, this kind of phenotyping platform 
is still too expensive (Table  2). DAP has high collection 
efficiency, but the data quality is relatively low. Besides, 
the processing time of DAP is long not only caused by 
3D reconstruction but also attribute to the manual de-
noising process due to the low signal-to-noise ratio of 
the DAP point cloud. These preliminary explorations are 
of great significance for further in-depth and systematic 
analysis of cost and efficiency and the formulation of 
appropriate phenotypic working plans.

Finally, there is no standard for grouping CH and LAI. 
This study mainly divided 1920 plots into four different 
groups based on the value extent (maximum minus mini-
mum) and frequency distribution. Although there are 
small differences in the spacing of the groupings and the 
number of groups is not exactly equal, the total sample 
sizes (i.e., 1920 plots) are unprecedented. The influence 
of CH, LAI, and GS on height measurement accuracy 
and heritability has been analyzed, but more quantitative 
evaluations are worth exploring, such as the specific CH 
and LAI thresholds for selecting the optimal measuring 
methods. Moreover, this study mainly studied the impor-
tant CH trait in wheat, while more biologically meaning-
ful and heritable traits in more crop types need further 
evaluation [35, 78].

Conclusion
The study demonstrated novel insights into the accuracy 
and heritability of CH from 3D sensing and field meas-
urement. Cross-comparisons among different sensor 
datasets showed higher correlations (r = 0.87 to 0.97) 
than comparisons with FM (r = 0.82 to 0.89). The corre-
lation coefficients of CHs derived from 3D sensing and 
FM decreased obviously when evaluated with respect to 

different subgroups (CH, LAI, and GS), especially dif-
ferent CH subgroups. TLS and BLS were more reliable 
in monitoring CH under different subgroups accord-
ing to their cross-comparisons and comparisons with 
FM. The outlier analysis found cases where FM may be 
error-prone. Moreover, 3D sensing methods showed 
even higher heritability than FM. Further studies about 
the best configurations of sensors and working plans are 
needed, the tradeoff between data quality and efficiency 
is worth exploring, and more traits deserve future efforts. 
These novel findings may give insights into the selection 
of advanced 3D sensing platforms for crop monitoring 
and may shed new light on the high-quality development 
of crop sciences (e.g. providing higher heritable traits for 
breeding).
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Additional file 1: Fig. S1. Canopy height correlations between the field 
measurement and DAP estimates at different flight heights. (a), (b), (c), and 
(d) are the results of flight height at 10, 20, 30, and 40m, respectively. The 
solid line represents the fitted line, and the dashed line represents the 1:1 
line. The color bar shows the kernel density value of the point distribution, 
and the green to yellow represents the increase in kernel density. Fig. 
S2. (a) RMSE, (b) RMSE%, (c) Bias, and (d) Bias% between field measured 
height (FM) and different height quantiles (Hmax and H99) derived from 
the different 3D point cloud, including TLS, BLS, GLS, and DAP. The green 
triangle, blue diamond, dark orange circle, and baby blue square represent 
TLS vs. FM, BLS vs. FM, GLS vs. FM, and DAP vs. FM, respectively. Fig. S3. 
Correlations of cross-comparisons between different 3D sensing data 
estimated canopy height (CH) at four CH subgroups. (a), (b), (c), (d), (e), 
and (f ) are comparisons of TLS vs. BLS, BLS vs. DAP, DAP vs. TLS, TLS vs. 
GLS, BLS vs. GLS, and DAP vs. GLS, respectively. The green triangle, blue 
diamond, orange circle, and light blue square represent the CH1, CH2, 
CH3, and CH4 groups, respectively. The solid line represents the fitted line, 
and the dashed line represents the 1:1 reference. Fig. S4. Correlations of 
cross-comparisons between different 3D sensing data estimated canopy 
height (CH) at four leaf area index (LAI) groups. (a), (b), (c), (d), (e), and (f ) 
are comparisons of TLS vs. BLS, BLS vs. DAP, DAP vs. TLS, TLS vs. GLS, BLS 
vs. GLS, and DAP vs. GLS, respectively. The green triangle, blue diamond, 
orange circle, and light blue square represent the LAI1, LAI2, LAI3, and 
LAI4 groups, respectively. The solid line represents the fitted line, and 
the dashed line represents the 1:1 reference line. Fig. S5. Correlations of 
cross-comparisons between different 3D sensing data estimated canopy 
height (CH) at four growth stages (GS) groups. (a), (b), (c), (d), (e), and (f ) 
are comparisons of TLS vs. BLS, BLS vs. DAP, DAP vs. TLS, TLS vs. GLS, BLS 
vs. GLS, and DAP vs. GLS, respectively. The green triangle, blue diamond, 
orange circle, and light blue square represent the jointing, heading, flow-
ering, and maturity stages, respectively. The solid line represents the fitted 
line, and the dashed line represents the 1:1 reference line. Fig. S6. Correla-
tions between GLS predicted datasets (including the measured canopy 
height over 0.82m) and other datasets. (a), (b), (c), and (d) respectively 
represent GLS vs. FM, TLS vs. GLS, BLS vs. GLS, and DAP vs. GLS. The solid 
line represents the fitted line, and the dashed line represents the 1:1 line. 
The color bar shows the kernel density value of the point distribution, and 
the green to yellow represents the increase in kernel density. Table S1. 
The performance of canopy height measurement with TLS, BLS, GLS, and 
DAP systems. R2, r, and RMSE are the coefficient of determination, correla-
tion coefficient, and root mean square error, respectively. – represents the 
performance metric that is not available.
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