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Abstract 

Background:  Virtual plants can simulate the plant growth and development process through computer modeling, 
which assists in revealing plant growth and development patterns. Virtual plant visualization technology is a core part 
of virtual plant research. The major limitation of the existing plant growth visualization models is that the produced 
virtual plants are not realistic and cannot clearly reflect plant color, morphology and texture information.

Results:  This study proposed a novel trait-to-image crop visualization tool named CropPainter, which introduces a 
generative adversarial network to generate virtual crop images corresponding to the given phenotypic information. 
CropPainter was first tested for virtual rice panicle generation as an example of virtual crop generation at the organ 
level. Subsequently, CropPainter was extended for visualizing crop plants (at the plant level), including rice, maize and 
cotton plants. The tests showed that the virtual crops produced by CropPainter are very realistic and highly consistent 
with the input phenotypic traits. The codes, datasets and CropPainter visualization software are available online.

Conclusion:  In conclusion, our method provides a completely novel idea for crop visualization and may serve as a 
tool for virtual crops, which can assist in plant growth and development research.
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Background
With the rapid development of computer technology, the 
application of computer technology in agriculture has 
gradually increased [1–3]. Benefiting from the develop-
ment of digital agriculture, the concept of virtual plants 
[4] was proposed and gained the attention of a large num-
ber of researchers. The virtual plant is a multidisciplinary 
technology that combines multiple types of knowledge, 
including computer graphics, botany, geography, 

agriculture, and virtual reality [5]. Virtual plants simulate 
plant growth and development processes through com-
puter modeling so that they can be analyzed and pre-
dicted on the computer [6, 7]. As one of the important 
research areas in digital agricultural technology, virtual 
plants play an important role in plant cultivation, strain 
improvement, plant growth and yield prediction and thus 
are of great significance in revealing plant growth and 
development patterns [8]. Virtual plant visualization is an 
important part of virtual plants [9, 10]. The main purpose 
of virtual plant visualization is to simulate plant mor-
phology and growth through computer modeling [11].

The study of virtual crop visualization was proposed 
early by researchers. The L-system [12], first proposed by 
Lindenmayer in 1968, was essentially a theory that con-
tinuously updated the strings representing plant growth 
and added geometric interpretations to the strings to 
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generate fractal graphs of plants. In later studies, the 
L-system was continuously improved and extended [13–
18]. Allen et  al. proposed the L-peach model for mod-
eling structural and physiological changes during tree 
growth [19]. Leitner et  al. modeled plant root growth 
based on the L-system by defining growth rules [20]. 
Cieslak et al. presented an interactive method for creat-
ing and calibrating developmental plant models for maize 
and canola based on the L-system [21]. With increasing 
research on plant growth systems, different plant growth 
models have been proposed. De Reffye et  al. developed 
the AMAP plant growth software system using the ref-
erence axis technique, which is another popular method 
for virtual plant modeling [22]. The reference axis tech-
nique uses a finite automaton to simulate plant morphol-
ogy, and plant growth and development processes were 
obtained by Markov chain theory and state transition 
diagrams. Mündermann et  al. constructed successively 
quantitative models of plant topology and organs based 
on plant growth patterns and empirical data [23]. Jallas 
et  al. established a coupled model that integrates plant 
architectural modeling and physiologically based mod-
eling to virtualize the cotton growth process [24]. Dorn-
busch et al. used intercepted apical cones to simulate leaf 
sheaths and internodes of spring barley and ellipsoidal 
bodies to simulate spikelet seeds [25]. Espana et al. used 
a two-dimensional rectangular plane to approximate the 
leaf blade and mapped different parts of the leaf into a 3D 
space to achieve 2D and 3D morphological simulation 
of the maize leaf [26]. Based on the biomechanics of cell 
growth, Abera et  al. developed tissue generation algo-
rithms to study the influence of leaf anatomy on photo-
synthesis [27, 28]. Although virtual crop visualization has 
achieved tremendous improvement, the major limitation 
of the established plant models is that the plant models 
are not realistic in morphology, color, and texture, and 
cannot be used for precise crop visualization.

Generative adversarial networks (GAN) [29], proposed 
by Ian Goodfellow, have revolutionized the deep learn-
ing field. GAN is one of the most widely used techniques 
for image generation. It generates fake data consistent 
with its distribution by continuously approximating the 
data distribution of real samples. The network includes 
two parts: generator G and discriminator D. The goal of 
G is to generate fake samples by imitating the data dis-
tribution of real samples, and the goal of D is to make 
judgments on the authenticity of the samples. In the 
training process, G and D are constantly pitted against 
each other and the performance of G and D is continu-
ously optimized. Consequently, the generator can gener-
ate highly realistic images. DCGAN (deep convolutional 
generative adversarial networks) [30] proposed by Alec 
Radford et  al. is an extension of GAN, in which the 

authors combined GAN and CNN to improve the abil-
ity of the GAN to learn image representations. GAN has 
been widely used in various academic fields. In the crop 
research field, GAN applications are mainly focused on 
plant dataset augmentation. To alleviate the lack of train-
ing data in plant phenotyping, Giuffrida et al. used gen-
erative adversarial networks to expand the dataset and 
improved the CNN accuracy for detecting and segment-
ing Arabidopsis [31]. Espejo-Garcia et  al. used GAN to 
create artificial tomato images and improved weed rec-
ognition accuracy [32]. Lu et al. enhanced the dataset by 
generating pest images using GAN to improve the accu-
racy of the CNN classifier model for pest classification 
[33]. Barth et  al. used an unsupervised recurrent GAN 
for unpaired image-to-image translation to generate 
segmented bell pepper images from bell pepper images, 
reducing the manual labeling task [34]. Kerdegari et  al. 
utilized a semisupervised GAN to generate multispectral 
images of agricultural fields, demonstrating the potential 
of GAN-based methods for multispectral image classifi-
cation [35]. One advantage of GAN is that the generated 
virtual images are very realistic. Thus, GAN networks 
have the potential to be applied in crop visualization 
research to produce highly realistic virtual crops.

This paper aimed to generate virtual crops using phe-
notypic information as input. Specifically, the phenotypic 
traits for each crop were presented as a feature vector. In 
other words, a conditional image synthesis method that 
is conditioned on a feature vector, other than conditioned 
on a single label describing the overall image class or 
other images [36–38], was needed. Text-to-image genera-
tion is one of the classical tasks in computer vision, which 
aims to generate specific images by providing textual 
descriptions. StackGAN [39] proposed by Zhang et al. is 
a widely used text-to-image technique that can generate 
highly realistic images from text. StackGAN-v2 [40] is 
the improved version of StackGAN, which improved the 
training stability and the quality of the generated images. 
Specifically, in StackGAN-v2, text description informa-
tion was first encoded and converted into vectors, and 
then the vectors were input into the generators to pro-
duce images. In this study, we introduced the idea of 
text-to-image conversion of StackGAN-v2 to transform 
crop phenotypic traits into crop images, with necessary 
modifications to the original model to make the model 
conditioned on a vector other than text. A GAN-based 
crop visualization tool named CropPainter was proposed. 
Given phenotypic traits, CropPaniter can generate realis-
tic crop images. Specifically, we

(1)	 Provided an image analysis pipeline for building the 
training dataset.

(2)	 Developed a GAN-based crop visualization tool.
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(3)	 Evaluated the performance of the method for visu-
alizing rice panicles (organ level).

(4)	 Extended the method for visualizing crop plants 
(individual plant level), including rice, maize and 
cotton plants.

Materials and methods
Image acquisition
CropPainter was first developed for crop generation at 
the organ level. Rice panicles were chosen in this study 
as an example of virtual plant organ generation. To build 
the panicle dataset, 212 rice materials with 4 replications 
were used in this study. The rice materials came from 
Zhenshan, Minghui and their hybrids. The rice plants 
were cultivated in plastic pots at the crop phenotyping 
platform of Huazhong Agricultural University in 2014. 
At the filling stage, rice plant images were collected by a 
high-throughput imaging system [41]. For each rice plant, 
15 side-view images of different angles were acquired.

To test the general applicability of CropPainter, 
CropPainter was extended for visualizing crop plants, 
including rice, maize and cotton. The rice plant images 
were acquired from the same rice materials as the pani-
cle dataset, except that the rice plant dataset was cap-
tured at the seedling stage. To build the maize plant 
dataset, the maize plant images were acquired from 
696 maize accessions with 4 replications at the seedling 
stage in 2019. The images of the cotton plant dataset 
were acquired from 200 cotton accessions with 3 rep-
lications at the seedling stage in 2017. All crop plants, 

including rice, maize and cotton, were cultivated 
in plastic pots at the crop phenotyping platform of 
Huazhong Agricultural University.

Model training
CropPainter was trained on a computer with Ubuntu 
16.04 and an NVIDIA GeForce RTX 2070s graphics 
card with 8 GB memory. The software environments 
were based on Python 2.7, which uses PyTorch, Tensor-
Board, Python-Dateutil, EasyDict, Pandas, and Torch-
file. The Adam optimizer (lr = 0.0002, beta_1 = 0.5, 
beta_2 = 0.999, epsilon = 10e-8) was used in the training.

Results
The overall CropPainter flowchart
The overall CropPainter flowchart is shown in Fig.  1. 
The rice images (Fig. 1A) were first segmented to obtain 
panicle images (Fig. 1B). The panicle images were then 
analyzed to build the datasets for training and testing 
the CropPainter model (Fig.  1C, D). The training set, 
including 20,066 images and their corresponding phe-
notypic traits, was fed into the GAN model to train 
CropPainter (Fig.  1E, F). Phenotypic traits extracted 
from the 4,141 testing images were then input into 
the trained CropPainter. Virtual panicle images gen-
erated by the CropPainter were then evaluated to test 
the CropPainter performance (Fig.  1G). Finally, Crop-
Painter was extended for the visualization of maize, rice 
and cotton plants (Fig. 1H).

Fig. 1  The overall flowchart. A Original RGB rice image. B Rice panicle image after segmentation. C Rice panicle image datasets along with 
phenotypic traits extracted by LabVIEW. D Randomly dividing the datasets into a training set and testing set. E Network Training. F Trained 
CropPainter model. G Generating virtual rice panicle images from traits in the testing set. H Extending CropPainter to visualize rice, maize and 
cotton plants
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Image processing and phenotypic trait extraction
To obtain the rice panicle images for building the pani-
cle dataset, the deep semantic segmentation model Seg-
Net [42] was used to segment the panicles from the rice 
images. Subsequently, the panicle regions were cropped 
by detecting the minimum bounding rectangle of the 
panicle regions. The maximum height or width of the 
bounding rectangle among the datasets was then calcu-
lated and denoted as M. Then, the cropped image con-
taining the panicle regions was centered in an image with 
a resolution of M×M (Fig.  2). Then, the images were 
resized to 256 × 256 to fit the GAN model. Finally, 24,207 
images were prepared and divided randomly into two 
sets: a training set (20,066 images) and a testing set (4,141 
images).

For the maize, rice and cotton plant datasets, the 
images went through a similar image processing flow-
chart. To fully express the maize plant characteristics, for 
each maize, only the image with the largest width among 
20 side-view images was selected. For rice and cotton 
plants, all side-view images from different angles were 
used. In total, the numbers of images for the rice plant 
dataset, maize plant dataset and cotton plant dataset 
were 12,634, 11,064, and 7,280, respectively. The datasets 
were divided randomly into training sets and testing sets. 
The number of images and varieties in each dataset are 
listed in Table 1.

After image processing, 18 phenotypic traits were 
extracted using LabVIEW 2015 (National Instruments, 
Austin, USA), including mean value (M), standard error 
(SE), smoothness (S), third moment (MU3), uniformity 
(U), entropy (E), total projected area (TPA), height of the 
bounding rectangle (H), width of the bounding rectangle 
(W), the ratio of total projected area and circumscribed 
box area (TBR), the circumscribed box area (CBA), the 

ratio of total projected area and hull area (THR), the 
ratio of perimeter and total projected area (PAR), fractal 
dimension with image cropping (FDIC), perimeter (P), 
green projected area (GPA), yellow projected area (YPA), 
and the ratio of total projected area and yellow projected 
area (YTR) [43].

Crop visualization based on GAN
In our research, to visualize the phenotypic crop traits, 
we proposed a GAN-based method, namely, CropPainter, 
which takes the phenotypic crop traits as input and gen-
erated its corresponding crop image. StackGAN-v2 is a 
commonly used model for text-to-image generation that 
generates images from the input text. StackGAN-v2 first 
encodes the input text into multidimensional vectors 
and then feeds the encoded vector to the generator. The 
StackGAN-v2 comprises three discriminators and three 
generators in a tree structure to generate images of dif-
ferent scales.

In this study, we improved the StackGAN-v2 as the 
basic structure of CropPainter. Specifically, instead of 
the text embedding method, we used our own encod-
ing approach to encode the phenotypic traits. The text 
embedding block in StackGAN-v2 was used to con-
vert the text description into vectors. However, the 

Fig. 2  Image preprocessing flowchart

Table 1  The number of images and varieties used in each 
dataset

Datasets Training sets Testing sets Varieties

Panicle 20,066 4,141 212

Rice plant 11,218 1,416 212

Maize plant 10,081 983 696

Cotton plant 6,680 600 200
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phenotypic information in this study was already pre-
sented as vectors. Moreover, the scale of the phenotypic 
traits varied greatly in our datasets. Therefore, the input 
phenotypic traits were first normalized by a min-max 
normalizer, which linearly rescaled each trait to the [0,1] 
interval. The normalization was also beneficial for speed-
ing up the model and improving the performance. For 
these reasons, we replaced the original text embedding 
block with normalization. In addition, the condition-
ing augmentation network (CA network) in StackGAN-
v2 was removed in our study because the CA network 
adds unnecessary randomness, which is not beneficial 
for accurately generating crop images by phenotypic 
traits. The normalized phenotypic traits were then input 
into the generators as the condition vector. For the pani-
cle dataset and cotton dataset, all 18 phenotypic traits 
were used as the condition vector. For the rice plant 
dataset and maize plant dataset, the YPA and YTR were 
removed, and the remaining 16 traits were used for image 
generation because there were almost no yellow compo-
nents in rice plant images and maize plant images. The 
input of the next generator was formed by concatenat-
ing the hidden feature vector h by the previous genera-
tor and the phenotypic traits vector along the channel 
dimension. The discriminator was used to distinguish 

between real and fake images and determine whether 
the generated crop image matched the input phenotypic 
traits (Fig. 3). For the network structure, the generator in 
the first stage was composed of a fully connected block, 
four upsampling blocks, and a convolutional layer. The 
fully connected block contains a linear layer and a batch-
norm layer. Each upsampling block contains an upsam-
pling layer, a convolutional layer and a batchnorm layer. 
The hidden feature vector h1 output by the upsampling 
block was passed to the second-stage generator in sub-
sequent training, which generated a low-resolution crop 
image with a dimension of 64 × 64 through the convolu-
tional layer. The second-stage and third-stage generators 
were composed of a joint block, two residual blocks, an 
upsampling block, and a convolutional layer. The joint 
block included a convolutional layer and a batchnorm 
layer. Each residual block contained two convolutional 
layers and batchnorm layers. Phenotypic trait vector and 
h1 were concatenated along the channel dimension and 
passed through a convolutional layer, which outputs the 
hidden feature vector h2. After that, h2 was fed to the 
generator of the second stage, and a crop image with a 
dimension of 128 × 128 was generated. Finally, the h2 and 
phenotypic trait vectors were input into the third stage 
to generate a crop image with a dimension of 256 × 256, 

Fig. 3  CropPainter network structure
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which was deemed the final virtual image generated by 
CropPainter.

Evaluation of crop visualization
After training, the phenotypic traits of the testing sets 
were input into the trained model to generate the crop 
images. To evaluate the effectiveness of our method 
for crop visualization, we evaluated our model in two 
aspects: visual fidelity and prediction accuracy.

Visual fidelity
The quality and fidelity of the virtual images generated 
by CropPainter were evaluated by calculating the struc-
tural similarity (SSIM) and the Frechet inception distance 
(FID) score [44, 45]. The SSIM value is a number between 
0 and 1, indicating the similarity of the two images in 
terms of brightness, contrast and structure. A higher 
SSIM value indicates a higher similarity between the two 
images. The FID value calculates the distance between 
the real image and the virtual image in the feature space. 
The smaller the FID value is, the higher the quality of the 
virtual image. The computational formulas for SSIM and 
FID are provided in Eqs. 1 and 2.

where x and y are the real image and virtual image, 
respectively.  μx  and μy are the mean values of images x 
and y, respectively. σx and σy represent the standard devi-
ation of the two images, respectively, and σxy is the covar-
iance of x and y. ∑x and ∑y are the covariance matrices 
of the two images.

Prediction accuracy
To evaluate the prediction accuracy of CropPainter, the 
phenotypic traits of the generated images (hereafter 
denoted as virtual traits) were calculated and compared 
with the phenotypic traits of the real images (hereafter 
denoted as real traits) in the testing set. The correlation 
coefficient and cosine similarity between virtual traits 
and real traits were computed to assess the accuracy of 
the model in terms of image phenotypic trait predic-
tion. The correlation coefficient is the Pearson product 
moment correlation coefficient, which is a dimensionless 
index ranging from − 1 to 1 and reflects the degree of lin-
ear correlation between two datasets. Cosine similarity 
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measures the magnitude of the difference between two 
samples by the cosine of the angle between the two vec-
tors in the vector space. The computational formulas for 
the correlation coefficient and cosine similarity are pro-
vided in Eqs. 3 and 4.

 where x is the virtual traits, y is the real traits, and −x and 
−

y represent the mean values of the virtual traits and the 
real traits, respectively. n is the number of phenotypic 
traits used for trait-to-image crop visualization.

Virtual panicle generation by CropPainter
Eighteen phenotypic traits extracted from 4,141 panicle 
images in the testing set were used as the CropPainter 
input, and the generated virtual panicle images were 
used to evaluate the CropPainter performance for pani-
cle image generation. The average SSIM and FID values 
between the generated virtual images and real images 
reached 0.8322 and 22.82, respectively, which proved that 
the generated virtual images were realistic and similar 
to the corresponding real images. Figure  4a shows two 
examples of virtual panicle image generation.

In addition, the phenotypic traits of the generated vir-
tual images (virtual traits) were extracted and compared 
with the phenotypic traits of the testing images (real 
traits). The mean value of correlation coefficients for the 
18 traits was 0.9512, with the highest correlation coeffi-
cient reaching 0.9861 (Fig. 4b). The mean value and the 
standard deviation of cosine similarity of traits among 
the test dataset were 0.9881 and 0.0091, respectively.

Virtual crop plant generation by CropPainter
To validate the generality of CropPainter, CropPainter 
was extended to generate virtual images of rice plants, 
maize plants and cotton plants. Figures  5a,  6a,  7a show 
examples of virtual image generation of rice plants, maize 
plants and cotton plants, respectively. Correlation anal-
ysis of virtual traits and real traits for rice plants, maize 
plants and cotton plants proved that the CropPainter 
achieved good performance in visualizing crop plants 
(Figs. 5b, 6b, 7b).

Table  2 illustrates the CropPainter performance in 
terms of visual fidelity and prediction accuracy. Gener-
ally, CropPainter had good applicability to visualizing 
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Fig. 4  Panicle visualization results. a Generated virtual panicle images and the corresponding real panicle images. b Correlation coefficients of 18 
phenotypic traits (real traits versus virtual traits)

Fig. 5  Rice plant visualization results. a Generated virtual rice images and the corresponding real rice images. b Correlation coefficients of 16 
phenotypic traits (real traits versus virtual traits)



Page 8 of 11Duan et al. Plant Methods          (2022) 18:138 

Fig. 6  Maize plant visualization results. a Generated virtual maize images and the corresponding real maize images. b Correlation coefficients of 16 
phenotypic traits (real traits versus virtual traits)

Fig. 7  Cotton plant visualization results. a Generated virtual cotton images and the corresponding real cotton images. b Correlation coefficients of 
18 phenotypic traits (real traits versus virtual traits)
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different crops. Among the crop visualizations, Crop-
Painter performed relatively worse on cotton plant 
visualizations. The main reason was that the number of 
images in the cotton plant dataset was approximately half 
of that in the rice plant dataset and maize plant dataset.

Software development
For the convenience of readers using our method, we cre-
ated a UI interactive interface for CropPainter and pack-
aged the project as executable software on the Windows 
10 system. Readers can generate virtual crop images 
from trait information using this software. An additional 
video file shows the use of the software in more detail 
[see Additional file  1]. The software along with detailed 
instructions are available at http://​plant​pheno​mics.​hzau.​
edu.​cn/​userc​rop/​Rice/​downl​oad.

Discussion
Traditional crop visualization methods cannot truly 
reflect crop characteristics. For instance, the exist-
ing methods usually use prior shapes to simulate plant 
organs. However, the exact organ shapes were different 
among different varieties and even among the same plant. 
For example, the shape of the leaves at different locations 
on the maize plant can be very different. GAN provides 
a new tool for digital crop visualization. Applying GAN 
for crop visualization using crop phenotypic information 
is a new idea. By improving the StackGAN-v2 structure, 
we introduced a novel method for trait-to-image crop 
visualization. The greatest advantage of our approach 
is that the developed crop visualization models have no 
constraints on the morphology, color and texture of the 
crop. Consequently, the generated virtual crops were 
highly realistic. In conclusion, the proposed CropPainter 
method is fundamentally different from traditional crop 
visualization methods.

To test the universality of our method, we carried out a 
series of experiments to verify it. We validated the Crop-
Painter for crop visualization at both the organ level (rice 
panicles) and whole plant level (rice plant, maize plant 
and cotton plant), in which rice and maize were chosen 
as representatives of monocotyledons and cotton plants 

were selected as representatives of dicotyledons. Rice is 
a multitiller crop, and maize is a single-tiller crop. The 
results showed that our method had good adaptability to 
different crops. Moreover, the number and type of phe-
notypic traits used for virtual image generation can be 
adjusted conveniently, which indicates the flexibility of 
our method in the application of crop visualization. The 
significant contribution of our visualization method is 
that the generated virtual image is realistic and highly 
consistent with the input phenotypic traits. Conse-
quently, CropPainter can also be used for precise image 
augmentation, which can create diverse and specified 
images for image classification tasks.

Accurate phenotypic trait extraction is essential for 
crop visualization using CropPainter. Inaccurate image 
segmentation leads to error in phenotypic trait calcula-
tion and thus result in an unsatisfying visualization. The 
number of images in the training dataset is another key 
factor for crop visualization. Generally, a larger sample 
size will produce a better visualization model. In our 
experiments, the accuracy of cotton plant image genera-
tion is relatively low. The main reason is that the number 
of images in the cotton dataset was relatively small, which 
was only a quarter of the number of images in the panicle 
dataset. In addition, unlike other traits, the color-related 
traits, including YPA and YTR, involved the segmenta-
tion of yellow and green components, which brought 
additional errors. Moreover, the color of the cotton stem 
close to the soil was yellow and very similar to that of 
the soil, which made it difficult to distinguish the cotton 
stem from the soil. Consequently, larger errors may have 
occurred in YPA and YTR extraction compared with 
other traits, which eventually resulted in lower correla-
tion coefficients between the virtual color-related traits 
and the real color-related traits. A larger number of data-
sets and more precise image segmentation methods can 
improve the accuracy and similarity of CropPainter for 
virtual crop image generation. In addition, more samples 
are needed if the structure, shape or texture of the crop is 
complex or the dataset has a high diversity; for instance, 
the dataset has a large number of varieties.

Table 2  Performance evaluation of CropPainter for visualization of panicle, rice plant, maize plant and cotton plant

Datasets SSIM FID correlation coefficient cosine similarity

Mean value Standard deviation Mean value Standard deviation Mean value Standard 
deviation

Panicle 0.8322 0.0471 22.82 0.9512 0.0474 0.9881 0.0091

Rice plant 0.8583 0.0551 13.02 0.9572 0.0481 0.9942 0.0167

Maize plant 0.8550 0.0728 38.10 0.9418 0.0588 0.9938 0.0088

Cotton plant 0.8591 0.0370 61.02 0.8882 0.1065 0.9962 0.0063

http://plantphenomics.hzau.edu.cn/usercrop/Rice/download
http://plantphenomics.hzau.edu.cn/usercrop/Rice/download


Page 10 of 11Duan et al. Plant Methods          (2022) 18:138 

Although the presented CropPainter performed well 
in crop visualization, it also had limitations. For exam-
ple, CropPainter can only generate images with a reso-
lution of 256 × 256 for this version. For this reason, only 
the visualization of crop plants at the seedling stage was 
tested in this study. Crop visualization tools that can 
generate virtual crop images with higher resolution will 
be developed in our future work, and the visualization 
of crop plants at later growth stages, for instance, the 
maturity stage, will be investigated. In addition, Crop-
Painter can only generate a two-dimensional virtual crop. 
Three-dimensional virtual crop visualization tools will be 
studied in the future. This study generated virtual crop 
images based on crop phenotypic traits. However, the 
CropPainter input was not limited to phenotypic traits. 
Other crop omics datasets, such as genetic information, 
environmental information and combinations of different 
omics data, can also be used for generating virtual crops.

Conclusion
This study proposed a novel trait-to-image crop visu-
alization tool, namely, CropPainter, which can generate 
highly realistic and accurate virtual crop images based 
on crop phenotypic information. Our model also has the 
advantages of wide applicability and strong flexibility. 
To the best of our knowledge, there is no research avail-
able on crop phenotype visualization using GAN. Our 
method provides a completely novel idea for crop visuali-
zation and may serve as a tool for virtual plant research.
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