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Abstract 

Background:  Rice blast, which is prevalent worldwide, represents a serious threat to harvested crop yield and quality. 
Hyperspectral imaging, an emerging technology used in plant disease research, is a stable, repeatable method for dis-
ease grading. Current methods for assessing disease severity have mostly focused on individual growth stages rather 
than multiple ones. In this study, the spectral reflectance ratio (SRR) of whole leaves were calculated, the sensitive 
wave bands were selected using the successive projections algorithm (SPA) and the support vector machine (SVM) 
models were constructed to assess rice leaf blast severity over multiple growth stages.

Results:  The average accuracy, micro F1 values, and macro F1 values of the full-spectrum-based SVM model were 
respectively 94.75%, 0.869, and 0.883 in 2019; 92.92%, 0.823, and 0.808 in 2021; and 88.09%, 0.702, and 0.757 under the 
2019–2021 combined model. The SRR–SVM model could be used to evaluate rice leaf blast disease during multiple 
growth stages and had good generalizability.

Conclusions:  The proposed SRR data analysis method is able to eliminate differences among individuals to some 
extent, thus allowing for its application to assess rice leaf blast severity over multiple growth stages. Our approach, 
which can supplement single-stage disease-degree classification, provides a possible direction for future research on 
the assessment of plant disease severity during multiple growth stages.
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Background
Rice, a crop cultivated worldwide, accounts for approxi-
mately one-quarter of the total crop planting area in 
China and one-third of the grain yield [1]. Rice blast 
caused by Magnaporthe grisea occurs in almost every 
rice-growing country and region [2] and negatively 
impacts potential crop yield and quality. Epidemics due 
to this fungus typically result in 10–20% reductions in 
production, with greater than 40% reductions observed 
in severe cases [3]. Since the 1990s, the annual area 
of rice blast occurrence in China has averaged at least 

38,000 km2, and annual losses have been up to several 
hundred million kilograms [4]. To date, one of the most 
widely used methods for controlling rice blast is spray-
ing with fungicide [5, 6]. Under field conditions, how-
ever, most disease is nonhomogeneously distributed [7]. 
Uniform spraying requires an excessive amount of agro-
chemicals, resulting in increased costs, environmental 
pollution, and fungal resistance [8, 9]. Consequently, the 
accurate evaluation of rice blast severity is an economi-
cally important aspect of precision agriculture.

During pathogenesis, M. grisea undergoes a com-
plex sequence of developmental and metabolic events 
[10]. Four types of lesions have been found under field 
conditions: acute, chronic, white spot, and brown spot 
forms [3]. Current disease scouting and phenotyping 
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techniques rely on human observations and visual rat-
ings [11–13]. Visual ratings, which are dependent on 
rater ability and reliability, may be prone to human error, 
subjectivity, and inter/intra-rater variability [14–17]. 
To overcome these shortcomings, remote sensing tech-
niques have been introduced to provide an easily avail-
able, permanent record of disease intensity without the 
problems associated with human rating [18].

Hyperspectral imaging is an emerging means of assess-
ing plant vitality, stress parameters, nutrition status, and 
disease [19]. This technique produces digital measure-
ments that can easily be shared and quickly analyzed 
using semi-automated procedures in a repeatable and 
objective manner [20]. In addition, hyperspectral imaging 
can be used to measure reflectance in visible, near-infra-
red, and even short-wave infrared ranges, thereby provid-
ing more abundant information [13, 21]. Hyperspectral 
imaging has been widely used to assess plant disease 
severity. For instance, Thomas et al. [22] used hyperspec-
tral imaging to investigate the powdery mildew resistance 
of six barley cultivars up to 30  days after inoculation. 
Oerke et al. [23] quantified Cercospora beticola sporula-
tion in sugar beet leaves using hyperspectral microscopy 
to assess the resistance of different genotypes. Jiang et al. 
[24] estimated the severity of mangrove diseases carried 
by herbivorous insects using a random forest model with 
the optimal R2 of 0.752. Gui et al. [25] established a com-
bined convolutional neural network and support vector 
machine method to grade soybean mosaic disease and 
achieved an accuracy as high as 94.17%. Coops et al. [26] 
detected three levels of Dothistroma needle blight infec-
tion with an accuracy of over 70% using airborne hyper-
spectral remote sensing imagery.

Hyperspectral imaging has been effectively used in 
previous studies and has greatly promoted plant disease 
research. To our knowledge, however, no classification 
method exists to assess rice leaf blast severity over mul-
tiple growth stages. Fungal plant pathogens affect almost 
all relevant crops during different stages of development 
[27]. To evaluate plant diseases at different growth stages, 
several classification models are currently required to 
encompass different time periods, a time-consuming 
practice. The development of an efficient method to 
assess disease severity is therefore important.

In this study, hyperspectral images of rice leaves were 
obtained using a ground-based hyperspectral imaging 
system in 2019 and 2021 period. The average spectral 
reflectance of whole leaves and healthy leaf tissues were 
extracted with ENVI 5.6. A spectral reflectance ratio 
(SRR) data analysis method was used for data processing 
and the successive projections algorithm (SPA) was used 
to select sensitive wave bands. Full-spectrum-based SVM 
models and SPA-SVM models were constructed to assess 

rice leaf blast severity over multiple growth stages, and 
the generalizability of the model was evaluated.

Materials and methods
Plant materials
All experiments were conducted in Liaoning Prov-
ince, China, using rice blast-susceptible Mongolian rice. 
All samples were directly obtained from a naturally 
infected field. The first portion of the study took place 
in 2019 in Shenyang (123°63′ E, 42°01′ N). Experimen-
tal plants were sown on May 23. The row space of rice 
plants was 0.2 m, and the line space of those was about 
0.35  m. Urea–potassium sulfate–superphosphate ferti-
lizer was applied basally at a rate of 270, 80, and 130 kg/
ha, respectively, with additional urea supplied at a rate of 
50 kg/ha at the tillering stage. To eliminate the influence 
of insect pests, 5 g of chlorpyrifos 74% wettable powder 
(Shanghai Nongle Agricultural Chemical Co., Shanghai, 
China) was mixed with 10  kg of water to form a solu-
tion that was applied monthly with a T20 UAV sprayer 
(SZ DJI Technology Co., Shenzhen, China). The second 
portion of the study was conducted in 2021 at Haicheng 
(122°73′ E, 40°98′ N). Experimental plants were sown on 
May 25. All other management practices were the same 
as in 2019. Twelve diseased rice plants and two healthy 
ones were randomly selected from the field at three dif-
ferent growth stages. The rice plants were placed in a bar-
rel (42 cm diameter and 50 cm deep). Soil and water in 
the field were added in the barrel to maintain the state 
of rice plants. The barrels were transported to a hyper-
spectral imaging room, and hyperspectral images of rice 
leaves were acquired the following day. All samples were 
divided into a training set and a testing set at a ratio of 
7:3. Specific descriptions of samples are provided in 
Table 1.

Hyperspectral imaging
The imaging system (Fig.  1) consisted of a high-sensi-
tivity EM285CL EMCCD camera (Raptor Photonics, 
Antrim, Northern Ireland), a stand-mounted ImSpector 
V10E imager (Spectral Imaging, Oulu, Finland), a hori-
zontally movable scanning stage, a desktop computer 
with Spectral-Image software (Isuzu Optics, Hsinchu, 
China) for controlling the imager and scanning stage dur-
ing image collection, and an IT 3900 halogen light source 
(Ocean Optics, Dunedin, FL, USA) to provide stable 
illumination. The ImSpector V10E imager collected 472 
wavebands over a spectral range of 400–1000  nm. The 
angle of the left and right linear emitters was adjusted 
to a vertical orientation of 45° to enable the emitted light 
rays to converge on a coincident line just below the cam-
era lens. The objective lens of the camera was set at an 
aperture of f/1.4. The distance between the camera lens 
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and the scanning stage was set to 300 mm, and the focus 
was manually adjusted to guarantee image definition. The 
exposure time was manually adjusted according to the 
lighting environment to ensure sufficient incident radia-
tion intensity. The speed of the scanning stage was set to 
1.2 mm/s, with the aspect ratio set to the default. Leaves 
were carefully removed from each rice stem, placed flat 
on the stage, and gently affixed with double-sided adhe-
sive. Five columns of rice leaves were placed parallel to 
one another on the scanning stage while the camera ran 

at every turn. Great care was taken to avoid exerting any 
pressure on the leaves. Rice leaves longer than 400 mm, 
the maximum sliding distance of the scanning stage, 
were cut into two or more sections while preserving 
the integrity of the diseased area. Images were captured 
using Spectra-Image software, and the hyperspectral data 
cubes were saved onto an external hard drive.

The original hyperspectral images were corrected 
each time for dark current and uneven light inten-
sity distribution before further processing [28]. First, 
a white board with high reflectance was scanned as a 
100% standard. The value of Max DN was adjusted to 
3600, which was 80% of the maximum value, and the 
bright field of the white board was recorded. After cov-
ering the lens cap, the dark field of the white board was 
measured. The white board was then removed. Next, 
the samples were situated directly below the camera 
on the scanning stage, with the exposure time adjusted 
to keep the value of Max DN at 3600 with the other 
parameters unchanged. After covering the lens cap, the 
dark field of the sample was recorded. The corrected 
sample image was calculated as follows:

where R is the corrected sample image, Rs is the origi-
nal hyperspectral image of the sample, Rsd is the hyper-
spectral image of the dark field of the sample, Rbw is the 
hyperspectral image of the bright field of the white board, 
and Rbd is the hyperspectral image of the dark field of the 
white board.

Classes of disease severity
Rice leaves were manually traced using the ROI tool in 
ENVI 5.6 (ITT Visual Information Solutions, Boulder, 
CO, USA). The area of the rice leaf was selected as a 
region of interest (ROI), with the number of pixels con-
tained therein counted automatically and recorded as N1. 
The number of pixels in diseased areas was calculated 
in the same way and recorded as N2. The degree of rice 
blast on a leaf was calculated as the percentage of the leaf 
covered by lesions relative to the whole leaf area, that is, 
the value of (N2 / N1) × 100%. Disease severity was then 
classified according to [29] into six levels as follows: 0, no 
visible lesions; 1, up to 1% of the leaf showing rice blast 
symptoms; 2, 1% to 5% showing symptoms; 3, 5% to 10% 
showing symptoms; 4, 10% to 50% showing symptoms; 
and 5, over 50% showing symptoms. Because samples 
assigned to level 5 were observed only under extremely 
severe disease conditions, only five classes of samples 
(levels 0 to 4) were discriminated in this study.

(1)R =
Rs − Rsd

Rbw − Rbd

Table 1  Collection date and numbers of samples in this study

* There was only one sample of level 4, so it acted as the training set and the 
testing set simultaneously

Year Growth stage Collection date Samples Quantity

2019 Jointing stage July 8 and Level 0 15

15-Jul Level 1 16

Level 2 36

Level 3 32

Level 4 21

Total 120

Booting stage July 25 and Level 0 18

2-Aug Level 1 19

Level 2 32

Level 3 18

Level 4 18

Total 105

Heading stage 10-Aug Level 0 19

Level 1 11

Level 2 28

Level 3 21

Level 4 26

Total 105

2021 Jointing stage 13-Jul Level 0 10

Level 1 20

Level 2 15

Level 3 9

Level 4 1*

Total 55

Booting stage 27-Jul Level 0 18

Level 1 49

Level 2 14

Level 3 28

Level 4 18

Total 127

Heading stage 12-Aug Level 0 15

Level 1 45

Level 2 20

Level 3 34

Level 4 23

Total 137
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Analysis of the hyperspectral dataset
HSI Analyzer (Isuzu Optics, Hsinchu, China) was used to 
normalize the hyperspectral images against known values 
of the white reference standard. The whole rice leaf was 
manually traced using the ROI tool and selected as a ROI. 
The average spectral reflectance of the ROI was then 
extracted and saved. Depending on the size of the leaf, 
three or more rectangular areas of the same size were 
selected. All of the rectangular areas were distributed in 
different positions of the leaf. The selected areas were 
treated as a single ROI, and the average spectral reflec-
tance of the ROI was extracted and saved. The spectral 
reflectance data were analyzed using a SRR data analysis 
method proposed by Zhang et al. [30] as follows:

where Rw is the average spectral reflectance of the whole 
leaf, and Rh represents the average spectral reflectance of 
healthy parts of the same leaf.

The acquired spectral reflectance consisted of two 
parts: true value and noise. Equation  (2) can thus be 
expressed as:

where RH is the true value of Rh, RNH is the noise of Rh, 
RW is the true value of Rw, and RNW is the noise of Rw.

Spectral noise has two components: air absorp-
tion and equipment noise. Air absorption is affected 
by the distance between pixels and the lens, whereas 

(2)SRR =
Rh

Rw

(3)SRR =
RH + RNH

RW + RNW

equipment noise is influenced by voltage. The width of 
rice leaves is only approximately 1 cm, which is roughly 
1/30 of the object distance. As a result, the distribution 
of pixels is irrelevant when calculating pixel–lens dis-
tances. For the whole leaf, air absorption can be consid-
ered to be constant. In a single imaging run, the noise 
generated by the hyperspectral imaging system remains 
unchanged. Equipment noise also stays the same for 
the whole leaf. Overall, RNH is equal to RNW for a sin-
gle leaf, and both variables can be assigned as RN. Equa-
tion (3) can thus be written as:

Compared with RW, RN is extremely small after pro-
cessing of the above-mentioned white and dark refer-
ences. RN/RW can thus be regarded as infinitesimal; the 
absolute value of (RW-RH) / (RW + RN) is smaller than 1, 
and their product is still infinitesimal. Equation (4) can 
be simplified as:

As can be seen from (5), the value of SRR only 
depends on the true value of hyperspectral reflectance, 
thereby demonstrating its capacity in noise resist-
ance. In addition, the value of SRR does not depend 
entirely on spectral reflectance, thus eliminating dif-
ferences among individuals to some extent. The value 
of SRR therefore indicates the change rate of spectral 

(4)SRR =
RH + RN

RW + RN

=
RH

RW

+
RN (RW − RH )

RW (RW + RN )

(5)SRR =
RH

RW

Fig. 1  Hyperspectral imaging system used in this study
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reflectance of a rice leaf after infection by M. grisea: in 
other words, the degree of rice leaf blast severity.

Classification model construction and evaluation
The SRR dataset was classified into different degrees of 
disease severity by a non-linear SVM [31]. The applied 
SVM used the radial basis function as the kernel func-
tion to determine non-linear discriminant functions. 
In this study, randomly selected samples were cho-
sen as the training set, and the remaining samples 
were assigned to the testing set. To build the optimal 
SVM model, the penalty parameter of the error term 
C and the kernel parameter g were optimized using a 
fivefold grid-search optimization [32]. The range of C 
was set as 10 N (− 10 ≤ N ≤ 10, with a step size of 0.1), 
and that of g was 10  M (− 15 ≤ M ≤ 5, with a step size 
of 0.1). The best penalty parameters were determined 
according to the highest cross-validation accuracy of 
the training set. The classification performances of the 
SVM models were evaluated using the average accu-
racy, micro F1 value, and macro F1 value of the test-
ing set [33]. LIBSVM 3.23 [34] was used to construct 
models and is available at https://​www.​csie.​ntu.​edu.​
tw/​~cjlin/​libsvm/​index.​html. Data analysis and model 

construction were conducted in MATLAB 2016b 
(MathWorks, Natick, MA, USA).

Results
Spectral reflectance signatures of leaves of different levels
There existed some differences of spectral reflectance 
among leaves of 5 levels in 3 growth stages, but not evi-
dent (Fig.  2). In the visible region, the average spectral 
reflectance of infected leaves was higher than the healthy 
ones, the value of spectral reflectance increased with 
disease severity deepening; while in the near-infrared 
region, the spectral reflectance of diseased leaves was 
lower than that of healthy ones, the value of spectral 
reflectance increased with the severity of disease deep-
ening, and the curves among samples of different grades 
tended to be parallel. Different rice leaf blast severity had 
a diverse effect on both visible and near-infrared bands.

Spectral characterization of SRR
Differences in SRR were significant among samples at dif-
ferent levels of disease severity (Fig. 3). In healthy leaves, 
the SRR curve was approximately a straight line, with a 
value of 1 observed across the entire spectral region. In 
diseased leaves, the most distinct differences in the vis-
ible region were centered at approximately 491  nm and 

Fig. 2  Raw spectral reflectance of leaf samples exhibiting different levels of disease severity at three growth stages. a–c Jointing (a), booting (b), 
and heading (c) stages in 2019. d–f Jointing (d), booting (e), and heading (f) stages in 2021

https://www.csie.ntu.edu.tw/~cjlin/libsvm/index.html
https://www.csie.ntu.edu.tw/~cjlin/libsvm/index.html
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667 nm regardless of growth stage or year. The value of 
SRR in the vicinity of these troughs decreased as disease 
severity increased. In the near-infrared region, the SRR 
curves tended to coincide, with no obvious differences 
among leaves at different disease levels. SRR curve pro-
files were similar at all three growth stages in both years, 
whereas the SRR values were unequal.

Assessment of rice leaf blast severity over multiple growth 
stages
The full-spectrum-based SVM models performed well 
for assessing rice leaf blast severity over multiple growth 
stages, as well as the SPA-SVM models (Table 2). Average 
accuracies in both years exceeded 90%, and micro and 
macro F1 scores were around 0.8. All misclassifications 
occurred between adjacent disease levels (Table  3). The 
performances of the full-spectrum-based SVM models 
were a little better than the SPA-SVM models (Table. 3).

Generalizability of the classification model
Generalizability of the SRR–SVM model was evaluated 
by analyzing the performance of a 2019–2021 combined 
model. The training set comprised all samples acquired 
in 2019, and the testing set consisted of those collected in 
2021. The 2019–2021 combined model performed well, 
although its performance was slightly worse than mod-
els covering a single year (Table  4). Most misclassifica-
tions occurred between adjacent disease levels (Table 5). 

Samples tended to be misclassified as level 2. The The 
performances of the full-spectrum-based SVM model 
was slightly worse than the SPA-SVM models, but not 
obvious.

Discussion
In theory, the SRR curve for healthy leaves should have 
been a straight line of value 1, as no lesions were present; 
in fact, the curve had subtle fluctuations, possibly the 
result of the different proportion of veins and mesophyll 
between the whole leaf and our selected ROI. In general, 
more water, less solid matter, and less air are present in 
veins [35]. This unbalanced distribution of substances 
between veins and mesophyll may cause the average 
reflectance to differ between the whole leaf and the ROI, 
resulting in an SRR not exactly equal to 1.

In regard to diseased leaves, the most notable dif-
ferences were observed at approximately 491  nm and 
667  nm, which correspond to carotenoid and chloro-
phyll absorption bands. This result indicates that infec-
tion by rice leaf blast increased the spectral reflectance 
and reduced the carotenoid and chlorophyll contents 
of the studied leaf area [36–38]. The profiles of leaves at 
different disease levels tended to coincide in the near-
infrared region, which indicates that disease severity 
was not a major contributor to the shape of the curve 
in this region—unlike the situation in the visible region. 

Fig. 3  SRR of leaf samples exhibiting different levels of disease severity at three growth stages. a–c Jointing (a), booting (b), and heading (c) stages 
in 2019. d–f Jointing (d), booting (e), and heading (f) stages in 2021
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Detecting and assessing disease severity in the near-
infrared region may therefore be difficult [5, 39–42].

The pure SVM classifier exploits the characteristics 
of hyperspectral imaging via the kernel function by 
combining spectral with spatial features [39]. Aver-
age accuracy reflects the average per-class effective-
ness of a classifier. Micro and macro F1 values indicate 
the relationship between a dataset’s positive labels and 
those given by a classifier based respectively on sums 

of per-text decisions or on a per-class average [33]. In 
our study, most misclassifications occurred between 
samples at adjacent disease levels. This result may have 
been due to two different phenomena. First, a single 
leaf may have contained various forms of lesions whose 
areas differed from one another. Despite the identical 
disease level, the spectral reflectance would thus have 
fluctuated. Second, biological heterogeneity may have 
contributed to the inaccuracy of classification [43]. 

Table 2  Model parameters and performances for SVM models throughout multiple growth stages

* 491 and 671 nm were selected sensitive wave bands for SRR data acquired in 2019 using SPA
* 491 and 668 nm were selected sensitive wave bands for SRR data acquired in 2021 using SPA

Year Bands Sample Trainning
set

Testing set Model Average accuracy Micro Macro
Parameters F1 score F1 score

2019 Full Level 0 36 16 C = 84.4485 \ \ \

Level 1 32 14 G = 0.0063457 \ \ \

Level 2 67 29 \ \ \

Level 3 50 21 \ \ \

Level 4 46 19 \ \ \

Total 231 99 94.75% 0.869 0.883

491 nm Level 0 36 16 C = 36.7583 \ \ \

671 nm* Level 1 32 14 G = 8 \ \ \

Level 2 67 29 \ \ \

Level 3 50 21 \ \ \

Level 4 46 19 \ \ \

Total 231 99 92.73% 0.818 0.833

491 nm Level 0 36 16 C = 51.9842 \ \ \

668 nm* Level 1 32 14 G = 3.7321 \ \ \

Level 2 67 29 \ \ \

Level 3 50 21 \ \ \

Level 4 46 19 \ \ \

Total 231 99 92.32% 0.808 0.816

2021 All Level 0 30 13 C = 1024 \ \ \

Level 1 80 34 G = 0.0019531 \ \ \

Level 2 34 15 \ \ \

Level 3 50 21 \ \ \

Level 4 29 13 \ \ \

Total 223 96 92.92% 0.823 0.808

491 nm Level 0 30 13 C = 13.9288 \ \ \

671 nm Level 1 80 34 G = 3.0314 \ \ \

Level 2 34 15 \ \ \

Level 3 50 21 \ \ \

Level 4 29 13 \ \ \

Total 223 96 92.08% 0.802 0.713

491 nm Level 0 30 13 C = 238.8564 \ \ \

668 nm Level 1 80 34 G = 0.35355 \ \ \

Level 2 34 15 \ \ \

Level 3 50 21 \ \ \

Level 4 29 13 \ \ \

Total 223 96 92.5% 0.813 0.793
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Different leaves may have had unequal levels of vitality; 
although they had the same type of lesions with simi-
lar areas, their spectral reflectance may still have been 
different.

Zhang et  al. [39] also established a disease monitor-
ing model for wheat Fusarium head blight covering 
more than one stage, but their samples were all col-
lected within one week (3 May 2018 [at the late flower-
ing stage] and 9 May 2018 [at the early filling stage]). 
In contrast, our sample collection spanned more than 
a month and included the period most conducive to 
rice leaf blast occurrence under field conditions. Zhang 

et  al. [30] also used this method to classify rice leaf 
blast severity; however, they focused on a single growth 
stage, not multiple growth stages as in our study.

Although the performance of our method is good, 
some problems remain. First, the processing of hyper-
spectral images is still too labor intensive, hindering 
the inspection of large numbers of samples. Second, the 
experiment was conducted under a controlled environ-
ment, and the results cannot be easily extended to field 
conditions. In the future, we hope to resolve these two 
issues.

Table 3  Predictions of SVM models throughout multiple growth stages

Year Bands Sample Level 0 Level 1 Level 2 Level 3 Level 4 True

2019 All Level 0 16 0 0 0 0 16

Level 1 0 11 3 0 0 14

Level 2 0 0 27 2 0 29

Level 3 0 0 5 15 1 21

Level 4 0 0 0 2 17 19

Prediction 16 11 35 19 18 99

491 nm Level 0 15 1 0 0 0 16

671 nm Level 1 1 11 2 0 0 14

Level 2 0 1 24 4 0 29

Level 3 0 0 5 16 0 21

Level 4 0 0 0 4 15 19

Prediction 16 13 31 24 15 99

491 nm Level 0 15 1 0 0 0 16

668 nm Level 1 3 8 3 0 0 14

Level 2 0 0 24 5 0 29

Level 3 0 0 5 16 0 21

Level 4 0 0 0 2 17 19

Prediction 18 9 32 23 17 99

2021 All Level 0 13 0 0 0 0 13

Level 1 0 34 0 0 0 34

Level 2 0 10 3 2 0 15

Level 3 0 0 1 19 1 21

Level 4 0 0 0 3 10 13

Prediction 13 44 4 24 11 96

491 nm Level 0 13 0 0 0 0 13

671 nm Level 1 2 32 0 0 0 34

Level 2 0 9 0 6 0 15

Level 3 0 0 0 21 0 21

Level 4 0 0 0 2 11 13

Prediction 15 41 0 29 11 96

491 nm Level 0 12 1 0 0 0 13

668 nm Level 1 1 33 0 0 0 34

Level 2 0 8 2 5 0 15

Level 3 0 0 1 20 0 21

Level 4 0 0 0 2 11 13

Prediction 13 42 3 27 11 96
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Conclusions
In this study, a SRR data analysis method was applied 
and full-spectrum-based SVM models were con-
structed to assess rice leaf blast severity over multiple 
growth stages. The degree of rice leaf blast severity 
based on the area covered by lesions relative to the 
whole leaf area was determined, and, from the perspec-
tive of spectral reflectance, the SRR value was found 
to reflect the disease level. Our results should provide 
a possible direction for assessing plant disease severity 
over multiple growth stages.
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*  491, 668 and 671 nm were the combination of selected sensitive wave bands of SRR data acquired in 2019 and 2021

Bands Sample Trainning Testing Model Average Micro Macro
Set Set Parameters Accuracy F1 score F1 score

All Level 0 52 43 C = 119.4282 \ \ \

Level 1 46 114 G = 0.011049 \ \ \

Level 2 96 49 \ \ \

Level 3 71 71 \ \ \

Level 4 65 42 \ \ \

Total 330 319 88.09% 0.702 0.757

491 nm Level 0 52 43 C = 315.173 \ \ \

668 nm Level 1 46 114 G = 16 \ \ \

671 nm* Level 2 96 49 \ \ \

Level 3 71 71 \ \ \

Level 4 65 42 \ \ \

Total 330 319 89.47% 0.709 0.759

Table 5  Predictions of the 2019–2021 combined model

Wavelength Sample Level 0 Level 1 Level 2 Level 3 Level 4 True

Full Level 0 41 1 1 0 0 43

Level 1 0 67 43 4 0 114

Level 2 1 4 35 9 0 49

Level 3 0 2 19 43 7 71

Level 4 0 0 0 4 38 42

Prediction 42 74 98 60 45 319

491 nm Level 0 40 3 0 0 0 43

668 nm Level 1 7 79 25 3 0 114

671 nm Level 2 0 7 29 13 0 49

Level 3 0 3 16 51 1 71

Level 4 0 0 0 6 36 42

Prediction 47 92 70 73 37 319
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