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Abstract 

Background:  Hypericum is an important genus in the family Hypericaceae, which includes 484 species. This genus 
has been grown in temperate regions and used for treating wounds, eczema and burns. The aim of this study was to 
predict the content of hypericin in Hypericum perforatum in varied ecological and phenological conditions of habitat 
using artificial neural network techniques [MLP (Multi-Layer Perceptron), RBF (Radial Basis Function) and SVM (Support 
Vector Machine)].

Results:  According to the results, the MLP model (R2 = 0.87) had an advantage over RBF (R2 = 0.8) and SVM (R2 = 0.54) 
models and it was relatively accurate in predicting hypericin content in H. perforatum based on the ecological condi-
tions of site including soil types, its characteristics and plant phenological stages of habitat. The results of sensitivity 
analysis revealed that phenological stages, hill aspects, total nitrogen, altitude and organic carbon are the most influ-
ential factors that have an integral effect on the content of hypericin.

Conclusions:  The designed graphical user interface will help pharmacognosist, manufacturers and producers of 
medicinal plants and so on to run the MLP model on new data to easily discover the content of hypericin in H. perfo-
ratum by entering ecological conditions of site, soil characteristics and plant phenological stages.
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Background
Hypericum perforatum L. is among the most important 
species of the genus Hypericum which is being studied 
for several therapeutic purposes including skin wounds 
and burns [15]. Previous literature has reported its role 
as neuroprotective [15], antidepressant [15], antioxidant 
[9], hepatoprotective [15], antimicrobial, and antiviral 
[9]. Among the known constituents of H. perforatum, 
hypericin and flavonoids attribute to several pharma-
cological effects of H. perforatum. Therefore it remain 
imperative to develop methods and/or tools accurately 

identify and predict the concentration of hypericin in H. 
perforatum [15].

It is likely that the content of hypericin content in plant 
tissue is impacted by physiological and environmental 
factors including climate, topography, vegetative stage, 
epigenetic similar to other related secondary metabo-
lites [15, 43]. However, there is limited evidence available 
in the literature reporting association of hypericin con-
tents with biotic and abiotic factors [15]. It is interesting 
to study association of various ecological factors affect-
ing biosynthesis and tissue localization of secondary 
metabolites in regards to harvesting maximum yield of 
biologically active constituents from plant extracts. Pre-
vious studies demonstrated a strong correlation between 
the altitude and hypericin content in plant extracts, con-
sidering the intensity of sunlight and temperature as 
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primary factors [15, 43]. For instance, Asghari et  al. [1] 
reported significant effect of the ecological conditions 
mainly altitude of 300, 600 and 1200  m above the sea 
level on the hypericin content in different highlands of 
Golestan National Park of Iran. Saffariha et al. [15] stud-
ied essential oil yield of Salvia limbata L. (Sage) at three 
different altitudes and reported a significant difference in 
the amount of essential oil at 2500  m (highest altitude) 
altitude compared to other sites.

Furthermore, sample harvesting, extraction and analyt-
ical processing presents a wider range of discrimination 
in regards to the accurate quantification of hypericin in 
H. perforatum [15]. High-performance liquid chroma-
tography (HPLC) technique with different type of detec-
tors such as diode array, fluorescence, and mass detector 
have been employed for robust identification and deter-
mination of hypericin in crude extracts of H. perforatum 
[7]. Although these techniques have high resolution to 
detect metabolites at very low concentration but they 
present some limitation including instrument cost, labo-
ratory space and require large volumes of mobile phase 
and personal skills. In addition, it often require develop-
ment of complex time consuming workflows comprising 
of sample collection, extraction purification and analyti-
cal method development, data collection and processing 
and statistical analysis [15]. Therefore a relatively simple, 
robust and eco-friendly tool are required for prediction 
of secondary metabolites including hypericin.

Artificial neural network (ANN) modeling technique 
has been designed based on the human brain function-
ing with a variety of mathematical functions to enhance 
the ability of the model for accurate prediction. Recently, 
artificial neural network techniques such as Multi-Layer 
Perceptron (MLP) neural network, Radial Basis Function 
(RBF) and Support Vector Machine (SVM) as nonlinear 
and dynamic modeling techniques are utilized in ecologi-
cal sciences for development of accurate prediction mod-
els [15]. For example, Saffariha et  al. [15] used artificial 
neural network modeling to predict seed germination 
of Salvia limbata L. under ecological stresses and the 
reported accurate association of observed data with pre-
dicted data. This unique quantitative modeling and arti-
ficial neural network approach are essential to deal with 
ecological and biological phenomena such as the predic-
tion of hypericin content in H. perforatum.

In this research, we aimed to predict the concentration 
of hypericin in H. perforatum in a range of ecological and 
phenological conditions comparing artificial neural net-
work modeling techniques such as MLP, RBF and SVM. 
This study will report the most accurate model predicting 
hypericin concentration as impacted by ecological and 
phenological factors. Finally, the Graphical User Interface 
(GUI) tool as an environmental decision support system 

will be designed for ecologists to predict the amount of 
hypericin in H. perforatum.

Materials and methods
Study area and sampling
This study was performed in the south of Alborz Moun-
tain protected area, located in Alborz province of Iran 
(35° 44′ N to 36° 35′ N and 51° 00′ E to 51° 36′ E). Alborz 
protected area is one of the main habitats of H. perfo-
ratum in Iran. H. perforatum grows at an altitude range 
from 1000 to 4000 m in different ecological conditions.

To cover a variety of ecological conditions in the area, 
we collected 100 plant samples along with 15 linear tran-
sects (the length of each transect equals to 1000 m) at dif-
ferent altitudes. Plant sampling was carried out for every 
200 m altitude (from 1000 m) by a linear transect with a 
length of 1000 m started from the beginning of the alti-
tude class. Each plant (H. perforatum) that touched the 
transect line was sampled making a total of 100 samples. 
The aerial parts of H. perforatum were collected at three 
stages namely; (1) vegetative, (2) flowering, and (3) seed 
ripening stages of plants over the period of 6 months in 
growing season. Since the chemical composition varies in 
different tissue of the plant, we used composite sample by 
mixing all tissue at equal proportion for all samples.

Soil features such as organic carbon (%), total nitrogen 
(%), absorbable phosphor (ppm), absorbable potassium 
(ppm), sand (%), silt (%), clay (%), electrical conductiv-
ity (EC) and acidity (pH) were measured at each sample 
point. Landform characteristics of site including altitude 
(m), slope (%) and hill aspect [four aspects including (1) 
north, (2) east, (3) south and (4) west], in each sample 
point were recorded.

Plant materials were air-dried in shadow at room tem-
perature for a week and then were ground in a grinder 
with a 2 mm mesh size. Voucher specimens were trans-
formed at the Herbarium of Medicinal Plants and Drugs 
Research Institute, Shahid Beheshti University, Tehran, 
Iran.

Extraction of Hypericum perforatum
Plant extraction was performed as described by 
Ramezani et  al. [15] with some modifications. In order 
to remove chlorophylls and unwanted nonpolar constitu-
ent, the ground aerial parts of H. perforatum (100 g) were 
placed in a 1000 mL volumetric flask and made up to vol-
ume with chloroform (Merck, Germany). The mixture 
was placed on a stirrer at room temperature overnight. 
Then the chloroform fraction was filtered off through 
Whatman filter paper and the supernatant containing 
chlorophyll and unwanted compounds was discarded. 
This procedure was repeated three times until colorless 
supernatant was obtained. The residual chloroform was 
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evaporated using nitrogen gas at 40  °C. Then the dried 
residue was dissolved in 1 L of acetone and the solution 
was sonicated for 20  min in an ultrasonic bath (Elma 
S30H, Germany) before allowing it to stir overnight. This 
procedure was repeated for 4 consecutive days and the 
acetone extracts were combined and evaporated on a 
rotary evaporator and dried weight was recorded. Finally, 
the residue was reconstituted in methanol (Merck, Ger-
many) at the concentration of 10 mg/mL and the sample 
was filtered through a 0.45 µm PFTE filter (Gelman Sci-
ences) prior to HPLC analysis.

HPLC analysis of hypericin
All chemicals and reagents were of analytical grade. 
Acetonitrile, methanol and phosphoric acid were pur-
chased from Merck (Darmstadt, Germany). HPLC grade 
hypericin (Fig. 1) was obtained from Sigma-Aldrich (St. 
Louis, MO). The HPLC analysis of hypericin in H. perfo-
ratum was conducted on an Agilent Series 1200 system 
(Palo Alto, CA, USA) equipped with a quaternary pump, 
an online degasser and an Agilent diode array detec-
tor which was set on 590 nm. Hypericin separation was 
performed on a Diazem-phenyl™ (Metachem Technolo-
gies, 5  µm, 250 × 4.6  mm) column that was connected 
to a Diazem-phenyl™ guard column cartridge. The mix-
ture of acetonitrile, methanol, water and phosphoric acid 
(48:40:10:2) with the flow rate of 1 mL/min was used as 
a mobile phase. The column temperature, run time and 
injection volume were set on 30  °C, 15  min and 20  µL, 
respectively [15]. The stock solution of hypericin was 
gravimetrically prepared by dissolving 1  mg hypericin 
(95% purity) in 10  mL methanol and the calibration 
standard working solutions were freshly prepared by 

dilution of the stock solution with methanol. In order to 
confirm the presence of hypericin in the analyzed sam-
ples, retention times and the spectra of the peaks in the 
chromatogram were compared to those of hypericin 
standard solution. Each sample was analyzed in triplicate 
and the hypericin concentration was expressed as mg/g 
dry mass.

Modeling process
Considering the aim of this research, H. perforatum sam-
ples were collected in different land forms, soils and phe-
nological stages in Alborz protected area to have diversity 
in hypericin content in samples.

The relation of environmental variables varies based 
on ecosystem conditions from linear to nonlinear cor-
relations. Therefore, the classic modeling methods such 
as linear regression result in less accurate predictions in 
comparison with artificial neural network (ANN) mod-
els. The ANN function in MATLAB 2018, was used to 
design the structure of three models.

Multi‑layer perceptron neural network (MLP)
We applied the MLP model in a process that includes ele-
ments named as neurons [12]. Since we aimed to evaluate 
the most precise model, the number of transfer func-
tions, neurons and hidden layers, were carefully modi-
fied. To optimize the model structure and maximize the 
accuracy of outputs, the number of hidden layers and 
neurons were determined by trial and error and recur-
sive testing and comparison [15]. The transfer function 
was also selected based on trial and errors to find the 
most precise model and upgrading the outputs (refer to 
Demuth and Beale [5]). Based on the literature review, 13 
effective variables were used to predict hypericin content 
in H. perforatum. In this method, input variables (land 
form, phenological stages and soil characteristics) and 
output variables (hypericin content) were tested against 
each sample to train MLP. As input variables, land form 
variables are: altitude (m), land slope (%) and hill aspect 
(four geographical hill aspect consist of north, east, south 
and west); phenological stages are: (1) vegetative, (2) 
flowering, and (3) seed ripening and soil characteristics 
include: organic carbon (%), total nitrogen (%), absorb-
able phosphor (ppm), absorbable potassium (ppm), sand 
(%), silt (%), clay (%), electrical conductivity (EC) and 
acidity (pH).

The main role of the transfer function is summariz-
ing the weighted variables to achieve the most accurate 
model outputs [15]. In the modeling process, 60 percent 
of samples (n = 60) were applied in the training step. The 
remaining 40 samples were divided equally (20, 20) in 
two data sets for validation and testing. In MLP training, 
the weights (w) of the ith variable (x) in jth neuron were Fig. 1  Chemical structures of the hypericin
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defined to calculate the output of jth neuron on the kth 
hidden layer ( netkj  ) by Eq. 1.

The output of Eq. 1 is defined as the input of a transfer 
function (∫) in Eq. 2. The different transfer functions are 
tested to find out the most precise one in the generation 
of accurate output.

To justify the most appropriate weights of neurons and 
layers, we used back propagation method in Eq. 3 for cal-
culation of errors between predicted and target content 
of hypericin. In Eq.  3, “E” is the sum of squared errors, 
wji represents the weight of ith neuron in jth hidden layer, 
and γ is the learning rate which is determined by a crisp 
value.

Radial basis function neural network (RBFNN)
The RBFNNs are designed in a structure of neurons and 
layers like MLP. The most frequently used radial basis 
function is the Gaussian function [15] and the center of 
circular classifiers, in multi-dimensional space is calcu-
lated by Eq. 4.

In Eq.  (4), Rj(x) is the radial basis function (RBF), 
||x − aj|| is the determined Euclidean distance between 
the total of aj (RBF function center), x is the (input vector 
or variables), and σ is a positive real number.

In the last step, the network outputs or predicted 
hypericin content are calculated with Eq. (5):

In Eq. (5), wik is the weights of neurons, j is the number 
of each node in the hidden layer, m is the number of neu-
rons, and bj is the bias [15].

Support vector machine (SVM)
SVM is a classifier which is developing the margins 
around the boundaries of classification. SVM model 
Eq.  (6) uses input variables in the structure of a kernel 
function (Eq. 7).
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The kernel function is defined as Eq. 7. The parameters 
of Eq. (7) are xi and xj is the samples and γ is the kernel 
parameter.

The kernel function parameters are xi and xj are the 
samples and γ is the kernel parameter.

The weights of the network are optimized by minimiz-
ing the errors of the SVM network (Eq. 8) in prediction 
of output. In Eq. (8), the parameters are Σξi is the train-
ing errors, 1/2||w||2 is the margin, and C is the tuning 
parameter.

Accuracy assessment of models
The models’ performance was tested using the test data 
set by the main statistical indicators which were formu-
lated in Eqs. 9 to 12. In these equations, yi and ŷi is the 
targets and network outputs, respectively, yi is the mean 
of target values, and N is the number of samples.

Sensitivity analysis
In three developed models, each variable influences the 
outputs of the model with a specific value. To quan-
tify and prioritize the value of variables, influencing the 
hypericin content prediction of the H. perforatum sam-
ples, we performed a sensitivity analysis for the optimal 
model. In the sensitivity analysis, we created a data set for 
each variable in which the target variable was changed in 
the range of standard deviations. Other variables were 
fixed at the value of the average. Then, the standard 
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deviation of outputs for each variable changes was meas-
ured as model sensitivity for that variable.

Graphical user interface tool
A Graphical User Interface (GUI), as an Environmen-
tal Decision Support System (EDSS) tool, was designed 
to run the most accurate hypericin model on new sam-
ples of H. perforatum to represent a situation where it is 
required to quantify the hypericin content. GUI is a user-
friendly tool to predict the hypericin content in plant 
samples only by entering the ecological conditions of site, 
land form, soil characteristics and plant phenological 
stages.

Results
Prediction of the MLP performance
Present study utilized three datasets for optimizing the 
MLP model. We observed that optimizing hidden layers, 
the number of neurons, active function and training gen-
erate relatively more accurate prediction using MLP. The 
structure of 13-26-1 has been the most accurate for MLP 
to predict hypericin content in H. perforatom extracts as 
measured of R2 values (Table 1). The MLP encompasses 
13 variables as inputs, 26 neurons and one variable as the 
output. Correlation between target and output values are 
presented in Fig.  2 illustrating MLP outputs versus tar-
gets values of the hypericin for training, validation, test, 
and total data. The coefficient (R2) value demonstrate a 
strong association between MLP outputs and target val-
ues (Fig. 3).

Prediction performance of RBFNN
In the training process, there were two main factors 
including the spreads of RBFs and the number of neu-
rons that were optimized. Decreasing the network error 
with RBFNN factor values was the purpose of the train-
ing step. Thus, to obtain the best performance of RBF, 
the number of neurons was 48, and the spread of RBFs 
was 50. The best results of RBF in training and test data-
sets are represented in Table 2. The values of R2 in train-
ing and test datasets have been shown the best structure 
(Table  2). The optimized RBFNN structure is 13-48-1 
with 13 variables as inputs, 48 neurons in the hidden 
layer with Gaussian transfer function, and one neuron.

Scatter plot of RBFNN outputs versus targets values of 
the RBF for training, test, and total data are illustrated in 
Fig. 4.

Real (target) and simulated (output) values of RBF in 
the datasets have been compared and a considerable and 
defined agreement between values have been represented 
(Fig. 5).

Prediction performance of SVM
To determine the number of support vectors, we utilized 
the value of the parameter ε which is directly related to 
the vectors [15]. SVM regression that has the Gaussian 
function includes bell-shaped curves in which the width 
is determined by value of γ. In this study, when the value 
of γ is lower, it increases over-fitting. As a result, it was be 
necessary to obtain the highest accuracy and avoid over-
training. In the SVM model, we were looking for simple 
curves in which the value of the parameter C helps to 
achieve this result. In other words, C, ε, and γ factors in 
SVM regression to obtain hypericin were explained. The 
most suitable SVM factors and prediction accuracies for 
SVM regression of the train and test data have been listed 
in Table 3.

According to the values of R2 in training and test data-
sets, the best ε value is 0.0002, and C value is 995.2. Other 
models with different ε, C, represent over-fitting and 
under-fitting in models.

Figure 6 illustrates the scatter plot of SVM outputs via 
target values of the hypericin for training, test, and total 
data. Coefficient (R2) has confirmed a strong correla-
tion between the SVM outputs and targets values. Some 
simple linear regressions that have been validated are 
observed in Fig. 6.

In Fig. 7, there is a comparison between the simulated 
(output) values and the real target of SVM in datasets, 
which is evident and noticeable agreement between 
values.

Model selection
The outputs of MLP, RBF, and SVM, have been com-
pared in Fig. 8, demonstrating that MLP is the most suit-
able model to predict the content of hypericin. The MLP 
model showed the highest value of R2 in training, test, 
and all datasets when compared to RBFNN and SVM.

Table 1  The results of parameters tuning in MLP structure

Activation function Training function Structure Test set Training Data

R2 MSE RMSE MAE R2 MSE RMSE MAE

Logsig-Purelin LM 13–26-1 0.87 0.15 0.39 0.29 0.99 0.00 0.03 0.02
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Sensitivity analysis of MLP
The MLP model sensitivities for input variables are 
shown in Fig. 9. It represents the standard deviations of 
MLP outputs (the content of hypericin) in response to 
each variable exhibited change. As we understand, the 
sensitivity value for each input variable is a value among 
zero to one which indicating standard deviations of 
hypericin content in response to input changes. As the 
changes in hypericin content in response to changes in 
an input variable increase, that variable is more signifi-
cant in predicting hypericin content and the sensitivity 
value is closer to one.

Based on the results of sensitivity analysis, the values of 
the phenological stages, geographical hill aspects, organic 
carbon, total nitrogen and altitude were most significant 
inputs, influencing MLP outputs (Fig. 9). Other variables 
did not exhibit a significant effect on hypericin content 

changes in the model sensitivity analysis that could be 
due to the limited changes in some ecological variables 
values in the studied area (Table 4).

Considering trends in Fig. 10, phenological stages, hill 
aspects, organic carbon, total nitrogen and altitude are 
positively correlated to enhance hypericin content. So 
with the increase in the value of these variables, hypericin 
content followed a uniform and linear increasing trend. 
The phenological stages of the plant include the vegeta-
tive (1), flowering (2) and seed ripping (3) stage. In fact, 
the lowest content of hypericin is in the vegetative stage 
of the plants and increases in the flowering and seed rip-
ping stages, respectively. Based on the results shown in 
Table  4, the range of changes in the percentage of total 
soil nitrogen in this study is 0.1 to 0.57. In Fig. 10, we find 
a linear increase in the amount of hypericin content with 

Fig. 2  Scatter plots of MLP outputs versus targets values
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Fig. 3  The outputs of MLP and target values of the hypericin content in data sets
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increasing the percentage of total soil nitrogen. The range 
of altitude changes in this study is between 1103 and 
3822 m (Table 4). The main distribution of the H. perfo-
ratum in the study area is in this elevation range and with 
increasing altitude we see a linear increase in the amount 
of hypericin content (Fig. 10).

On the other hand, increasing the other two ecological 
variables, including the hill geographical aspect and soil 
organic carbon cause a nonlinear increase in hypericin 
content of samples. Of course, it should be considered 
that the changes in the hill aspects are from north (1) to 
east (2), south (3) and west (4). In fact, the lowest con-
tent of hypericin is found in plants grown on the north-
ern slopes and increases on the eastern, southern and 
western slopes, respectively (Fig.  10). Since this rela-
tionship is nonlinear, not much difference is detected 
between the southern and western slopes. Based on the 
nonlinear relationship between soil organic carbon con-
tent and hypericin content in Fig.  10, the percentage of 
soil organic carbon, after crossing the 1.5 percent will not 
change the content of hypericin in samples significantly.

We also designed a new Graphical User Interface (GUI) 
for experts to use the MLP model in order to predict the 
content of hypericin in H. perforatum species. Indeed, the 
prediction of hypericin in H. perforatum under new eco-
logical conditions of the site and the phonological stage 
is gaining popularity among users. GUI as an EDSS tool 
will be run on new data just by pushing the "Hypericin 
Content Prediction" button in Fig. 11 that illustrates the 
results of hypericin content prediction in 10 new samples 
based on the ecological conditions of the site and pheno-
logical stage.

Discussion
Plant produced secondary metabolites play an impor-
tant role in plant defense against various environmental 
stresses [15]. These secondary metabolites are extensively 
studied for their biomedicinal properties. The extraction 
of bioactive compounds from plants is vital in retain-
ing its medicinal properties [15]. Ecological variables 
are mainly prominent not only in the growth of H. per-
foratum but also in the content of hypericin [8]. Various 
biotic and abiotic factors such as soil, developmental 
stage, ecological conditions, and altitude are correlated 
in the regulation of their biosynthesis and localization 
of secondary metabolites [43]. Due to medicinal uses of 

hypericin, we analyzed the association of different eco-
logical conditions and altitudes with concentration of 
hypericin in H. perforatum.

The ANN modeling approach employed in this 
research not only utilizes the advantages of previously 
designed models [4, 15, 15] but also include new ANN 
technique. The ANNs have received greater attention in 
various applications because of its sensitivity, accuracy, 
non-destruction, and rapidity [42]. Mesgaran et  al. [15] 
reported that ANN was most accurate method in pre-
dicting copper elements in the mineral areas compared 
to various methods such as fractal, principal components 
analysis, factor analysis. Similarly, Irmak et al. [10] inves-
tigated the prediction of soybean yield in varied tempo-
ral, soil and landscape situations using back-propagation 
neural network (BPNN) model and Tušek et al. [41] esti-
mated total polyphenols content from chamomile, dan-
delion, marigold, and yarrow by using kinetic models. 
Out study demonstrated that the MLP model (R2 = 0.87 
provided more suitable prediction of hypericin content 
in H. perforatum by utilizing the ecological condition 
of site, such as land form, soil characteristics and plant 
phenological stages in comparison to other models RBF 
(R2 = 0.8) and SVM (R2 = 0.54). We recorded minimum 
differences between observed and predicted values of 
hypericin in case of MLP. Since MLP is an environmental 
decision support system tool, it could be used to forecast 
the amount of hypericin in Hypericum in different habi-
tats. Our findings suggest that using mathematical mod-
els such as MLP for predicting the amount of hypericin in 
Hypericum species could reduce time and cost required 
analytical methods. Savić et al. [15] reported suitability of 
MLP over central composite design (CCD) for analysis of 
total flavonoids in green tea. In another research, lettuce 
yield was calculated in the condition of water shortage 
by using the ANN technique and vegetation indices and 
revealed that ANNs best predicted lettuce yield with R2 
values of 0.86, 0.75, and 0.92 for 100, 66, and 33% water 
treatments, respectively [18]. However, we compared 
three models MLP, RBF and SVM in our research and 
found that MLP was the most accurate model among 
them. These models have been recently compared in aes-
thetic quality prediction [13], chemical and medical sci-
ences [15, 15] and vegetation density prediction [11] as 
well.

Table 2  The results of parameters (spread and neurons) tuning in RBFNN structure

Model Spread Neurons Test set Training Data

R2 MSE RMSE MAE R2 MSE RMSE MAE

RBF 50 48 0.8 0.16 0.62 0.35 0.98 0.02 0.14 0.12
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Fig. 4  Scatter plots of RBF outputs versus targets values in data sets
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Fig. 5  The outputs of RBF and target values of the hypericin volume in data sets
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The results of sensitivity analysis revealed that, pheno-
logical stages, hill aspects, total N, altitude and organic 
C appeared the most fundamental factors significantly 
impacting hypericin content. Our observations regarding 
genotype, growing conditions, and developmental stage 
impacting hypericin content are in agreement with previ-
ous research [6, 43, 45]. The content of hypericin is varied 
based on different habitats and the stage of plant devel-
opment also reported by Saddique et  al. [15]. Previous 
research suggested that compounds in the Hypericum 
vary with climate and soil conditions which are consist-
ent with our findings. Our results illustrated that there 
was a positive correlation between total N, organic car-
bon and the amount of hypericin. We observed that, as 
the total N and organic carbon increase in the soil, the 
hypericin increased accordingly. Yesaghi [44] confirmed 
that optimal conditions for the growth of H. perforatum 
depend on carbon and N-rich soil studying at three habi-
tats in Golestan province, Iran. Moreover, our study indi-
cated that the amount of hypericin improved from 1.65 
to more than 1.75  mg/g (Fig.  10) by increasing altitude 
from 1000 to 4000 m above sea level which is in agree-
ment with previous reports [43]. It is proposed that the 
combination of higher light intensity, UV-B irradiation 
and shortage of air temperature at the highest altitude 
could be a rational reason for increase in the hypericin 
content [3]. In terms of hill aspect, the highest content of 
hypericin was obtained from H. perforatum gathered in 
the western hills (1.8 mg/g). This result is similar to the 
study carried out by Zobayed et al. [45]. We studied the 
content of hypericin is influenced by ecological condi-
tions such as altitude, soil factors and hill aspect which is 
in agreement to previous studies [1].

Computational simulation techniques and mathemati-
cal tools help us to predict the content of hypericin under 

ecological conditions [15]. Using the MLP model in the 
present study, we could predict the contents of hypericin 
in H. perforatum which will reduce the expensive and 
time-consuming phytochemical methods and labora-
tory experimentations. In addition, a designed Graphical 
User Interface (GUI) will help to run the MLP model on 
new data to easily discover the content of hypericin in H. 
perforatum by entering ecological conditions of site, land 
form, soil characteristics and plant phenological stages. 
These findings also could be applicable for rangeland 
managers, pharmacognosists, manufacturers and pro-
ducers of medicinal plants, local beneficiaries and poten-
tially various other field of studies.

Conclusions
In this study, we predicted the content of hypericin 
in Hypericum perforatum using MLP, RBF and SVM 
models. These models were analyzed precisely with 
the aim of testing the most suitable model predict-
ing hypericin content more accurately. Based on our 
observations, the MLP model was confirmed as supe-
rior compared to the other models considered in this 
study. Furthermore, we observed that phenological 
stages, hill aspects, organic carbon, total nitrogen 
and altitude have a positive impact on the content of 
hypericin. MATLAB 2018 software, will aid us to per-
form the model in the regions where the factors and 
tested variables in this research are in the range of 
studied area and also reduce time and costof experi-
mental methods. Moreover, it can provide wider range 
of applicability to rangeland managers, pharmacogno-
sists, manufacturers and producers of medicinal plants 
to specify habitats and plant individuals targeting the 

Table 3  The value of parameters (ε, C, and γ) tuning in SVM regression structure

Ε C Test set Training data

R2 MSE RMSE MAE R2 MSE RMSE MAE

0.0002 995.2 0.54 0.03 0.17 0.14 0.9 0.01 0.08 0.06
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Fig. 6  Scatter plots of SVM outputs versus targets values in data sets
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Fig. 7  The outputs of SVM and target values of the hypericin content in data sets
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Fig. 8  The performance measures of the MLP, RBFNN and SVM

Fig. 9  Sensitivity analysis of MLP model in hypericin content prediction

Table 4  The statistical results of variables quantity in H. perforatum samples

Average ± standard error (min, 
max)

Variable Average ± standard error (min, max) Variable

206.93 ± 5.54 (103, 287) Absorbable potassium 2338.21 ± 75.33 (1103, 3822) Altitude

3.11 ± 0.13 (0.5, 5.7) Absorbable phosphor 19.5 ± 0.63 (5, 35) Slope

0.34 ± 0.01 (0.1, 0.57) Total nitrogen 2.63 ± 0.08 (1, 4) Hill aspect

0.09 ± 0.003 (0.02, 0.2) EC 0.85 ± 0.06 (0, 2.6) Organic carbon

7.23 ± 0.05 (6.2, 7.9) pH 42.5 ± 0.38 (35, 50) Sand

1.99 ± 0.07 (1, 3) Phenological stages 38.1 ± 0.61 (20, 50) Silt

1.63 ± 0.02 (1.06, 2.2) Hypericin content 19.4 ± 0.65 (5, 35) Clay
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Fig. 10  The trend of hypericin content changes using MLP output with varying the input variables
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highest content of hypericin in a robust and repeatable 
way.
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