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METHODOLOGY

Non‑destructive phenotyping for early 
seedling vigor in direct‑seeded rice
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Jitendra Meher1, Janga Nagi Reddy1 and Jauhar Ali2* 

Abstract 

Background:  Early seedling vigor is an essential trait of direct-seeded rice. It helps the seedlings to compete with 
weeds for water and nutrient availability, and contributes to better seedling establishment during the initial phase of 
crop growth. Seedling vigor is a complex trait, and phenotyping by a destructive method limits the improvement of 
this trait through traditional breeding. Hence, a non-invasive, rapid, and precise image-based phenotyping technique 
is developed to increase the possibility to improve early seedling vigor through breeding in rice and other field crops.

Results:  To establish and assess the methodology using free-source software, early seedling vigor was estimated 
from images captured with a digital SLR camera in a non-destructive way. Here, the legitimacy and strength of the 
method have been proved through screening seven diverse rice cultivars varying for early seedling vigor. In the 
regression analysis, whole-plant area (WPA) estimated by destructive-flatbed scanner (WPAs) and non-destructive 
imaging (WPAi) approaches was strongly related (R2 > 83%) and suggested that WPAi can be adapted in place of 
destructive methods to estimate seedling vigor. In addition, this study has identified a set of new geometric traits 
(convex hull and top view area) for screening breeding lines for early seedling vigor in rice, which decreased the time 
by 80% and halved the cost of labor in data observation.

Conclusions:  The method demonstrated here is affordable and easy to establish as a phenotypic platform. It is 
suitable for most glasshouses/net houses for characterizing genotypes to understand the plasticity of shoots under 
a given environment at the seedling stage. The methodology explained in this experiment has been proven to be 
practical and suggested as a technique for researchers involved in direct-seeded rice. Consequently, it will help in the 
simultaneous screening of genotypes in large numbers, the identification of donors, and in gaining information on 
the genetic basis of the trait to design a breeding program for direct-seeded rice.
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Background
The benefits of decreasing the water footprint along 
with less labor use and an increase in the cost–benefit 
ratio have led rice farmers to shift their puddled-trans-
planted rice to direct-seeded rice (DSR). For successful 

crop establishment under DSR, rapid uniform emergence 
and accumulation of biomass in the early phase of crop 
growth are the key factors [1]. Thus, understanding the 
spatio-temporal changes in shoot biomass in the early 
phase of the crop by imaging would help to differenti-
ate lines for vigor and provide insight into the physiol-
ogy of rice seedlings under direct-seeded conditions [2, 
3]. Therefore, developing an automated non-destructive 
screening method for an essential agronomic trait would 
enhance the productivity of rice under direct-seeded 
conditions.

Open Access

Plant Methods

*Correspondence:  anandanau@yahoo.com; J.Ali@irri.org
1 Crop Improvement Division, Indian Council of Agricultural Research-
National Rice Research Institute (ICAR-NRRI), Cuttack, Odisha 753006, 
India
2 Rice Breeding Platform, International Rice Research Institute (IRRI), Los 
Baños, Laguna 4031, Philippines

http://orcid.org/0000-0002-3177-2607
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13007-020-00666-6&domain=pdf


Page 2 of 18Anandan et al. Plant Methods          (2020) 16:127 

Non-destructive phenotyping techniques are the key 
factors for screening and developing suitable rice geno-
types for the target environment in a brief period [4, 5]. 
Several phenotyping methods have been optimized for 
screening biotic and abiotic stresses [6]. The absence of a 
suitable non-destructive-based high-throughput pheno-
typing system has restricted the exploitation of agronom-
ically important traits in rice. Accumulation of biomass 
in the early phase of crop growth is necessary under DSR 
and is considered an important parameter for seedling 
vigor [1, 7]. Therefore, a genotype with early seedling 
vigor has significance in smothering the effect of weed 
competitiveness and water use efficiency to maintain 
the sustainability of rice production in rainfed and DSR 
conditions. The key limiting factor in developing rice 
varieties for direct-seeded conditions with early seedling 
vigor is the non-availability of a suitable non-destructive 
phenotyping screening technique to select genotypes 
against weed competitiveness with a consistent result. As 
biomass/shoot weight was observed to be closely related 
to early vigor measured at 14 and 28  days after sowing 
(DAS) [7], screening genotypes by measuring biomass 
with a non-destructive method has added advantages 
over other methods.

The early phase of a crop is more fragile and dynamic 
in response to the environment, and the complex nature 
of the trait poses a problem in phenotyping for early 
seedling vigor [8]. Further, phenotyping by destructive 
sampling and collecting of seeds from the same indi-
viduals, in the case of segregating generations, would 
be an additional impossible target. Recent advances in 
genomic technologies have changed the way of breed-
ing programs by generating more genotypic data. Nev-
ertheless, the same breeding programs failed to achieve 
the objective when the translation of such data failed to 
identify genotypes with the desirable trait [9]. Therefore, 
to overcome this bottleneck and to use those genotypic 
data in an efficient way, non-destructive phenotyping 
with precision is highly valued. In recent years, several 
reports have presented the advantages of non-destructive 
phenotyping by imaging techniques using near-infrared 
reflectance and spectral imaging using fluorescence and 
thermal wavelengths [10–12]. The application of image-
based phenotyping is picking up in the area of field crops 
to understand the complex traits that are highly influ-
enced by the environment. Several screening protocols 
and pipelines for data analysis were developed for some 
of the intricate stress factors such as salinity, nitrogen, 
and water deficiency, and nodal root angle in barley, 
rice, and sorghum, etc. [3, 9, 13–20]. Conversely, imag-
ing techniques for early seedling vigor have not been 
standardized in rice. Most of the protocols developed by 
imaging are automated and require high-end facilities. 

Irrespective of the countries possessing those high-
end automated facilities, they are not affordable to all 
researchers.

The existing field-based screening methodology to 
estimate seedling vigor is based on harvesting sam-
ples over relative time [7], which is labor-intensive. As 
the early phase of seedlings is dynamic in nature and in 
collecting data to estimate growth analysis, biomass or 
leaf area index from a subset of the population would 
not provide reasonable information. However, whole-
plant area (WPA) is associated with seedling vigor, but 
the destructive method cannot capture the actual area. 
Therefore, a phenotyping screening protocol needs to be 
developed in a cost-effective way that is easy to handle, 
less labor-intensive, suitable for screening year-round, 
and amenable to integrating those phenotypic data with 
genotypic data generated from forward genetic tools 
such as genome-wide association mapping, linkage map-
ping, and gene sequencing. In addition, a non-destructive 
image-based phenotyping protocol should be flexible 
and experimentally verified by comparing it with existing 
field-based techniques. On the other hand, high-through-
put phenotyping integrated with imaging techniques 
would be more flexible to capture the dynamic changes 
taking place in plants over a time interval. This would 
decrease genotype x environment interaction and several 
parameters such as compactness, leaf rolling, and drying 
related to abiotic stress and leaf damage due to pests and 
diseases would be measured seamlessly [21].

In the present study, we focused on establishing a non-
destructive phenotyping protocol to estimate early seed-
ling vigor in rice using images. Seven rice (Oryza sativa 
L.) genotypes of improved and traditional lines were 
grown in a pot under normal conditions without stagna-
tion of water. Growth rates and related agro-morpholog-
ical traits of those genotypes were measured by proposed 
non-destructive image-based and conventional destruc-
tive harvests to test the protocol efficiency, reproducibil-
ity, and ability to differentiate vigorous genotypes.

Results
Plant growth and partitioning of biomass 
among genotypes at 14 and 28 DAS
Significant differences were observed among the seven 
genotypes for traits studied at 14 and 28 DAS. On the 
14th day after sowing, 16 traits exhibited significant dif-
ferences among the 28 traits studied, while 19 traits 
showed significant differences between genotypes at 
28 DAS (Table  1). However, traits observed after man-
ual sampling such as shoot length and leaf number per 
plant were found to be significant across the two dates 
of observation (Tables  1, 2). Third-leaf width, eccen-
tricity, convex hull, caliper length, whole-plant area by 
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destructive-flatbed scanner (WPAs), whole-plant area 
by non-destructive imaging (WPAi), top view area, and 
compactness exhibited strong significant differences 
across the two dates of observation (Tables  3, 4) and 

these differences were captured well by the images from 
all seven genotypes grown under net house conditions. 
This suggests that observing growth parameters by imag-
ing could capture subtle differences across genotypes, 

Table 1  Growth parameters observed by manual sampling and ANOVA for seven rice genotypes at 14 days after sowing

Mean ± standard error and significance of ANOVA are presented for each variety

NS non-significant

* p < 0.05; ** p < 0.001

Traits LB-46 GM-217 AC38399 ARC10656 Vandana Sabita Varshadhan ANOVA

Shoot length (cm) 24.22 ± 1.36 30.78 ± 0.83 23.40 ± 1.63 22.3 ± 1.19 27.76 ± 0.65 20.28 ± 0.64 22.82 ± 1.05 **

Root length (cm) 14.98 ± 0.28 15.34 ± 1.47 16.76 ± 0.78 16.26 ± 0.77 18.48 ± 1.27 17.24 ± 0.46 19.94 ± 3.73 NS

Shoot dry weight 
(g)

0.0466 ± 0.007 0.059 ± 0.008 0.0382 ± 0.005 0.033 ± 0.001 0.0528 ± 0.002 0.0342 ± 0.004 0.0996 ± 0.05 NS

Root dry weight 
(g)

0.0182 ± 0.002 0.0246 ± 0.006 0.0174 ± 0.002 0.020 ± 0.004 0.0212 ± 0.002 0.0192 ± 0.002 0.0146 ± 0.0015 NS

Seed weight with 
mesocotyl

0.0154 ± 0.002 0.0494 ± 0.03 0.0108 ± 0.006 0.0062 ± 0.001 0.0132 ± 0.001 0.0094 ± 0.005 0.01 ± 0.001 NS

Mesocotyl length 
(cm)

0.38 ± 0.04 0.34 ± 0.02 0.32 ± 0.03 0.30 ± 0.04 0.34 ± 0.02 0.30 ± 0.04 0.38 ± 0.03 NS

Stem thickness 
(mm)

1.47 ± 0.07 1.25 ± 0.02 1.14 ± 0.08 1.38 ± 0.06 1.40 ± 0.008 1.10 ± 0.06 1.32 ± 0.028 **

Leaf number/
plant

3.6 ± 0.24 4.0 ± 0.31 3.0 ± 0.05 3.2 ± 0.2 3.0 ± 0.01 3.0 ± 0.001 3.6 ± 0.24 **

First leaf weight 
(g)

0.0032 ± 0.0004 0.0034 ± 0.0003 0.0030 ± 0.0004 0.0030 ± 0.0002 0.0048 ± 0.0003 0.0044 ± 0.003 0.0026 ± 0.0004 NS

Second leaf 
weight (g)

0.0088 ± 0.003 0.0078 ± 0.001 0.0086 ± 0.001 0.0058 ± 0.002 0.0108 ± 0.005 0.0068 ± 0.007 0.0064 ± 0.006 NS

Third leaf weight 
(g)

0.0094 ± 0.004 0.0098 ± 0.004 0.0096 ± 0.002 0.0078 ± 0.003 0.0168 ± 0.006 0.007 ± 0.005 0.0108 ± 0.004 *

Table 2  Growth parameters observed by manual sampling and ANOVA for seven rice genotypes at 28 days after sowing

Mean ± standard error and significance of ANOVA are presented for each variety

NS non-significant

* p < 0.05; ** p < 0.001

Traits LB-46 GM-217 AC38399 ARC10656 Vandana Sabita Varshadhan ANOVA

Shoot length (cm) 41.48 ± 2.76 49.52 ± 2.4 42.92 ± 1.76 43.68 ± 0.37 43.88 ± 2.05 39.76 ± 0.81 39.00 ± 1.77 *

Root length (cm) 25.32 ± 1.46 25.40 ± 1.48 28.22 ± 1.18 26.72 ± 1.42 25.78 ± 2.21 32.28 ± 1.67 23.44 ± 1.63 *

Shoot dry weight (g) 0.396 ± 0.033 0.303 ± 0.10 0.188 ± 0.036 0.136 ± 0.011 0.180 ± 0.026 0.159 ± 0.009 0.269 ± 0.039 **

Root dry weight (g) 0.27 ± 0.025 0.169 ± 0.05 0.142 ± 0.03 0.073 ± 0.011 0.149 ± 0.015 0.088 ± 0.007 0.112 ± 0.013 **

Tiller number 3.40 ± 0.24 1.80 ± 0.58 1.20 ± 0.20 1.00 ± 0.001 1.00 ± 0.001 1.20 ± 0.20 2.20 ± 0.37 **

Stem weight (g) 0.38 ± 0.17 0.15 ± 0.04 0.07 ± 0.01 0.07 ± 0.003 0.09 ± 0.02 0.07 ± 0.01 0.11 ± 0.01 *

Stem thickness (mm) 3.48 ± 0.31 3.46 ± 0.20 3.05 ± 0.20 2.81 ± 0.12 3.13 ± 0.17 3.12 ± 0.18 2.70 ± 0.19 NS

Leaf number/plant 11.2 ± 1.16 7.40 ± 1.40 6.40 ± 0.68 6.40 ± 0.24 6.20 ± 0.20 6.20 ± 0.20 8.80 ± 1.24 **

First leaf weight (g) 0.002 ± 0.0001 0.003 ± 0.0004 0.003 ± 0.0002 0.003 ± 0.0004 0.003 ± 0.0002 0.005 ± 0.0006 0.003 ± 0.0002 NS

Second leaf weight (g) 0.008 ± 0.0009 0.006 ± 0.0008 0.004 ± 0.0006 0.006 ± 0.0009 0.006 ± 0.0008 0.010 ± 0.0002 0.007 ± 0.0009 NS

Third leaf weight (g) 0.010 ± 0.001 0.011 ± 0.002 0.005 ± 0.001 0.011 ± 0.001 0.012 ± 0.002 0.011 ± 0.001 0.014 ± 0.002 NS

Fourth leaf weight (g) 0.013 ± 0.002 0.017 ± 0.002 0.016 ± 0.002 0.018 ± 0.001 0.024 ± 0.002 0.017 ± 0.001 0.023 ± 0.002 NS

Fifth leaf weight (g) 0.024 ± 0.001 0.032 ± 0.002 0.023 ± 0.002 0.022 ± 0.001 0.032 ± 0.002 0.029 ± 0.002 0.027 ± 0.001 NS

Sixth leaf weight (g) 0.036 ± 0.002 0.036 ± 0.002 0.037 ± 0.002 0.027 ± 0.001 0.038 ± 0.002 0.027 ± 0.001 0.033 ± 0.002 NS

Seventh leaf weight (g) 0.009 ± 0.0008 0.009 ± 0.0007 0.005 ± 0.0002 0.006 ± 0.0002 0.005 ± 0.0003 0.005 ± 0.0005 0.003 ± 0.0006 NS
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which is not possible in the traditional way of screening 
genotypes by destructive sampling. Among the seven 
genotypes, GM-217 and Vandana registered higher 

values for growth parameters such as shoot length, leaf 
number, WPAi, convex hull, and compactness at 14 DAS. 
On the other hand, LB-46 and Varshadhan were observed 

Table 3  Growth parameters obtained by imaging and ANOVA for seven rice genotypes at 14 days after sowing

Mean ± standard error and significance of ANOVA are presented for each variety

NS non-significant

* p < 0.05; ** p < 0.001

Traits LB-46 GM-217 AC38399 ARC10656 Vandana Sabita Varshadhan ANOVA

First leaf 
length 
(mm)

52.47 ± 5.79 39.33 ± 2.62 47.86 ± 5.29 48.90 ± 2.22 55.69 ± 1.89 61.88 ± 3.97 44.45 ± 4.16 *

Second 
leaf 
length 
(mm)

131.17 ± 16.29 125.18 ± 7.25 143.59 ± 6.96 120.87 ± 8.15 147.78 ± 3.62 112.42 ± 6.39 118.97 ± 4.30 NS

Third leaf 
length 
(mm)

178.21 ± 10.2 202.07 ± 4.17 173.02 ± 10.95 158.66 ± 9.32 203.80 ± 4.40 118.24 ± 17.82 158.06 ± 8.61 **

First leaf 
width 
(mm)

2.39 ± 0.48 1.83 ± 0.15 2.40 ± 0.24 2.02 ± 0.14 2.83 ± 0.11 2.54 ± 0.23 2.43 ± 0.12 NS

Second 
leaf 
width 
(mm)

2.38 ± 0.21 2.53 ± 0.13 2.80 ± 0.25 2.51 ± 0.14 2.78 ± 0.11 2.96 ± 0.30 2.68 ± 0.07 NS

Third leaf 
width 
(mm)

2.96 ± 0.23 2.20 ± 0.13 3.12 ± 0.43 2.4 ± 0.35 3.81 ± 0.12 2.61 ± 0.25 3.61 ± 0.27 **

First leaf 
area 
(mm2)

97.38 ± 20.53 81.10 ± 11.53 107.57 ± 17.43 115.90 ± 13.72 114.28 ± 7.06 107.52 ± 7.72 80.29 ± 12.35 NS

Second 
leaf 
area 
(mm2)

242.33 ± 38.73 257.90 ± 17.78 305.80 ± 31.68 214.34 ± 18.34 276.31 ± 15.97 217.15 ± 31.27 225.43 ± 23.62 NS

Third leaf 
area 
(mm2)

381.01 ± 45.32 352.48 ± 10.54 374.25 ± 57.70 268.87 ± 40.13 511.13 ± 30.33 221.04 ± 46.28 351.85 ± 54.56 **

Stem 
area 
(mm2)

185.89 ± 54 402.86 ± 30.15 176.98 ± 20.04 199.65 ± 25.43 216.80 ± 15.28 143.79 ± 13.42 171.66 ± 12.39 **

Eccen-
tricity

205.37 ± 22.72 287.20 ± 23.04 148.08 ± 31.8 164.477 ± 17.45 241.80 ± 17.06 110.20 ± 12.64 160.49 ± 18.61 **

Convex 
hull 
(mm2)

9029.58 ± 3243 24191.40 ± 3913.40 4624.74 ± 1784 6657.24 ± 2597 17011.46 ± 3955 2635.28 ± 679.39 5376.21 ± 1912 **

Caliper 
length 
(mm)

311.49 ± 48.16 403.99 ± 25.76 227.75 ± 49 207.89 ± 21.76 415.39 ± 22.75 162.58 ± 19.40 286.71 ± 34.94 **

WPAs 
(mm2)

906.62 ± 89 1264.52 ± 98 964.61 ± 98.64 798.76 ± 44.57 1118.54 ± 49.51 689.49 ± 68.34 829.22 ± 75.42 **

WPAi 
(mm2)

1095.45 ± 178 1498.38 ± 124 726.61 ± 143 593.90 ± 61.76 1384.60 ± 86.28 514.22 ± 57.06 857.27 ± 138.47 **

Top view 
area 
(mm2)

3061.90 ± 642.51 3222.871 ± 848.06 1637.00 ± 591 1359.82 ± 337 1057.60 ± 284 1057.60 ± 284.62 1539.68 ± 422 **

Com-
pact-
ness

0.34 ± 0.04 0.13 ± 0.01 0.35 ± 0.03 0.20 ± 0.02 0.06 ± 0.01 0.40 ± 0.05 0.29 ± 0.02 **
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Table 4  Growth parameters obtained by imaging and ANOVA for seven rice genotypes at 28 days after sowing

Traits LB-46 GM-217 AC38399 ARC10656 Vandana Sabita Varshadhan ANOVA

First leaf 
length 
(mm)

66.32 ± 2.76 63.20 ± 13.26 48.21 ± 3.08 67.36 ± 16.78 72.14 ± 18.87 101.26 ± 19.02 48.21 ± 3.08 NS

Second 
leaf 
length 
(mm)

111.94 ± 20.43 147.49 ± 16.44 130.81 ± 4.61 128.46 ± 19.29 173.22 ± 20.30 126.56 ± 29.26 130.81 ± 4.61 NS

Third leaf 
length 
(mm)

151.18 ± 20.03 193.23 ± 22.2 180.63 ± 4.42 177.35 ± 15.42 229.31 ± 21.69 174.90 ± 31.52 180.63 ± 4.42 NS

Fourth 
leaf 
length 
(mm)

198.58 ± 15.05 229.58 ± 21.52 210.45 ± 4.95 228.71 ± 25.32 271.79 ± 26.66 201.28 ± 27.44 210.45 ± 4.95 NS

Fifth leaf 
length 
(mm)

243.21 ± 21.18 229.89 ± 37.97 230.32 ± 11.47 234.56 ± 39.73 205.24 ± 44.85 180.11 ± 27.27 230.32 ± 13.31 NS

Sixth leaf 
length 
(mm)

229.48 ± 44.81 168.76 ± 74.47 229.27 ± 41.11 190.79 ± 92.98 184.21 ± 81.17 255.59 ± 21.16 229.27 ± 41.11 NS

Seventh 
leaf 
length 
(mm)

201.18 ± 39.41 582.00 ± 82.14 74.13 ± 14.64 85.64 ± 17.24 83.14 ± 19.62 228.57 ± 24.51 74.13 ± 4.91 NS

First leaf 
width 
(mm)

2.16 ± 0.34 2.18 ± 0.28 2.89 ± 0.37 2.11 ± 0.33 3.50 ± 0.20 3.60 ± 0.21 2.89 ± 0.37 **

Second 
leaf 
width 
(mm)

2.62 ± 0.24 2.66 ± 0.41 2.77 ± 0.16 2.49 ± 0.27 3.34 ± 0.32 3.74 ± 0.23 2.77 ± 0.16 *

Third leaf 
width 
(mm)

3.19 ± 0.42 3.03 ± 0.52 3.68 ± 0.16 2.88 ± 0.32 4.39 ± 0.36 3.96 ± 0.37 3.68 ± 0.16 *

Fourth 
leaf 
width 
(mm)

4.36 ± 0.50 3.42 ± 0.24 4.78 ± 0.34 3.36 ± 0.08 4.57 ± 0.44 4.22 ± 0.36 4.78 ± 0.34 **

Fifth leaf 
width 
(mm)

4.61 ± 0.91 14.25 ± 10.88 5.25 ± 0.26 2.79 ± 0.39 3.34 ± 0.61 4.14 ± 0.61 5.25 ± 0.26 NS

Sixth leaf 
width 
(mm)

4.34 ± 0.90 3.03 ± 0.72 4.33 ± 0.87 2.63 ± 0.42 3.17 ± 0.69 4.16 ± 0.14 4.33 ± 0.87 NS

Seventh 
leaf 
width 
(mm)

5.31 ± 0.86 5.42 ± 0.92 0.93 ± 0.08 0.98 ± 0.10 0.94 ± 0.08 4.02 ± 0.17 0.93 ± 0.11 NS

First leaf 
area 
(mm2)

115.62 ± 15.13 99.29 ± 23.83 96.96 ± 14.69 118.96 ± 41.85 166.62 ± 37.83 253.11 ± 56.69 96.96 ± 14.69 *

Second 
leaf area 
(mm2)

225.30 ± 46.01 241.81 ± 56.29 237.80 ± 18.04 250.32 ± 50.13 413.61 ± 86.04 339.22 ± 85.60 237.81 ± 18.04 NS

Third leaf 
area 
(mm2)

351.65 ± 74.75 385.22 ± 91.89 397.66 ± 12.85 361.76 ± 59.46 690.66 ± 142.21 482.88 ± 110.97 397.66 ± 12.85 NS

Fourth 
leaf area 
(mm2)

604.80 ± 115.2 559.96 ± 65.80 583.40 ± 24.37 492.26 ± 62.38 845.77 ± 145.52 598.48 ± 86.07 583.40 ± 24.37 NS

Fifth leaf 
area 
(mm2)

873.96 ± 151.6 613.48 ± 85.58 734.45 ± 90.82 485.48 ± 118.77 495.43 ± 148.94 460.41 ± 137.46 734.46 ± 90.82 NS
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to have maximum leaf number, WPAi, and convex hull at 
28 DAS. Traits such as root length, shoot dry weight, root 
dry weight, tiller number, and stem weight displayed a 
significant difference at 28 DAS, whereas these traits dis-
played non-significant growth at 14 DAS.   

Comparison between destructive sampling and automated 
image phenotyping (WPAi) for seedling vigor
Seedling vigor was generally predicted conventionally 
through growth analysis. Growth analysis was calcu-
lated as the absolute growth rate (AGR), crop growth 
rate (CGR), and relative growth rate (RGR), which are 
destructive methods (explained in detail under the Meth-
ods section (Method-2 & -3). All three of these growth 
parameters at 14 and 28 DAS were plotted against WPAi 
(non-destructive method) using regression curves to 
find out the association and contribution in variation for 
WPAi. In the present experiment, WPAi is considered 
a principal parameter from image-based phenotyping, 
since WPA is the target trait measured through auto-
mated image analysis. AGR was calculated from shoot 
and root length, while CGR and RGR were calculated 
based on the dry weight of shoots with tillers and roots. 
The AGR for shoot length and root length plotted against 
the AGR of WPAi exhibited no relationship with the AGR 

of WPAi with nearly zero regression (≤ 0.04) (Fig. 1a, b). 
On the other hand, CGR of shoot dry weight with tillers 
and root dry weight exhibited strong and positive corre-
lation with CGR of WPAi (Fig. 2a, b). The CGR of shoot 
dry weight with tillers explained 74.26% of the variation 
and the CGR of root dry weight explained 45.20% of 
the variation of CGR-WPAi. Similarly, RGR of shoot dry 
weight with tillers and root dry weight showed a positive 
relationship with the RGR of WPAi (Fig. 3a, b). However, 
only the RGR of shoot dry weight had a positive correla-
tion and explained 13.80% of the variation of the RGR of 
WPAi. Thus, the CGR of shoot and root dry weight and 
RGR of shoot dry weight had a positive relationship with 
CGR of WPAi and RGR of WPAi, respectively. Another 
method of destructive sampling was WPAs, which was a 
more precise method than the phenotypic measurement 
for WPAi estimation. Both WPAi and WPAs were plot-
ted on the graph, where WPAs was plotted on the X-axis 
against WPAi on the Y-axis as a dependent variable. The 
correlation of WPAs at both 14 and 28 DAS was strong 
and positive with WPAi. The regression showed that 
WPAs explained 83.11% of the variation at 14 DAS and 
87.33% of the variation at 28 DAS of WPAi (Fig. 4). This 
was the strongest relationship among all the traits obser
ved.

Table 4  (continued)

Traits LB-46 GM-217 AC38399 ARC10656 Vandana Sabita Varshadhan ANOVA

Sixth leaf 
area 
(mm2)

881.14 ± 258.6 546.32 ± 269.52 743.25 ± 176.97 372.59 ± 232.86  378.47 ± 214.36 790.56 ± 65.25 743.25 ± 176.97 NS

Seventh 
leaf area 
(mm2)

811.20 ± 196.4 998.36 ± 257.31 52.21 ± 8.54 65.92 ± 10.35 62.34 ± 14.68 573.51 ± 55.74 52.21 ± 7.24 NS

Stem area 
(mm2)

647.09 ± 84.22 856.64 ± 60.32 650.17 ± 54.88 630.66 ± 30.95 725.42 ± 85.67 726.68 ± 27.03 650.17 ± 54.88 NS

Eccentric-
ity

285.21 ± 33.9 311.64 ± 24.15 234.53 ± 24.43 196.20 ± 20.69 196.91 ± 15.77 169.86 ± 24.42 260.95 ± 33.49 **

Convex 
hull 
(mm2)

80580.53 ± 15441 58032.17 ± 14316 21874.73 ± 6181 20969.94 ± 4023 16674.40 ± 2546 24296.94 ± 6958 35618.86 ± 13802.31 **

Caliper 
length 
(mm)

510.05 ± 66.91 457.71 ± 74.49 374.78 ± 29.91 305.70 ± 35.86 327.26 ± 29.27 302.32 ± 49.05 451.99 ± 58.82 *

WPAs 
(mm2)

4522.00 ± 503 3585.16 ± 406.04 3510.24 ± 406.96 2488.48 ± 97.75 3337.50 ± 293.75 3107.58 ± 74.03 3454.15 ± 248.33 **

WPAi 
(mm2)

4068.50 ± 938 2215.22 ± 580.52 2032.65 ± 310 1109.57 ± 50.02 1456.73 ± 150.38 1744.54 ± 149.50 2483.14 ± 399.20 **

Top view 
area 
(mm2)

8940.64 ± 3461 3052.59 ± 377 4107.37 ± 1301 2092.91 ± 421 2419.07 ± 537.93 3578.04 ± 894.76 5536.39 ± 1623 **

Compact-
ness

0.11 ± 0.08 0.05 ± 0.01 0.19 ± 0.06 0.10 ± 0.06 0.15 ± 0.07 0.15 ± 0.08 0.16 ± 0.07 **

Mean ± standard error and significance of ANOVA are presented for each variety

NS non-significant

* p < 0.05; ** p < 0.001
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Relationship between WPAi and other seedling traits
The relationship of seedling phenotypic traits, individual 
leaf traits, stem area, and WPAs with WPAi was calcu-
lated to understand the correlation and percentage of 
variation contributed by each trait (morphological traits 
and geometric traits) toward WPAi. As WPAi was used 
as a trait in the identification of early seedling vigor in 
plants, it was considered as a primary parameter in the 
image-based phenotyping method.

Relationship of seedling phenotypic traits and geometric 
traits with WPAi
Both positive and negative correlation was observed 
between seedling traits and WPAi. At 28 DAS, WPAi 
had exhibited a strong positive relationship with mor-
phological traits such as the number of leaves (r = 0.95, 
p < 0.01), shoot and root dry weight, and tiller number 
(Table  5). In general, no strong negative association 
was observed other than with some specific leaves at 

28 DAS (presented in the following section). Similarly, 
geometric traits that related to the size of the plant 
such as caliper length (r = 0.88, p < 0.05), convex hull, 
and top view area had a strong and positive correlation 
with WPAi at 28 DAS. Parallel to the data observed at 
28 DAS, traits observed at 14 DAS also exhibited a sim-
ilar trend of relationship (Table 5). The contribution of 
variation by shoot length explained 90.4% of the WPAi 
variation at 14 DAS, while it had a negative contribu-
tion of 3.6% at 28 DAS. At 28 DAS, 91.20% of the vari-
ation in WPAi was explained by the number of leaves 
(Table 5).

Geometric traits such as caliper length, eccentric-
ity, convex hull, and top view area explained 48.3%, 
27.3%, 25.2%, and 1.9% of the variation, respectively, at 
14 DAS in a negative direction. Conversely, at 28 DAS, 
they explained the variation positively (Table 5). Over-
all, seedling phenotypic traits and geometric traits were 
highly correlated with WPAi and thus can be predict-
able using linear regression.

Fig. 1  Result of linear regression analysis showing no correlation 
between the absolute growth rate (AGR) of morphological traits 
(shoot and root length) and AGR-WPAi. a AGR-shoot length vs 
AGR-WPAi, b AGR-root length vs AGR-WPAi. The line indicates 
the fitted results representing the relationship between AGR of 
morphological traits and AGR-WPAi, AGR​ absolute growth rate

Fig. 2  Result of linear regression analysis showing a positive 
correlation between crop growth rate (CGR) of morphological traits 
(shoot and root dry weight) and CGR-WPAi. a CGR-shoot dry weight 
vs CGR-WPAi, b CGR-root dry weight vs CGR-WPAi. The line indicates 
the fitted results representing the relationship between CGR of 
morphological traits and CGR-WPAi, CGR​ crop growth rate
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Fig. 3  Result of linear regression analysis showing a weak correlation 
between relative growth rate (RGR) of morphological traits (shoot and 
root dry weight) and RGR-WPAi. a RGR-shoot dry weight vs RGR-WPAi, 
b RGR-root dry weight vs RGR-WPAi. The line indicates the fitted 
results representing the relationship between RGR of morphological 
traits and RGR-WPAi, RGR​ relative growth rate

Fig. 4  Result of linear regression analysis showing a positive 
correlation between whole-plant area by destructive-flatbed scanner 
(WPAs) and whole-plant area by non-destructive imaging (WPAi) 
at 14 and 28 days after sowing. The line indicates the fitted results 
representing the relationship between WPAs and WPAi

Table 5  Correlation and  regression coefficient 
between  traits observed (phenotypic and  geometric) 
and WPAi at 14 and 28 DAS

NS non-significant

* p < 0.05; ** p < 0.001

Traits Regression 
coefficient (%)

Correlation 
coefficient (r)

14 days 28 days 14 days 28 days

Shoot length 90.40 − 3.60 0.951** − 0.190 ns

Root length − 2.30 − 11.80 − 0.154 ns − 0.344 ns

Shoot dry weight 9.60 86.30 0.311 ns 0.929**

Root dry weight 34.11 74.40 0.584 ns 0.863*

Seed weight with mesocotyl − 12.00 – 0.732 ns –

Mesocotyl length − 10.00 – 0.496 ns –

Stem weight – 82.30 – 0.920**

Tiller number – 79.80 – 0.970**

Stem thickness 17.70 27.30 0.422 ns 0.526 ns

Leaf number/plant 30.30 91.20 0.551 ns 0.955**

First leaf weight − 1.20 − 24.10 0.241 ns − 0.491 ns

Second leaf weight 40.00 9.60 0.645 ns 0.318 ns

Third leaf weight 54.90 − 0.01 0.661 ns − 0.001 ns

Fourth leaf weight – – – − 0.503 ns

Fifth leaf weight – – – − 0.188 ns

Six leaf weight – 17.50 – 0.419 ns

Seventh leaf weight – 15.00 – 0.192 ns

First leaf length 18.52 5.19 − 0.398 ns − 0.227 ns

Second leaf length 21.19 29.26 0.470 ns − 0.538 ns

Third leaf length 77.64 38.41 0.892** − 0.614 ns

Fourth leaf length – 27.67 – − 0.550 ns

Fifth leaf length – 21.77 – 0.467 ns

Sixth leaf length – 6.80 – 0.374 ns

Seventh leaf length – 5.09 – 0.287 ns

First leaf width 0.73 15.89 − 0.074 ns − 0.364 ns

Second leaf width − 6.55 9.74 − 0.367 ns − 0.303 ns

Third leaf width 2.33 8.42 0.150 ns − 0.242 ns

Fourth leaf width – 7.99 – 0.290 ns

Fifth leaf width – 2.54 – 0.163 ns

Sixth leaf width – 24.23 – 0.526 ns

Seventh leaf width – 35.33 – 0.634 ns

First leaf area 14.26 9.30 − 0.390 ns − 0.305 ns

Second leaf area 18.02 24.42 0.400 ns − 0.494 ns

Third leaf area 51.29 18.06 0.730 ns − 0.425 ns

Fourth leaf area – 00.75 – − 0.087 ns

Fifth leaf area – 77.79 – 0.882**

Sixth leaf area – 53.25 – 0.644 ns

Seventh leaf area – 14.65 – 0.395 ns

Stem area 61.33 1.59 0.840** − 0.126 ns

Eccentricity − 27.30 45.80 0.960** 0.677 ns

Convex hull − 25.20 79.20 0.927** 0.890**

Caliper length − 48.30 77.60 0.984** 0.881**

Top view area − 1.90 93.20 0.562 ns 0.965**

Compactness 17.60 − 1.00 0.725 ns − 0.101 ns
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Relationship of the different leaves with WPAi
The relationship between WPAi and individual leaf 
length, width, and area at 14 and 28 DAS was estimated 
using a linear regression curve (Table 5). There were three 
leaves per plant at 14 DAS and seven leaves at 28 DAS 
in all the genotypes. Some genotypes produced a fourth 
leaf at 14 DAS and some produced an eighth leaf at 28 
DAS. Therefore, the fourth leaf (at 14 DAS) and eighth 
leaf (at 28 DAS) were excluded from the analysis. Both 
positive and negative regression were observed between 
WPAi and individual leaf length. Among all the leaves, 
third leaf length had a positive (0.89, p < 0.01) correlation 
with WPAi, which explained 77.64% of the WPAi varia-
tion at 14 DAS. Similarly, length of the fifth-seventh leaf 
at 28 DAS had a positive association and explained > 40% 
of the variation (Table 5).

With reference to leaf width, no strong relationship 
between WPAi and leaf width was observed at both 14 
and 28 DAS, although the highest variation was explained 
by seventh leaf width (35.33%) at 28 DAS (Table 5). In the 
case of leaf area, the second-third leaves had a positive 
relationship with WPAi at 14 DAS and explained 51.29% 
of the WPAi variation. For 28 DAS, the fifth-seventh 
leaves had a positive relationship with WPAi, which was 
similar to the results obtained for leaf length. However, 
the leaf area of the fifth and sixth leaves had a strong cor-
relation, which explained the extent of variation (77.79% 
and 53.25%, respectively) of WPAi. For leaf weight, all 
leaves had a positive correlation (Table 5). Among them, 
the second and third leaves of 14-day-old seedlings 
explained variation of more than 40%. On the other hand, 
the leaf weight of 28-day-old seedlings at different levels 
had a weak correlation with WPAi. Of these, the sixth 
and seventh leaves explained variation of > 15%.

Relationship of stem area with WPAi and stage‑specific 
traits with WPAi
The greenness in the stem also helps in photosynthesis, 
which contributes to the overall growth of seedlings. 
Hence, stem area was also measured to find out the rela-
tionship with WPAi. The relationship between stem area 
and WPAi was positive (0.84, p < 0.01) at 14 DAS and neg-
ative (0.12ns) at 28 DAS. At 14 DAS, a strong relationship 
was observed, which explained 61.33% of the variation, 
while at 28 DAS the correlation was negative (1.59%) and 
very weak. Some of the unique traits in correlation to 
seedlings were also measured, which were seedling age-
specific. Traits such as seed weight with mesocotyl, seed 
weight, and mesocotyl length were measured at 14 DAS 
and bulk eighth leaf (terminal) weight, stem weight, and 
tiller number were measured at 28 DAS. The traits that 
were measured at 14 DAS were not available to meas-
ure at 28 DAS and vice versa. The traits seed weight with 

mesocotyl, seed weight, and mesocotyl length were nega-
tive and had a weak correlation with WPAi at 14 DAS, 
whereas bulk eighth leaf weight, stem weight, and tiller 
number showed a positive relationship with WPAi at 28 
DAS. Single stem weight and tiller number had a strong 
relationship with WPAi and explained 82.30% and 79.80% 
of the variation of WPAi, respectively.

Relationship between morphological traits and geometric 
traits
Understanding the trait association between morpho-
logical and geometric traits observed by image analysis 
would be helpful in the identification of surrogate traits 
in the absence of an automated non-destructive imaging 
system. At 28 DAS, number of leaves per plant expressed 
a strong positive association with top view area (0.89, 
p < 0.01), WPAi (0.95), caliper length (0.91, p < 0.01), con-
vex hull (0.83), root dry weight (0.81, p < 0.05), shoot dry 
weight (0.93, p < 0.01), tiller number (0.97, p < 0.01), and 
stem weight (0.88, p < 0.01). The RGR-related trait com-
pactness derived from the differences in top view area 
and convex hull exhibited a strong positive association 
with leaf width irrespective of all levels and a strong neg-
ative association with shoot length, eccentricity, convex 
hull, and caliper length on both dates of observation. Fur-
ther, it has a weak negative association with leaf number 
(− 0.20 at 14 DAS and − 0.28 at 28 DAS). The parameter 
convex hull displays the degree of leaves spreading that 
helps to cover the ground. The number of leaves showed 
a strong positive association with convex hull on both 
observation dates (0.55 at 14 DAS and 0.83 at 28 DAS) 
and a negative association with leaf width at all levels.

Identification of genotypes with high seedling vigor
Generally, to identify genotypes with high seedling vigor, 
AGR, CGR, and RGR were used. Among these, CGR was 
commonly used to find vigorous genotypes. The CGR, 
RGR, and AGR of genotypes were compared to the WPAi 
of the respective growth rates. The CGR of shoot weight 
and root weight, AGR of shoot length and root length, 
and RGR of root dry weight and shoot dry weight were 
plotted against the CGR of WPAi, AGR of WPAi, and 
RGR of WPAi, respectively. The highest growth rate was 
observed in LB-46 (CGR: 0.02 (shoot dry weight) and 
0.01 (root dry weight); RGR: 0.15 (shoot dry weight) and 
0.19 (root dry weight)), considered as a genotype with 
high seedling vigor, followed by GM-217 and Varshad-
han, based on the destructive method (CGR and RGR) 
for shoot and root dry weight. Meanwhile, AGR showed 
that ARC10656 and AC38399 were superior to other 
genotypes.

Image analysis by the non-destructive way has identi-
fied LB-46 (CGR of WPAi: 212.36; RGR of WPAi: 0.09) as 
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a genotype with high seedling vigor, followed by Varshad-
han. In both methods, LB-46 is common. Thus, WPAi is 
certainly an alternative to the destructive method (Fig. 4). 
On the basis of imaging and scanning methods (WPAi 
and WPAs) at 28 DAS, the highest WPAi was gained in 
order as LB-46 (4068  mm2), Varshadhan, and GM-217, 
while LB-46, GM-217, AC38399, and Varshadhan were 
judged as top genotypes by the WPAs method (Table 4) 
(Fig. 4). Overall at 14 DAS, both WPAi and WPAs iden-
tified GM-217 (1498  mm2 (WPAi)/1264  mm2 (WPAs)) 
and Vandana as top contenders, followed by LB-46 in 
WPAi and AC38399 in WPAs as the next best genotypes 
(Table 3).

Grouping pattern of genotypes and association 
between variables
Principal component analysis (PCA) was employed for 
29 traits observed at 14 DAS, for which it has explained 
98.99% of the variation by PC1 and 0.96% by PC2 
(Fig.  5a). On the basis of magnitudes of loadings/eigen-
values, nine highly variable traits (first and third leaf area, 
caliper length, convex hull, eccentricity, stem area, top 
view area, WPAi, WPAs) were identified. Similarly, PCA 
was performed for 44 traits at 28 DAS, which governs 
99.49% of the variation on the PC1 axis and 0.47% on the 
PC2 axis (Fig. 5b). Out of 44 traits on the basis of magni-
tude of PCA, fifth, sixth, and seventh leaf area; sixth and 
seventh leaf length; convex hull; stem area; top view area; 
WPAi; and WPAs were identified as highly variable traits. 
Among them, convex hull, stem area, top view area, 
WPAi, and WPAs were highly variable common traits 
between the two dates of observation.

The cultivar-by-trait biplots (Fig. 5a, b) were analyzed 
for both 14 and 28 DAS. They showed a strong relation-
ship between WPAi and WPAs at both 14 and 28 DAS. 
On both dates, biplot classifies the traits into two groups, 
based on their association with whole-plant area (WPAi 
and WPAs). At 14 DAS, traits such as width, area, and 
dry weight of first, second, and third leaves; leaf length 
of first and second leaves; and root length were clustered 
together. Conversely, traits that related to the image that 
contributes directly to WPA such as shoot length, cali-
per length, eccentricity, convex hull, third leaf length, 
stem thickness, shoot dry weight, stem area, top view 
area, and leaf number were grouped together. The vec-
tor of compactness stayed away from both groups. A 
similar trend was also observed at 28 DAS. Traits such 
as leaf length, width, weight, and area of 1–4; leaf dry 
weight of 5–8; stem area; root length; and compactness 
were grouped together. On the other hand, geometric 
and morphological traits that contributed to WPA such 
as shoot length; seventh leaf length, width, and weight; 
shoot length; shoot dry weight; stem weight; caliper 

length; convex hull; eccentricity; leaf length, width, and 
area of fifth and sixth leaf; top view area; and leaf num-
ber were clustered together. As the seedling grows, the 
association of stem area and compactness was clustered 
with traits that had a minimum role in estimating WPAi 
and WPAs. In agreement with the preceding section, 
genotypes LB-46, GM-217, and Varshadhan exhibited the 
highest magnitude toward geometric traits on both dates 
of observation.

Discussion
Rationale of early seedling vigor trait in rice
As DSR saves water and labor [1, 22], it is becoming pop-
ular across all fronts of rice ecosystems by covering 29 
million ha of the rice area in Asia (21% of the total rice 
area) [23]. Good crop establishment is a major challenge 

Fig. 5  Spatial distribution of genotypes based on seedling vigor 
traits for the first two principal components. a Distribution of 
genotypes based on 29 seedling vigor traits at 14 DAS, b Distribution 
pattern of genotypes based on 44 seedling vigor traits at 28 DAS
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in the DSR system. Germinating seeds and/or seedlings 
under DSR are exposed directly to an array of stresses [1, 
7]. Thus, strong and early seedling vigor is an imperative 
breeding trait for DSR varieties. Rice cultivars with high 
early seedling vigor decrease crop yield loss due to weeds 
(16% yield loss), water [24], and nutrient by exceeding the 
growth of weeds [25]. In addition, they help to achieve 
rapid and uniform emergence from the field. Genetic 
improvement for early vigor has been practiced in rice 
for better crop establishment. Caton et al. [26] reported 
that early vigor was a highly repeatable trait among rice 
cultivars. Further, 87% grain yield variation in rice was 
accounted for by vegetative vigor (2  weeks after sow-
ing) in a comparison between weed and weed-free field 
conditions [27]. Therefore, the identification and use of 
suitable donors with relevant traits associated with early 
seedling vigor and variability available in genotypes are 
essential. This helps in selecting traits and designing 
plants for early seedling vigor. However, the introgression 
of seedling vigor into any recipient parent or selection of 
lines with seedling vigor in segregating generations could 
not be achieved with destructive sampling. This limits 
breeding for seedling vigor traits. The absence of a non-
destructive method to estimate seedling vigor hampers 
the whole experiment and creates hurdles in exploiting 
early seedling vigor in rice. Thus, a robust automated 
non-destructive image phenotyping technique will help 
to overcome these limitations in the area of early seedling 
vigor. Seedling vigor has several component traits: bio-
mass accumulation, canopy coverage, plant height, etc. 
These components are traditionally recorded visually and 
in a destructive way [28, 29]. To establish a relation of 
those traits with seedling vigor and to judge the robust-
ness of WPAi, an automated non-destructive phenotyp-
ing technique in rice was developed and the method 
established with genetically diverse rice genotypes. Phe-
notyping using RGB imaging has been designed for field 
crops, often for abiotic stresses (drought, salinity, and 
cold) [15, 30, 31], but, surprisingly, rare attempts were 
made to screen traits such as early seedling vigor.

The necessity of automated image‑based phenotyping 
for seedling vigor
Early seedling vigor is a polygenic trait, and it requires 
measurements of phenotypic data of component traits 
for genetic dissection into smaller manageable and meas-
urable components [32]. Conventionally, early seedling 
vigor assessment involves manual visual scoring, leaf 
area measurement, shoot biomass measurement, etc. 
[28, 33]. Manual methods are labor-intensive, in particu-
lar, the measurements are prone to human error, manual 
data management, and data keeping, and may not be 
suitable for handling a large number of samples. In rice, 

2-week-old seedlings are small and delicate, and often 
lead to error. Therefore, robust and automated phenotyp-
ing platforms that can capture high-quality and reliable 
phenotypic data would be error-free and straightfor-
ward to handle. Image-based phenotyping offers several 
advantages over destructive methods, in which digital 
color images are used to quantify phenotype [13, 14, 34]. 
In our experiment, we established a phenotypic plat-
form with available resources. It saves nearly 80% of the 
time (660 s were required per sample of five plants with 
four persons for observing data by destructive sampling 
method vis-à-vis two persons with 152  s of proposed 
imaging protocol) and ~ 50% on the cost of labor. A popu-
lation developed for early seedling vigor would segregate 
for the early seedling vigor component traits and differ at 
the genic level. Therefore, destructive sampling for early 
seedling vigor populations might lead to a loss in varia-
tion and deviation from a normal probability distribution 
and Hardy–Weinberg law with biased results. There-
fore, image-based phenotyping would overcome those 
constraints to achieve precise phenotyping with better 
reproducibility.

Destructive versus non‑destructive method 
of phenotyping
Data observed by RGB imaging have identified sub-
tle differences between genotypes at both dates (14 
and 28 DAS) of observation, while the same could not 
be achieved with the traditional way of measurement 
observed with respect to 14 DAS (Tables 1, 2, 3, 4). This 
suggests that phenotyping by imaging would be a better 
technique to find differences in the early stage of growth, 
which is dynamic and delicate for manual handling. 
Using destructive sampling, based on a higher growth 
rate, genotypes with seedling vigor were identified and 
were compared and selected through WPAi. This com-
parison was made to understand the potential and accu-
racy of the measurements obtained from RGB imaging. 
Among the destructive methods, CGR and CGR-WPAi 
for shoots (R2 > 74%) and roots (R2 > 45%) were strongly 
related and RGR of shoot and root dry weight with RGR-
WPAi had weak similarity in the selection of genotypes, 
whereas AGR and AGR-WPAi had no similarity. Thus, 
the high magnitude of association for seedling vigor esti-
mated from the biomass-based destructive method by 
CGR can be replaced with the CGR-WPAi technique, 
which was our primary experimental objective. To find 
out the fidelity of the WPAi method, the traditional way 
of sampling was adopted to estimate whole-plant area 
(WPAs) by scanning individual leaf blades and stems. In 
the regression analysis, WPAs and WPAi were strongly 
related (R2 > 83%) on both (14 and 28 DAS) observation 
dates. The relationship between them was very high and 
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WPAi can also be used in place of WPAs (destructive) to 
estimate seedling vigor. Similarly, Hairmansis et  al. [15] 
and Campbell et  al. [35] have identified tolerant rice 
genotypes under salinity by capturing morphological and 
physiological responses by processing RGB images in 
a non-destructive way. They have proved the successful 
introgression of imaging techniques in high-throughput 
phenotyping. Further, they have explained the reliability 
of imaging techniques by the linear relationship between 
fresh weight and projected image area. However, the dry 
weight of samples would always be preferred over the 
fresh weight of samples to avoid variability in moisture 
content among the samples and genotypes. Therefore, 
to comprehend the fidelity of imaging techniques, the 
relationship between WPAi and shoot dry biomass was 
studied. A strong correlation existed between WPAi and 
shoot dry weight at 28 DAS (r = 92, p < 0.01; R2 = 86%) 
and medium association at 14 DAS (r = 0.31; R2 = 9.6%). 
It is optimistic that accuracy might increase with the age 
of the seedlings with more biomass. Therefore, shoot 
area by images would be a good surrogate for estimat-
ing seedling vigor using shoot biomass up to 4 weeks of 
age (Fig. 6a, b) and, further, to determine the relationship 
between WPAi and root dry weight. WPAi of shoot and 
root dry weight was correlated and we could find a strong 
association between them at 28 DAS (r = 86, p < 0.01; 
R2 = 74%) and 14 DAS (r = 0.58; R2 = 34%). This suggests 
that WPA obtained by RGB imaging would also be useful 
for understanding the growth rate of below-ground parts 
of rice seedlings in relative time [36].

Grouping of traits across DAS to determine genotypes 
with higher variability
PCA was carried out for all seven genotypes to identify 
trends among the genotypes and the traits responsible for 
the source of variation for seedling vigor. Nine highly var-
iable traits on day 14 and 10 traits on day 28 govern the 
highest variation among the seven genotypes. Across the 
two observation dates, the traits WPAi, WPAs, maximum 
leaf growth at 28 DAS (6th and 7th leaf area), convex hull, 
and top view area of both observation dates delivered the 
highest variation among 73 seedling traits (29 traits at 14 
DAS and 44 traits at 28 DAS) (Fig. 7a, b). Thus, for the 
image-based measured parameters of whole-plant area, 
convex hull captured the maximum variability (R2 = 0.25 
(14 DAS), R2 = 0.79 (28 DAS)), which has maximum vari-
ation toward WPAi and is considered as an important 
trait for the selection of genotypes for seedling vigor. 
Thus, these traits were highly variable and contributed 
to the selection of genotypes for early seedling vigor and 
are thought to be useful in improving seedling vigor in 
rice through automated image phenotyping. Among the 
traits studied at two different times, the traits measured 

at 28 DAS contributed much to differentiate genotypes. 
Therefore, for the study involved in the identification of 
vigorous genotypes at the seedling stage, the parameters 
observed at 28 DAS by image-based phenotyping would 
be adequate. This would help in circumventing destruc-
tive sampling, thus saving resources, time, and labor 
involved in observing data at two different times. The 
present methodology in combination with the automated 
handling system would efficiently screen the dynamic 
responses of breeding lines in limited time. Further, this 
will help us to understand the mechanisms involved in 
enhancing the growth rate and genes to design a breeding 
program.

Magnitude of component traits in determining vigorous 
genotypes
The digital color image data were used for estimating 
WPAi and had a relationship with the component traits 
of seedling vigor, such as third leaf length (77%), third leaf 
area (51.29%), and stem area (61.33%) at 14 DAS, which 
explained the highest variation for WPAi. Whereas, at 28 

Fig. 6  Result of linear regression analysis showing the medium 
association between morphological traits (shoot and root dry weight) 
and WPAi of 14-day-old seedlings. a Shoot dry weight vs WPAi, b Root 
dry weight vs WPAi. The line indicates the fitted results representing 
the relationship between morphological traits and WPAi, WPAi 
whole-plant area by non-destructive imaging
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DAS, fifth and sixth leaf area (77.79% and 53.25%, respec-
tively), stem weight (82.30%), and tiller number (79.80%) 
had a higher magnitude of regression for WPAi. Leaf area 
at both 14 and 28 DAS seems to be a major determinant 
to predict genotype performance; in particular, the recent 
fully expanded leaves were found to have a higher con-
tribution. This is in line with Hairmansis et  al. [15] and 
Nguyen et al. [37], who reported that leaf traits would be 
the best predictor in identifying the performance of field 
pea and rice, respectively. This confirms that the physi-
ologically active and fully expanded leaves could be used 
as representations to predict early vigor in rice. Shoot 
length at 14 and 28 DAS had a different level of contribu-
tion toward WPAi. Variation in shoot length at 14 DAS 
(0.95, p < 0.01) had a greater contribution toward WPAi 
than shoot length at 28 DAS (− 0.19 ns) and vice versa in 
the case of geometric traits observed by image analysis 
(caliper length, eccentricity, convex hull, and top view 
area). This might be due to the variation for shoot length 
expressed by genotypes at 14 DAS that was significantly 

different at 1% (Tables 1, 2), while at 28 DAS it had sig-
nificance at 5%.

Understanding the association between traits would 
help to identify target genotypes with the surrogate traits. 
Length, width, and area of the leaf at each level made a 
different contribution toward WPAi in determining vig-
orous genotypes. Third leaf length at 14 DAS had a posi-
tive relationship with WPAi and explained 77.64% of 
WPAi variation in comparison with early formed leaves 
(first and second leaf ). The weak association of first and 
second leaf length with WPAi might be due to their tiny 
nature and their decreased visibility in the image. On 
the other hand, the increase in leaf area of early formed 
leaves (first and second) had a positive correlation with 
root length. In the present experiment, leaf number had 
a strong positive association with biomass. The rise in 
the number of leaves in the early stage of seedling growth 
would be due to an increase in tiller number; ultimately, 
that would increase biomass. Further, an increase in 
leaf number would have a cascade positive effect on top 
view area, caliper length, and convex hull. The enhanced 
convex hull area increases ground cover by the canopy, 
which will have ample access to water and fertilizer. 
The existence of temporal and genotypic differences in 
canopy cover is considered an important trait for distin-
guishing genotypes with early vigor [38]. Good ground 
cover increases the weed smothering effect, provides 
ample access to fertilizer and water [39], and decreases 
loss of water by covering the ground. However, the 
increase in leaf number had a negative association with 
compactness and leaf width. This is in line with Rich-
ards [40]: the high rate of canopy cover was associated 
with an increased rate of tillers rather than leaf expan-
sion. According to the ideal plant type concept, the plant 
should be compact in nature with few productive tillers 
and broad leaves. The ideal plant type concept would be 
more suitable for an ecosystem in which there is no weed 
competitiveness. The same concept would not be appro-
priate for an ecosystem in which weed competitiveness is 
a regular phenomenon, as in DSR. Therefore, a genotype 
with early seedling vigor accumulating high biomass and 
having enhanced convex hull and evenly spaced leaves 
with minimum compactness would be more suitable. 
A compact plant type would always have overlapped 
leaves with a 45-degree angle to avoid shade effects for 
more light interference. Genotypes with a better convex 
hull and evenly spaced narrow leaves with decreased leaf 
width and decreased shade effects for the contemporary 
leaves for proper light interference to improve photo-
synthesis would be preferred. Therefore, these geometric 
traits might play a big role in studying the architecture of 
the plant.

Fig. 7  Result of linear regression analysis showing a strong 
correlation between morphological traits (shoot and root dry weight) 
and WPAi of 28-day-old seedlings. a Shoot dry weight vs WPAi, b Root 
dry weight vs WPAi. The line indicates the fitted results representing 
the relationship between morphological traits and WPAi, WPAi 
whole-plant area by non-destructive imaging
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At 14 DAS, GM-217 and Vandana attained maximum 
growth with more leaves and increased shoot length 
and biomass. The high biomass and leaf number had 
increased the WPAi, top view area, eccentricity, and con-
vex hull. This had allowed the genotypes to secure the 
top position while their growth rate from 14 to 28 DAS 
slowed. Genotypes LB-46 and Varshadhan had gained a 
pronounced growth rate by increasing tiller number. The 
increase in tiller number eventually increases leaf num-
ber, biomass, WPAi, top view area, convex hull, caliper 
length, and leaf area of terminal leaves. This helps the 
genotypes to be more vigorous at 28 DAS. The increase 
in top view area and convex hull enhances ground cover. 
Thus, the enhanced soil cover improves the weed smoth-
ering effect. Further, the increase in the size of the can-
opy (caliper length) and leaf area augments ground cover. 
These types of geometric trait data are difficult to gener-
ate through manual systems and are time-consuming [9].

A comparative study was done between the destruc-
tive and non-destructive methods to identify genotypes 
having high seedling vigor. Overall, LB-46 was found 
to be a common genotype across the methods used to 
judge the genotypes, with the highest seedling vigor. Var-
shadhan and AC38399 were identified as the next best 
genotypes by WPAi, while the traditional method identi-
fied GM-217 and Varshadhan as the next best perform-
ers. The variability in the position of genotypes between 
WPAi and the traditional method might be due to the 
handling of different plant samples of the same variety at 
a relative time. In addition, their growth rate and man-
ual handling of 2-week-old small seedlings would cause 
some errors. Therefore, the image analysis technique was 
found to be a very effective determinant of seedling vigor 
without human interference. These variations were eas-
ily captured through WPAi and chances of human error 
could be decreased in such cases. Further, the traditional 
way of estimating vigor in the case of often and highly 
cross-pollinated crops would not be more reliable. There-
fore, WPAi has quite a few advantages and can be used at 
any stage of seedlings across different crops. On the other 
hand, we found some minor differences in the ranking of 
genotypes at 14 and 28 DAS between WPAi and WPAs. 
These differences in the ranking of genotypes between 
imaging and scanning might be due to the overlapping 
of leaves during imaging and some unexposed area of 
droopy leaves.

Methods
Plant materials
Seven rice (Oryza sativa L.) genotypes of improved and 
traditional lines, LB-46, GM-217, AC38399, ARC10656, 
Vandana, Sabita (NC492), and Varshadhan, were used 
in this study. Varshadhan and Sabita were developed at 

the International Rice Research Institute (IRRI), Philip-
pines, and in Chinsurah, West Bengal, India, respectively, 
for the semi-deep ecosystem. Vandana was developed 
for upland conditions by ICAR-National Rice Research 
Institute (NRRI). ARC10656 and GM-217 belong to 
traditional rice collections of Assam and Tamil Nadu, 
respectively. LB-46 was the progeny of Oryza sativa x O. 
nivara, developed by NRRI, Cuttack.

Seed selection and sterilization
Seeds of all the genotypes were grown and harvested in 
the wet season of 2017 and packed separately for dry-
ing. All the genotypes were sorted by uniform seed size 
and underwent heat treatment to break seed dormancy. 
The seeds were kept in a hot-air oven at 50  °C for 45 h. 
Later, the seeds were surface-sterilized with 75% ethanol 
for 1 min. These seeds were further sterilized with 2.5% 
sodium hypochlorite for 20  min and washed five times 
with sterile distilled water to remove any traces of steri-
lizing agent.

Growing conditions and experimental design
Five seeds of each genotype were sown into a pot (white 
color, 20 cm height × 15  cm diameter) containing 2.5  kg 
of clayey loam without any external fertilizer. Each geno-
type was raised in five pots with five biological replicates. 
The spacing between plants was maintained at 20 × 15 cm 
to simulate the recommended spacing for direct-seeded 
conditions. Therefore, pots were arranged in such a way 
to have 20 cm between rows and 15 cm within rows. After 
one week, the seedlings were thinned to a single seedling 
per pot by maintaining sufficient moisture with a proper 
drainage hole at the base. The experiment was conducted 
in the net house at NRRI (20°27′09″ N, 85°55′57″ E, 26 
masl), Cuttack, during March 2018. The plants received 
13 h/11 h of day/night cycle. The average temperature in 
the net house was 33 °C in the day and 23 °C at night, with 
an average light intensity of ~ 1200 µmol m−2 s−1 during 
the observation period.

Image capture and analysis
At 14 and 28 DAS, images of five biological replicates 
per genotype were captured, and the same set of plants 
was used to measure the morphometric data to estimate 
growth parameters on the same day. Three different tech-
niques were followed to measure the morphometric data 
of the whole plant: (1) non-destructive imaging and (2) 
two versions of destructive growth analysis.

Method‑1: Non‑destructive imaging
In the first method, data were observed non-destruc-
tively on a whole-plant basis using a 12-megapixel 
Nikon camera (RGB images) at a distance of 1.5  m. 
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To have a uniform background, the potted plant was 
placed over a raised platform having a dark background 
behind and over the platform. High-intensity artificial 
light was used to obtain a uniform background effect 
and strong wind or airflow was checked to avoid move-
ment of leaves during imaging. A known scale indica-
tor/ruler was placed above and adjacent to the pot to 
calculate the leaf/whole-plant area with proper labe-
ling. Three colored images per plant were captured 
from the top of the plant and two from either side of 
the plant at 90° (Fig.  8). A uniform distance between 
plant and camera, camera setting, and background light 
were maintained throughout the imaging process.

The recorded images were processed using Image J 
software. In brief, the respective image was cropped to 
remove any excess area on all four sides by retaining the 
potted plants. To assess the green portion of the plant, the 
cropped image was used to separate the plants from the 
imaging background by selecting the color threshold. To 
identify the plant as a whole and to remove any further 
noise, all portions of the plant were highlighted using hue, 
saturation, and brightness (Fig. 9). Using the known indica-
tor, the whole-plant area/desired portion of the plant was 
converted from pixels to square millimeters. The summed 
area of all three images (top and two side views) was used 
to estimate the whole-plant area (WPAi) and expressed in 

Fig. 8  Representative images of cv. LB-46 were taken at 14 and 28 days after sowing (DAS). a, d Front (side) view of RGB images at 14 and 28 DAS, 
respectively. b, d Rear (opposite) view of RGB images of the same plants shown in a, d. c, f Top view RGB images at 14 and 28 DAS, respectively. 
Convex hull, white line enclosing plants (c, f)
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square millimeters. Additionally, geometric traits such as 
convex hull, compactness, caliper length, and eccentricity 
were determined from the top view image (captured from 
the top of the plant) as described by Neilson et al. [9]. The 
observations collected from imaging were used to calculate 
relative (RGR​i), absolute (AGR​i), and crop (CGR​i) growth 
rate of the plants. The growth rate was calculated using the 
average of final and initial WPAi, simulating the way the 
growth rate was calculated for the destructive method.

 where A1 and A2 are the whole-plant area at times t1 and 
t2, respectively, i = image-based, loge = natural logarithm, 
and P = spacing (m2).

RGRi =
(

loge A2 − loge A1/t2 − t1
)

mm2day−1

AGRi = (A2 − A1/t2 − t1) mm2day−1

CGRi = (A2 − A1)/P(t2 − t1) mm2m−2day−1

Method‑2 and ‑3: Destructive growth analysis
The plants used for imaging were uprooted and the roots 
were washed to record morphometric traits. This was fol-
lowed by the same plants being used for the destructive 
method. The leaves were meticulously cut from the stem 
and placed between the paper pages of a clean notebook 
to maintain their shape. Later, the leaves and stem were 
scanned using a flatbed scanner with a ruler to calculate 
the leaf/whole-plant area using Image J software. The 
scanned images were used to estimate the area of each 
leaf and stem following the steps adapted to convert pix-
els to square millimeters as described earlier in the sec-
tion on image capture and analysis. Traits such as tiller 
number, number of leaves, stem thickness (mm), shoot 
length (mm), root length (mm), shoot dry weight (g), root 
dry weight (g), specific leaf weight (g), and stem weight 
(g) were manually observed, while specific leaf length 
(mm), width (mm), and area (mm2) and stem area (mm2) 
were measured from scanned images of the flatbed 

Fig. 9  The workflow illustrates the steps involved in the phenotyping of early seedling vigor (ESV) in rice. The images (RGB) of the whole plant in 
three different views were captured through a 12-megapixel Nikon camera and were processed using Image J software. Each of the images taken 
from one top view and the other two side views was stored in JPEG format. These images were uploaded into Image J and followed by image 
pre-processing, which includes image cropping, maintaining the threshold level of color intensity and adjustment of brightness, and setting the 
scale measurements. Image post-processing was involved mainly in selecting the desired portion of the plant area and converting it into a binary 
scale of color to establish a specific value. The selected portion of the image area was converted from pixels to square millimeters. Following that, 
the summary of three images (top and two side views) of crop area was used to estimate the whole-plant area (WPA) and expressed in square 
millimeters. These overall steps of pre- and post-processing of each image were followed to calculate WPA. Other than WPA, the top view image was 
used for calculating geometric measurements such as convex hull, compactness, caliper length, and eccentricity



Page 17 of 18Anandan et al. Plant Methods          (2020) 16:127 	

scanner by destructive sampling. The summed area of all 
leaves and stems observed from the scanned images was 
used to estimate the whole-plant area (WPAs). In addi-
tion, the area of a single leaf blade calculated from the 
scanned image was compared with the biomass of the 
respective leaf and WPAi to understand the relationship 
and percentage of variation contributed by them toward 
WPAi.

All three methods were compared to assess the fidel-
ity of the data obtained through the imaging process. To 
assess the growth rate of seedlings, absolute growth rate, 
relative growth rate, and crop growth rate were calcu-
lated accordingly:

 where h1 and h2 are plant height at times t1 and t2, 
respectively, and m = manual method.

RGR was determined by using the dry weight of peri-
odical observations and represented as mg g−1 day−1. 

 where W1 and W2 are plant dry weights at times t1 and 
t2, respectively.

CGR was calculated by measuring plant dry weight at 
a regular interval of time divided by land area and repre-
sented as g m−2 day−1:

 where W1 and W2 are plant dry weights at times t1 and 
t2, respectively, and P = spacing (m2).

Linear regression was estimated between WPAi and 
seedling traits using MS Office Excel 2016. Principal 
component analysis (PCA) was performed with 29 traits 
at 14 DAS and 44 traits at 28 DAS to estimate the vari-
ability among genotypes and traits. Biplot figures explain 
the variances of the variables and correlation between 
the variables through vectors and similarity between 
genotypes in the multivariate space based on the nature 
of growth rate [41, 42]. These analyses were performed 
using Windostat 7.5 software.

Conclusions
In the present experiment, the non-destructive-based 
imaging technique captured the dynamic responses of 
plants in the early stage and revealed significant differ-
ences across genotypes. Consistency in the ranking of 
genotypes across different methods and a strong correla-
tion between morphological and image-associated traits 
confirm the reliability and reproducibility of the pro-
posed method. The proposed imaging technique and the 
identified geometric traits convex hull and top view area 
were found to be significant in determining promising 

AGRm = (h2−h1)/(t2−t1) mm day−1

RGRm =

(

loge W2 − loge W1

)

/(t2 − t1)

CGRm = (W2 −W1)/P(t2 − t1)

genotypes for early seedling vigor during the initial phase 
of plant establishment. Further, the method saves 
resources, time, and labor by validating that the param-
eters observed at 28 DAS are adequate in identifying vig-
orous genotypes. This has raised confidence that imaging 
techniques have the potential to identify and differentiate 
small differences that are considered as phenotypically 
identical and difficult to distinguish by unidentifiable 
traits through conventional measurements. To capitalize 
on the present non-destructive imaging technique as a 
high-throughput to handle more samples in a given time, 
the method needs to be fully automated. This would ena-
ble integrating the platform as a tool with the forward 
genetics approach in the identification of QTLs/genes for 
the traits identified under this system for possible future 
improvements in the study area of direct-seeded rice.
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