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Abstract

Background: Hot-spot based examination of immunohistochemically stained histological specimens is one of the
most important procedures in pathomorphological practice. The development of image acquisition equipment and
computational units allows for the automation of this process. Moreover, a lot of possible technical problems occur
in everyday histological material, which increases the complexity of the problem. Thus, a full context-based analysis
of histological specimens is also needed in the quantification of immunohistochemically stained specimens. One of
the most important reactions is the Ki-67 proliferation marker in meningiomas, the most frequent intracranial
tumour. The aim of our study is to propose a context-based analysis of Ki-67 stained specimens of meningiomas for
automatic selection of hot-spots.

Methods: The proposed solution is based on textural analysis, mathematical morphology, feature ranking and
classification, as well as on the proposed hot-spot gradual extinction algorithm to allow for the proper detection of
a set of hot-spot fields. The designed whole slide image processing scheme eliminates such artifacts as
hemorrhages, folds or stained vessels from the region of interest. To validate automatic results, a set of 104
meningioma specimens were selected and twenty hot-spots inside them were identified independently by two
experts. The Spearman rho correlation coefficient was used to compare the results which were also analyzed with
the help of a Bland-Altman plot.

Results: The results show that most of the cases (84) were automatically examined properly with two fields of view
with a technical problem at the very most. Next, 13 had three such fields, and only seven specimens did not meet
the requirement for the automatic examination. Generally, the Automatic System identifies hot-spot areas, especially
their maximum points, better. Analysis of the results confirms the very high concordance between an automatic
Ki-67 examination and the expert’s results, with a Spearman rho higher than 0.95.

Conclusion: The proposed hot-spot selection algorithm with an extended context-based analysis of whole slide
images and hot-spot gradual extinction algorithm provides an efficient tool for simulation of a manual examination.
The presented results have confirmed that the automatic examination of Ki-67 in meningiomas could be
introduced in the near future.
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Background

The quantitative examination of histological tissues sub-
ject to immunostain tests is a basic method of recognizing
a tumour, choosing optimal therapy and defining the
prognostic indicators. One of the most important markers
is the proliferation marker Ki-67/MIB-1. The value of this
marker reflects the rate of tumour cell proliferation, and
indicates the speed of tumour growth, as well as the
degree of malignancy. In this study, we focus on central
nervous system tumours. Meningiomas, which are the
most frequent primary intracranial tumour, can be differ-
entiated by the proliferation index into meningothelial
(WHO 1), atypical (WHO 1II), and anaplastic (WHO I1I).
The index can also provide prognostic factors, as well as
correlate with tumour recurrences [1, 2].

The methodology of the quantitative evaluation of
tumour proliferation marked via Ki-67 stain is still under
debate and there is no full agreement on any single
strategy. This problem, with a lot of possible influences on
resultant indicators, was discussed in [2]. However, due to
the most frequent assumptions in the WHO classification,
as well as restrictions in manual (greater) and automatic
(lesser) examination, we should select a set of high power
fields of view (FOV). These fields are called hot-spots and
they serve as a base to calculate the Ki-67 index.

In routine diagnostic practice, representative hot-spot
areas are manually selected by histopathologists using
visual examination of Ki-67 immunostained specimens
at a low magnification (both, in microscope or virtual
slide). This process might lack reproducibility and affect
the Ki-67 due to the subjectivity of evaluation [3, 4].
First of all, the histological criteria of hot-spot selection
are flexible. The selected fields should represent areas of
high Ki-67 index, but also different tumour localizations.
Also, in tumours of the central nervous system, the bor-
dering regions are suggested where the high power fields
indicated in the WHO recommendation reflect high
concentrations of tumour cells [1]. So, this ambiguity
complicates the selection of the proposed procedure.
Finally, the influence of many factors, such as the ex-
pert’s experience, fatigue, previously viewed preparations
and external factors, is also significant.

Recent developments in microscopic glass scanners, as
well as easily accessible computational machines (comput-
ing servers, clouds, power computers with advanced
graphical units) have led to the increased potential of
digital pathology. The goal has changed from single image
processing to whole slide image (WSI) analysis. While a
lot of algorithms for cell segmentation and counting in
the images are described in the literature [5, 6], the
approaches to hot-spot finding in whole slide images are
still under design. Most of these address the analysis of tis-
sues treated with a standard Hematoxylin & Eosin stain
[7, 8]. Recently, an algorithm for microvessel analysis has
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been described [9] and [10], where the authors present a
method for increasing the visibility of the positive nuclei
on low resolution images. However, hot-spot fields are still
selected manually. In another recent paper [11], the auto-
mated selection of hot-spot algorithms was proposed. The
adaptive step finding technique has been applied to in-
creasing the computational efficiency and performance of
hot-spot detection. Despite this significant progress, the
problems of artifacts, specimen quality, and spatial distribu-
tion of the selected hot-spot fields were not discussed in
this paper. Indeed, one of the significant problems in whole
slide examination is the occurrence of areas of hemor-
rhages (vs. erythrocytes both intravascular or extravasated),
and vessel walls, which are also stained with brown. There-
fore, there is a need to differentiate these from the areas of
tumour proliferation. Next, the folds are present in a lot of
specimens, even the most carefully prepared. They are the
natural effect of specimen cutting (formerly curling and
straightening of a tissue section). Their presence can also
interfere with the automatic examination of WSL

Despite the question of quality mentioned above, the
problem of the spatial distribution of the selected hot-
spot fields is also very compound. Some solutions to the
specific tasks of hot-spot selections were presented in
our previous studies [12—14]. In this paper, we develop
them with the algorithm of specimen fold detection, ves-
sel elimination, small artifact caused error prevention,
and the WSI processing strategy to offer a complete sys-
tem for automatic hot-spot selection in Ki-67 stained
meningiomas specimens. The solution is based on math-
ematical morphology, texture analysis (Unser and Local
Binary Patterns approaches), different color representa-
tions and penalty functions. A comparison of automatic
results with experts’ Ki-67 examinations is also included
and discussed.

Methods

The 104 analyzed cases come from the archives of the
Department of Pathomorphology from the Military In-
stitute of Medicine in Warsaw, Poland. The cases come
from the last 5 years. The data collection was approved
by the IRB of the Military Institute of Medicine. The Ki-
67/MIB-1 immunohistochemical stained procedure was
performed using Dako Autostainer Link and the follow-
ing chemicals: FLEX Monoclonal Mouse Anti-Human
Ki-67 Antigen Clone MIB-1 Ready-to-Use (Link) ref no.
IR626 from Dako. The staining was visualized using
EnVision™ FLEX Target Retrieval Solution from Dako,
according to the procedure described in the user man-
ual. Most of the selected cases had Ki-67 staining per-
formed on the day of examination, and only a few of
them have recently completed markers. A 3DHISTECH
Pannoramic 250 Flash II scanner was used in the WSI
acquisition process. The whole slide images were
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acquired under a 20 x lens with an effective resolution of
0.38895 pm per pixel. Digital images were reviewed
using Matlab software and a dedicated OpenSlide library
[15] to read WSI files. To ensure comparability of the
area examined by the expert in the microscope as one
field of view and the area of quantification chosen from
digital WSI, the size of the rectangle which covered the
same area as the microscopic circular FOV was deter-
mined. On the assumption that the microscopic field of
view at 400x magnification represents around 0.12 mm?®
of a tissue, the size of the digitized FOV was 1024 x
766 pixels.

General WSI processing scheme

The automatic hot-spot detection in the WSI requires a
number of processing steps before the actual analysis of
spatial immunopositive cell concentration. We can enlist
such tasks as the creation of a specimen map, detection of
hemorrhage/erythrocyte areas and folds of tissue, if
present, and segmentation of immunopositive cells to
build a map for their spatial distribution analysis. In our
opinion, the original full resolution is not the best solution
to perform such processing. So, first, the reduced reso-
lution images directly available in mrxs format were stud-
ied to select the most appropriate one from the point of
view of the accuracy of the result and low computational
time. As mentioned in paper [14], the most useful is the
eight-fold reduction of WSI resolution that still preserves
the possibility of the recognition of specific cells. Thus,
hot-spot detection is effectively realized on images of a
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size of about 17 000 x 7 000 pixels and depends on the
settings of the scanning area in scanner software. Exam-
ples of WSI and FOVs are presented in Fig. 1, where A
and B present FOVs with low levels of Ki-67 reaction, and
C presents an example of a hot-spot area.

The sequential processing steps of automatic hot-spot
detection are ordered in the flow diagram presented in
Fig. 2. While some of them must be processed in serial
manner, others can be realized in parallel processing.
This technique allows for a significant reduction of pro-
cessing time, but the final implementation depends on
the computing machine (number of cores and type of
GPU). The specific processing steps with this method
are described below.

Only a few steps of the proposed algorithm were pre-
sented in the preliminary papers [12—14, 16]. They were
verified on an initial limited data set (10-15 cases) and
their parameters were adjusted. There were focused on
hemorrhage [12] and specimen fold [16] detections based
on the textural features. Now, we extend our artifact de-
tection machine for a vessel wall elimination procedure.
Moreover, color artifact elimination was designed and
added to prevent false immunopositive cell extraction. All
these steps are proposed based on an extensive analysis of
a hue dataset to discover as many artifact problems as
possible that could occur in WSI processing.

Creation of the specimen map
In the first step, a map of the specimen is created. The
output WSI obtained from the scanner covers the

Fig. 1 An example of WSI with FOVs (a,b,c)
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Fig. 2 The general diagram of the hot-spot algorithm
A

scanned area in different colors representing a tissue
and white outlined margin. The non-scanned areas are
represented in black color (zero values in RGB represen-
tation respective to three color channels). Thus, all black
pixels of WSI are recognized as a non-tissue region. The
remaining region is thresholded and morphologically
filtered [17]. The map of the specimen is based on the
differencing image of B and R color components from
the RGB color space, which was processed with the Otsu
thresholding method [18]. Thereafter, morphological
filtration is applied. This includes operations such as
dilation and erosion with a small structural element (a
disk 5-8 pixels in size), and removal of small holes and
structures via an imfill operation to obtain a coherent
map of the tissue.

Texture description and classification

The detection of hemorrhage areas (vs. erythrocytes
both intravascular or extravasated) and folds is the most
crucial step to obtain a high level of accuracy from
quantitative examination of specimens. Although we do
not face these problems in all specimens, if they occur,
the detected hot-spot fields can represent hemorrhage/
erythrocytes instead of proliferation cells. This is because
in some cases blood cells react with the antigen and are
stained in brown as immunopositive tumour cells. Thus,
their elimination from the region of interest is necessary.
Also, a tissue fold disfigures real cell distribution which
may result in local overestimation of immunopositive
cell concentration. To detect such unwanted regions,
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local texture descriptions are created. Two methods
were used: Unser features [19] and Local Binary Patterns
(LBP) [20-22].

The Unser textures is a method which is based on the
normalized probability applied to the pixel intensity of the
image. The modified formulas of Unser features are based
on the histograms of the sum and difference of images [19],
which are counted locally in each pixel on examination of
its neighborhood region ) [12, 14]. In such a manner, the
following features are counted: mean, variance, homogen-
eity, contrast, energy, correlation, cluster shade and cluster
prominence. In this textural description, the parameters of
resolution and radius influence the characterization of the
local structures in specimens. In the case of a radius which
is too small, the impact of surroundings is slight, and as a
result the heterogeneity is strong.

An illustration of this problem is included in Fig. 3
where examples of Q regions with the radius of 8, 10 and
12 pixels are imposed on three types of specimen struc-
tures: tumour, blood, and fold. The optimal radius of re-
gions for the best representation of these textures should
be within this range. Please be aware that the resolution
should be so selected, so the objects (such as the nuclei of
tumour cells) are represented by at least a few pixels.

The second type of texture description was the Local
Binary Patterns method. The LBP method, presented in
[20-22], has recently gained a wide range of different
applications in image processing [23—25]. This method is
based on the assumption that texture has two comple-
mentary aspects, a pattern and its strength. In [21] it is
presented in the more generic, revised form of the LBP
operator, without limitations to the size of the neighbor-
hood and to the number of sampling points. We have a
few different forms of LBP available, such as: uniform LBP,
rotation-invariant LBP or uniform rotation-invariant LBP.
The advantage of LBP is its efficiency of analyzing tex-
tures. The LBP method has a simple theory and combines
properties of structural and statistical texture analysis
methods. Paper [26] showed that it is preferable to use ro-
tational invariant features for the analysis of the given
biological structures, mostly anisotropic. In this method, a
set of points around the central pixel distributed with a

a SRMRC ARG bl
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Fig. 3 Example Q regions with the radius of 8, 10, and 12 pixels imposed on three types of specimen structures: a tumour, b blood, and ¢ fold
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selected radius distance is also taken into account. The
number of points affects method sensitivity and specificity
to recognize a compact structure and has a significant im-
pact on computational time. Figure 4 presents an example
of the distribution of sampling points with a radius of
12 pixels over the same specimen structures as in Fig. 3.

The crucial problem for a useful textural description is
the choice of color components. The color components
used should allow differentiation between regions such
as tumour, hemorrhage/erythrocytes and fold irrespect-
ive of the percentage of immunopositive cells. In previ-
ous studies [12, 16] we observed the significant impact
of RGB components on the variability in values of tex-
ture characteristics. In paper [12] we proposed a method
to image color representation, independent of the per-
centage of immunopositive cells. This method is based
on introducing an additional color representation in the
form of a sum of u (from CIE Luv color space) multiplied
by 512 and C (CMYK color space) components. In order
to describe the analyzed textures, the texture features were
determined for each analyzed color component.

Not all features are useful in the classification process.
The Fisher’s linear discriminant [27] was applied to
assess the suitability of individual features. For data clas-
sification (tumour area, hemorrhage/erythrocytes, and
fold), the Support Vector Machine (SVM) with Gaussian
kernel function [28] was applied [12, 16]. It should be
noted that one SVM is able to separate data into only
two labeled classes.

Hence, three classes were taken into account: firstly, one
SVM classifier was applied to differentiate between the
tumour and hemorrhage/erythrocytes, and later elimination
of the unwanted structures, the second SVM classifier was
applied for possible fold detection in the tumour area.

The important aspect is good correlation between a
tissue, the texture features and class. So, very important
is how learning data were prepared. The data lying in
margin regions can have an adverse influence on the
class separation of the hyperplane of SVM. This problem
is observed especially in the differentiation between
hemorrhage and tumour. Indeed, the hemorrhage fre-
quently penetrates the tumour region, and the border
between these two is ambiguous. To present data for
specific class clearly a slightly larger radius (higher data
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integrity within classes) is used in the learning process
than in testing mode. In such a way, the SVM classifiers
obtained a greater ability to adapt to the non-linear
border between the regions.

Vessel wall detection

In some specimens, an immunopositive reaction is also
observed in the vessel walls. Although this should be
recognized as an artifact, the repetition of acquiring such
specimens in most cases cannot eliminate the problem.
Thus, the examination must be performed with this
artifact taken into account. The essence of the problem
lies in the fact that vessel walls stained with brown can
be classified as immunopositive cells. Thus, they should
be eliminated from the image before the immunopositive
cell segmentation step. In order to detect and eliminate
them from the image, we propose a solution based on
the LBP texture description (see above for details) and
the Combination of Receptive Fields (CORF) method
[29, 30]. The CORF model is inspired by the biological
role of simple cells. This method can be used for
contour detection, based as it is on contrast changes
[29-31]. Combination of these two methods allows for
the detection of vessel walls of different shapes and color
intensity. Figure 5 presents a schema of the algorithm
for vessel detection.

The proposed processing was performed for the Y
component from the CMYK color space. This color
component allows for the best differentiation of the ves-
sel walls in the image. In the first step, we detected ves-
sels based on the LBP texture analysis method. In order
to achieve a coherent wall image, we applied mean filtra-
tion, thresholding, and mathematical morphology opera-
tions. In the second step, we detected vessels based on
the CORF method combined with thresholding and
mathematical morphology operations. The mathematical
morphology operations allow for the elimination of
small structures from the final image. Images obtained
in previous steps were combined in one map, which in-
cludes detected vessels. As a result, we achieved an
image map with vessels. Based on this, we were able to
eliminate this area from the processed WSI area. Exam-
ples of vessels walls in the image, and a detected vessel
wall map are presented in Fig. 6.

=

Fig. 4 An example distribution of sampling points on the same specimen structures as in Fig. 3: a tumour, b blood, and ¢ fold
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Fig. 5 Diagram of vessel wall detection algorithm

Immunopositive cell segmentation

The last step before the analysis of the local cell concentra-
tion to hot-spot detection was an immunopositive cell seg-
mentation. For this step, only those regions previously
recognized as tumours without hemorrhages and folds were
considered. To recognize immunopositive cells different ap-
proaches have been proposed in the literature [5, 6, 32].
However, in our case the reduced resolution of the image
had such an effect that the specific cell nuclei were repre-
sented by only a few pixels (e.g. four or six pixels) with sig-
nificant blurring. Thus, a complex analysis, such as area,
texture, shape, etc., was impossible. The simple method for
cell segmentation is thresholding of the most differentiating
color channel. However, the difference between the intensity
of immunoreaction around the whole slide and between the
different WSI made it difficult to choose the proper thresh-
old value.

The above restrictions led to the application of an ex-
tended regional extreme [17] approach (from a family of
mathematical morphology methods) to recognize the
immunopositive cells. This transformation is defined as
recognizing extreme regions where the values are higher
(maxima) or lower (minima) then the surrounding areas by
a selected /1 value. So, each regional extreme (point or set of
points with the same value) is adapted for the surrounding
region whose value equals the value of the extreme reduced
by 4. In this manner, local property regions are utilized, but
without the control of the object areas.

The natural approach to extended regional maxima is
commonly selected to recognize objects, in our case
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immunopositive cells. However, area composed of a set
of merged immunopositive cells, or selection of too low
h value can lead to recognition of overestimated of ob-
ject areas. The selection of higher / value effects omit of
low immunoreactivity cells. Therefore, we applied the
inverse of extended regional minima transformation,
which leads to the expected results. In such a manner,
the non-immunoreactive region of the tumour image
(background and immunonegative cells) can be recog-
nized as an extended regional minima with a cut-off of
immunopositive cells. Thus, this approach was applied in
our solution. In such a manner an immunopositive cell
concentration map was obtained, after relocating each rec-
ognized object to its central point. Examples of tumour re-
gions with an altitude map of utilized color channel
(luminance from Luv color space) and cut-off plane for
both approaches and results are presented in Fig. 7.

As can be observed, based on the regional minima
transform most immunopositive cells can be segmented
without overestimation of their areas. The number of rec-
ognized cells relates to the intensity of reactions in separ-
ate cells and can be controlled by the selection of / value.
In contrast, the regional maxima transform returns some
cells with overestimated areas and with the selection of
the lower / value, and the separation of cells can be lost.

Color artifact elimination

In the studied WSI a color artifact was sometimes visible
in the processed FOV. Such an incident can significantly
destabilize the image processing, especially color
standardization, its transformation to other color spaces,
and have an effect on morphological processing itself.
We observed that a small color artifact can change the
range of luminance representation of an FOV.

The proposed solution for artifact presence is to elim-
inate the portion of the lowest values of luminance in
the FOV representation. We selected this percentage,
5 %, as a universal value in cases, where an artifact is
not dominant in the image. This procedure is applied to
each processing image. The detection of an individual
artifact is performed by comparison of minimal values of
luminance with its value after cut-off of 5 % of the
lowest values.

a 2 b
e

Fig. 6 An example of vessel walls on an image (a), a map of detected vessel walls (b), and detected vessel walls (c)
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Fig. 7 Example tumour region (a) with an altitude map of a utilized color channel (b) and cut-off plane for extended regional maxima (c) and
minima (e) with the results of segmentations (d and f, respectively)
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Selection of hot-spot fields - hot-spot gradual extinction
algorithm

Hot-spots are located in the area with the highest con-
centration of immunopositive cell nuclei. An image of
density distribution is used to detect the localization of
these fields. The density map was created by counting
the number of objects in each window (FOV) on the
binary cell mask. In real cases, it is possible that the
dominance proliferative Ki-67 index exists only in one
area or in a few different areas. In all cases, selected hot-
spot fields should represent diverse localizations with a
high proliferation index. In order to prevent hot-spot se-
lection only in particular area, we propose a solution
called the “hot-spot gradual extinction algorithm,” which
uses the penalty function first defined in paper [13]:

1

penalty = l—pz 0E
" (Ve 4 o)

Based on this function, the value of each hot-spot
candidate in (x,y) coordinates is reduced with a penalty
factor. This factor relates to the number and distance
from the selected hot-spot FOV (x;,;). Thus, a region that
is represented by a few selected FOVs can have its value
decreased, so that other regions will be able to gain in
value. This process is increased through hot-spot selec-
tion, so we term this the “gradual extinction” of regions.

As a result, factors such as localization and the prolifera-
tion index are necessary for correct hot-spot selection. The
proposed solution with the penalty factor allows for hot-
spot selection in diverse examples of specimens. If one area
dominates, the proposed solution allows the selection of
hot-spot fields from various localizations of the tumour.

Simultaneously, if other regions have significantly
lower Ki-67 levels than the dominant region, the hot-
spots will still be selected from the dominant region.
Another matter that should be discussed is what speci-
men size should be taken into account in this process. It
is possible and justified to take this factor into account
during the penalty function and/or in terms of the num-
ber of fields selected fields for Ki-67 counting in a speci-
men. The following solutions can be proposed:

e If the area of the specimen is lower than the
summarized area of 500 FOV, the number of selected
hot-spot fields is restricted to (specimen_area/

FOV _area)*20/500.

e In other cases, the standard procedure is applied

e If the specimen has a low compact area, the penalty
factor can be reduced.

For the latter solution, the reference value of the speci-
men area and radius must be selected. The margin value
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is set to 100 FOV (area) and six radiuses of a circular
field with an area equal to one standard FOV. If any of
these candidates is not fulfilled, the penalty factor is re-
duced in the same proportion as the ratio of the effective
area or radius to the reference value mentioned above.

In order to determine the Ki-67 index, each hot-spot
field is quantitatively analyzed on full resolution images
with the algorithm described in [33].

Statistical analysis

With the aim of an evaluation of the concordance be-
tween the semi-automatic and automatic examination of
Ki-67 proliferation index in WSI, the Spearman’s rho
correlation coefficient and Bland-Altman plot were used.
The comparisons were performed in each pair, e.g.
between the experts’ results and between the automatic
result and each of the expert’s results. Thus, we obtained
the metric of examination agreement both generally and
according to the Ki-67 index level, as well as identifying
the mean displacement between expert and automatic
results. Due to the lack of a uniform distribution of Ki-
67 level and low cut-off values between the suggested
WHO grades, Bland-Altman plots are also presented in
the logarithmic scale for better result readability.

Results
To establish one complete system for hot-spot detection,
a lot of preliminary examinations of specific tasks were
performed in this complex study and these have been
presented in papers [12—14]. In this study, we would like
compare the Ki-67 results obtained based on the auto-
matic examination of specimens with the results of hot-
spot fields selected by two experts. The database con-
tains 104 cases of meningiomas: meningothelial 76 cases
(73 %), atypical 22 cases (21 %), and anaplastic six cases
(6 %). The two medical experts had extensive experience
(noted as Expert A and Expert B) and were asked to se-
lect 20 hot-spot fields in each WSI, if they existed. It
should be noted that this requirement is very hard to
meet. Indeed, some specimens have a limited area and it
is not possible to select that number of hot-spots. In
contrast, manual control of field selection in a large spe-
cimen with a lot of hot-spot regions is difficult and prac-
tically impossible to maintain. Therefore, in practice, we
obtained a different number of hot-spot fields. As a re-
sult, the 20 FOV (if such their number was indicated)
with the maximal Ki-67 index were used for calculation.
In the automatic hot-spot selection process, 20 (if
existing) FOV were obtained. Each was examined by an
expert and every field with some technical problem
(artifact, inappropriate stain, e.g. focal background stain-
ing, blurred, classification problem, etc.) was marked.
The results were grouped according to the number of
FOV with artifacts and a number of existing hot-spot
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FOV are presented in Table 1. It should be noted that
sometimes an individual FOV with an artifact was also
indicated by an expert in a set of hot-spot fields. How-
ever, a limited number of inappropriately selected FOV
should not have a significant impact on the specimen
examination.

When analyzing the results depicted in Table 1, it can
be noticed that most of the cases (84) were automatically
examined properly with two FOVs with a technical prob-
lem at the very most. The 13 others were selected with
three problematic FOVs, including artifacts. Only seven
specimens (depicted last in Table 1) required any com-
ments. The first with two FOVs with artifacts has a part
of its tissue with alterations of the structures, probably
at the stage of the fixation process. The next with four
and six inappropriate FOVs, and the last one, are speci-
mens with an inappropriate staining in thin-wall vessels.
This is the reason why our algorithm does not eliminate
the vessels from the specimen map. Two specimens with
five false hot-spot fields includes a lot of hemorrhages
inside a tumour tissue which is difficult problem to area
elimination as well as properly classification of the cells.
The one case with nine selected inappropriate FOVs has
a lot of technical problems, which cannot be detected
automatically. Finally, these seven specimens should be
excluded from the automatic quantitative analysis, due
to their many technical problems in general.

The comparison of the results in relation to Ki-67
level was performed with the help of a Bland-Altman
plot. The results are presented in Fig. 8 as a comparison
between the experts’ results and between the automatic
results and the results of each expert. We noticed that

Table 1 The results of Ki-67 evaluation grouped according to their

Page 9 of 12

the difference of Ki-67 index estimation between the Ex-
perts (Fig. 8a and b) is on a low average level 0.41 %.
This shows a slight overestimation of Ki-67 index by ex-
pert B in the upper range of values. Only one significant
outlier is noticed. Comparison of the results of the
Automatic System and Expert A shows that the average
discrepancy equals 1.58 %, with the smallest value in the
low level of Ki-67 index and the highest in the high level.
In general, the Automatic system returned the highest
value of Ki-67. Only two outliers are noticed in the high
level of Ki-67 index. Very similar results were obtained
in comparison with the annotations of the Automatic
System and Expert B. The average discrepancy is 1.17 %,
and three outliers can be noted. However, in this case
some automatically established Ki-67 indexes are also
lower than the ones obtained by Expert B.

To explain the differences in the Ki-67 estimations,
the selected FOVs were compared and their localizations
in WSI were studied. The authors observed that the
FOVs selected by Expert A are more dispersed than the
FOVs of Expert B. This fact is particularly revealed in
high Ki-67 index level specimens, resulting in a higher
Ki-67 index estimation by Expert B. Indeed, in such
specimens Expert B selected a few more FOVs from the
highest hot-spot regions, and as a result obtained a
higher Ki-67 index value. In contrast, the higher FOV
dispersion in Expert A and in the automatic examination
of specimens leads to slightly lower Ki-67 values.

These results indicated that in general the Automatic
System identifies better hot-spot areas, especially their
maximum points. The scatter of differences increases
with the Ki-67 level (see Bland-Altman plot in

range and no of hot-spot fields

Ki-67 index
System: no of artifacts FOV per case No of cases System Expert A Expert B Remarks
0 20 52 10.25 % 887 % 9.27 %
15-16 3 5.84 % 558 % 561 %
1 20 16 8.35 % 6.02 % 6.62 % Focal background staining, artifact
8-15 3 4.80 % 324 % 367 % Artifact
2 20 7 414 % 3.02 % 3.17 % Focal background staining, blurred, alterations
of the structure, e.g. coagulation
8-13 3 572 % 4.89 % 691 % Artifact
3 20 10 348 % 267 % 2.70 % Artifact
12-14 3 354 % 1.63 % 1.52 % Artifact
2 20 1 17.19 % 612 % 583 % Artifact
4 20 1 585 % 511 % 6.15 % Stained vessels
5 20 2 4.58 % 351 % 472 % Hemorrhages
6 20 1 6.01 % 447 % 4.86 % Stained vessels
9 20 1 1049 % 5.68 % 592 % Focal background staining, alterations of the
structure, e.g. coagulation, other artifacts
12 20 1 3.89 % 240 % 2.89 % Stained vessels
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Fig. 8 The Bland-Altman plots of differences between the two Experts (a and b), Automatic System and Expert A (c and d), and Automatic system
and Expert B (e and f). The first plots are in a linear scale, whereas the second ones are in a logarithmic scale
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logarithmic scale in Fig. 8d and f). These phenomena
form a complaint with data in quantitative examinations
of histological specimens. For statistical confirmation of
the consistency of results, the Spearman’s rho correlation
coefficient was calculated. This is equal to 0.9774 be-
tween the results of both Experts, whereas between the
automatic system and Expert A or B it is equal to 0.9590
or 0.9602, respectively (all p <0.000005). All statistical
examinations confirm the good level of agreement be-
tween the automatic quantitative evaluations of Ki-67
index and the experts’ results.

Discussion

Computer methods and systems for histopathological
evaluation of a specimen are a rapidly developing
area. Digital imaging tools can be used as a support
for medical experts. Image analysis improves the

accuracy and reproducibility of pathologists’ interpre-
tations, because interobserver and intraobserver vari-
abilities are eliminated. As a result, this leads to
providing better information for clinicians in treat-
ment decisions for patients [34]. The application of
automated image analysis tools provides a standard,
reproducible, sensitive and specific method of bio-
marker quantitation, whilst the standard, manual pro-
cedure is based on manual scoring. The latter method
is subjective, time-consuming, and characterized by
intraobserver and interobserver variabilities [35].
Digital pathology tools have the potential to support diag-
nostic processes [36]. The example of application of auto-
mated image analysis algorithms for histopathological
evaluation of a specimens will be available on MIAP web
platform:  https://miap.wim.milpl [37], starting late
autumn 2016.


https://miap.wim.mil.pl/

Swiderska-Chadaj et al. Diagnostic Pathology (2016) 11:93

Different types of staining methods require dedicated
algorithms for each image. The method for structure de-
tection and evaluation of specimens are presented in the
literature [5—10]. The methods for evaluation and ana-
lysis of tissue treated in a standard Hematoxylin & Eosin
stain are presented in [7, 8]. This is a different staining
method from Ki-67 staining, and the final images are
different (have different colors). As a result, we cannot
apply this solution in the analyzed cases. A distinct
method is needed for evaluation of specimens stained with
the Ki-67 staining method. The algorithms for cell seg-
mentation and counting are presented in papers [5, 6].
However, the authors focused only on cell segmentation
and counting problems. They did not propose a method
of hot-spot area identification and selection, nor did they
solve the artifact problem. H. Lu et al. proposed the appli-
cation of the adaptive step finding technique for the
automated selection of a hot-spot [11].

To the best of our knowledge, the problems of ar-
tifacts and spatial distribution of the selected hot-
spot fields have not been solved in the literature. In
this paper, we have presented a proposition for an
algorithm to solve the hot-spot selection problem,
the hot-spot distribution problem, the detection and
counting of cells, and artifact detections. Solutions
for specific tasks connected with hot-spot selection
and artifact detection are presented in our previous
studies [12—14]. In our study, we have detected arti-
facts, such as tissue folds, areas of hemorrhages/
erythrocytes, and vessel walls. These areas are
marked with similar colors to immunopositive cells,
and can be classified wrongly. Their presence may
interfere with the automatic examination of WSIL.
Specimen quality introduces limitations for the pre-
sented algorithm. This problem has not been solved
in the present study. Different alterations of the
structures in the tissue, blurring and dye stains are
hard to detect in WSI. The detection and elimin-
ation of small vessel walls is limited, because the in-
creasing of vessel wall detection sensitivity causes
wrong classification of the immunopositive cells, in
cases of a high Ki-67 index in the specimen. The ad-
vantages of the presented algorithm are: a solution
to the spatial distribution of the hot-spot problem;
elimination of artifacts such as folds, hemorrhages/
erythrocytes, and vessel walls; reproducibility of re-
sults; and short calculation time.

Recently, content image analysis oriented to WSI has
become a focus of interest for many researchers [38].
The identification of tissue pathology, based on textural
analysis in different image resolutions and staining, has
been developed with significant successes. The connec-
tion between this idea and our method will give a new
potential in digital diagnostic pathology.
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Conclusion

In this paper, the authors proposed a complete system
for automatic hot-spot selection and Ki-67 examination
in specimens of meningiomas. The proposed algorithm,
based on textural descriptors, classifiers and mathemat-
ical morphology, is able to detect the specimen map and
identify artifacts such as hemorrhages (vs. erythrocytes
both intravascular or extravasated), tissue folds, and
stained vessel walls. The proposed strategy of hot-spot
field selection, called the hot-spot gradual extinction al-
gorithm, provides an efficient tool for simulation of hu-
man examination. The presented results confirm that
the proposed automatic selection of hot-spot fields and
examination of Ki-67 in meningiomas can be introduced
in pathomorphological practice in the near future.

Additional file

Additional file 1: The results of the manual and automatic Ki-67 index
evaluation for each of cases. (XLSX 16 kb)

Abbreviations
CORF: Combination of receptive fields; FOV: Field of view; LBP: Local binary
patterns; SVM: Support vector machine; WSI: Whole slide image

Acknowledgements
Not applicable.

Funding

This study was supported by the National Centre for Research and
Development, Poland (grant PBS2/A9/21/2013). We confirm that the role of
the funding was: the design of the study; the preparation of specimens,
analysis, and interpretation of data; and the writing of the manuscript. The
cost of publication was covered by a statutory grant from the Faculty of
Electrical Engineering.

Authors’ contributions

MT and SCZ contributed to the study design, developed the automated
algorithm, performed experiments, data analysis and wrote the manuscript. GB
and LM performed experiments and contributed to data analysis and gave a
critical review of the paper. All authors read and approved the final manuscript.

Availability of data and materials
The dataset supporting the conclusions of this article is included within the
article and its Additional file 1.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Ethics approval and consent to participate

The research was approved by the Bioethics Committee of the Military
Institute of Medicine (reference number 697). Informed consent was not
required for this retrospective analysis of archived material.

Received: 28 April 2016 Accepted: 30 September 2016
Published online: 07 October 2016

References

1. Louis DN, Oghaki H, Wiestler OD, Cavence WK. WHO classification of
tumours of the central nervous system. 4th ed. Lyon: International Agency
for Research on Cancer; 2007.


dx.doi.org/10.1186/s13000-016-0546-7

Swiderska-Chadaj et al. Diagnostic Pathology (2016) 11:93

20.

21.

22.

23.

24.

Commins DL, Atkinson RD, Burnett ME. Review of meningioma
histopathology. Neurosurg Focus. 2007,23(4).E3.

Nakasu C, Lim DH, Okabe H, Nakajima M, Matsuda M. Significance of MIB-1
staining indices in meningiomas. Comparison of two counting methods.
Am J Surg Pathol. 2001;25(4):472-8.

Rezanko T, Akkalp AK, Tunakan M, Sari AA. MIB-1 counting methods in
meningiomas and agreement among pathologists. Anal Quant Cytol Histol.
2008;30(1):47-52.

Kim YJ, Romeike BFM, Uszkoreit J, Feiden W. Automated nuclear
segmentation in the determination of the Ki-67 labeling index in
meningiomas. Clin Neuropathol. 2006;25(2):67-73.

Grala B, Markiewicz T, Kozlowski W, Osowski S, Slodkaowska J, Papierz W.
New automated image analysis method for the assessment of Ki-67
labeling index in meningiomas. Folia Histo Cyto. 2009;47(4):587-92.

Roullier V, Lézoray O, Ta VT, Elmoataz A. Multi-resolution graph-based analysis
of histopathological whole slide images: application to mitotic cell extraction
and visualization. Comput Med Imaging Graph. 2011;35(7):603-15.

Kothari S, Phan JH, Stokes TH, Wang MD. Pathology imaging informatics for
quantitative analysis of whole-slide images. J Am Med Inform Assoc. 2013;
20:1099-108.

Potts SJ, Eberhard DA, Salama ME. Practical approaches to microvessel
analysis: hotspots, microvessel density, and vessel proximity. Methods
Pharmacol Toxicol. 2014; doi: 10.1007/7653_2014_31

Molin J, Devan KS, Wardell K, Lundstrom C. “Feature-enhancing zoom to
facilitate Ki-67 hot spot detection,” Proc. of Spie - Int Soc Opt Eng. 2014:
doi: 10.1117/12.2043512

Lu H, Papathomas TG, Zessen D, Palli |, de Krijger RR, van der Spek PJ,
Dinjens WNM, Stubbs AP. Automated Selection of Hotspots (ASH):
enhanced automated segmentation and adaptive step finding for Ki67
hotspot detection in adrenal cortical cancer. Diagn Pathol. 2014,9:216.
Swiderska Z, Markiewicz T, Grala B, Kozlowski W. Texture and mathematical
morphology for hot-spot detection in whole slide images of meningiomas
and oligodendrogliomas. Comput Anal Images Patterns. 2015,9257:1-12.
Swiderska Z, Markiewicz T, Grala B, Slodkowska J. Hot-spot selection and
evaluation methods for whole slice images of meningiomas and
oligodendrogliomas. Conf Proc IEEE Eng Med Biol Soc. 2015,6252-6.doi: 10.
1109/EMBC.2015.7319821

Swiderska Z, Korzynska A, Markiewicz T, Lorent M, Zak J, Wesolowska A,
Roszkowiak L, Slodkowska J, Grala B. Comparison of the manual,
semiautomatic, and automatic selection and leveling of hot spots in whole
slide images for Ki-67 quantification in meningiomas. Anal Cell Pathol
(Amst). 2015;2015:498746.

Goode A, Gilbert B, Harkes J, Jukic D, Satyanarayanan M. OpenSlide: a
vendor-neutral software foundation for digital pathology. J Pathol
Informatics. 2013;4:27.

Swiderska-Chadaj Z, Markiewicz T, Grala B, Slodkowska J. Local binary
patterns and unser texture descriptions to the fold detection on the whole
slide images of meningiomas and oligodendrogliomas. IFMBE Proc. 2015,57:
388-92. doi:10.1007/978-3-319-32703-7_76.

Soille P. Morphological image analysis, principles and applications. Berlin:
Springer; 2003.

Otsu N. A threshold selection method from gray-level histograms. IEEE
Trans Sys Man Cyber. 1979,9(1):62-6.

Unser M. Sum and difference histograms for texture classification. IEEE Trans
Pattern Anal Mach Intell. 1986;PAMI-8(1):118-25.

Ojala T, Pietikainen M, Harwood D. A comparative study of texture measures with
classi- fication based on feature distributions. Pattern Recognit. 1996,29(1):51-9.
Ojala T, Pietikainen M, Maenpaa T. Multiresolution gray-scale and rotation
invariant texture classification with local binary patterns. IEEE Trans Pattern
Anal Mach Intell. 2002,24(7):971-87.

Maenpaa T, Pietikainen M. In: Chen CH, Wang PSP, editors. Texture analysis
with local binary patterns. Handbook of pattern recognition and computer
vision. 2005. p. 197-216.

Alomari RS, Ghosh S, Chaudhary V, Al-Kadi O. Local binary patterns for
stromal area removal in histology images. Medical imaging 2012. Comput
Aided Diagn. 2012; doi: 10.1117/12.911007

Nateghi R, Danyali H, Helfroush MS, Tashk A. Intelligent CAD system for
automatic detection of mitotic cells from breast cancer histology slide
images based on teaching-learning-based optimization. Comput Biol J.
2014. doi:10.1155/2014/970898.

25.

26.

27.

28.

29.

30.

32.

33

34,

35.

36.

37.

38.

Page 12 of 12

Cruz-Roa A, Basavanhally A, Gonzalez F, Gilmore H, Feldman M, Ganesan S,
Shih N, Tomaszewski J, Madabhushi A. Automatic detection of invasive
ductal carcinoma in whole slide images with convolutional neural networks.
Digital Pathology Conference. SPIE Medical Imaging.2014; doi:10.1117/12.
2043872

Sauer C, Fehr J, Ronneberger O, Burkhardt H, Saudau K, Kurz H. Automated
identification of large cell numbers in intact tissues - self-learning
segmentation, classification, and quantification of cell nuclei in 3-d volume
data via voxel-based gray scale invariants. IEEE Trans Med Imaging. 2008;
doi:10.1109/TMI.2007.913135.

Duda RO, Hart PE, Stork P. Pattern classification and scene analysis. New
York: Wiley; 2003.

Scholkopf B, Smola A. Learning with Kernels. Support vector machines,
regularization, optimization, and beyond. Cambridge: MIT Press; 2002.
Azzopardi G, Petkov N. A CORF Computational Model of a Simple Cell that
relies on LGN Input Outperforms the Gabor Function Model. Biol Cybern.
2014; doi: 10.1007/500422-012-0486-6

Zhang Y, Tian T, Tian J, Gong J, Ming D. A novel biologically inspired local feature
descriptor. Biol Cyb. 2014;108(3):275-90. doi:10.1007/500422-013-0583-1.
Azzopardi G, Rodriguez-Sanchez A, Piater J, Petkov N. A push-pull CORF
model of a simple cell with antiphase inhibition improves SNR and contour
detection. PLoS One. 2014;9(7):¢98424. doi:10.1371/journal.pone.0098424.
Lopez C, Lejeune M, Salvado MT, Escriva P, Bosch R, Pons L, Alvaro T, Roig J,
Cugat X, Baucells J, Jaen J. Automated quantification of nuclear
immunohistochemical markers with different complexity. Hist and Cell Biol.
2008;129:379-87.

Markiewicz T, Grala B, Kozlowski W, Osowski S. Computer system for cell
counting in selected brain tumors at Ki-67 immunohistochemical staining.
Anal Quant Cytol Histol. 2010;32(6):323-32.

Cornish TC, Swapp RE, Kaplan KJ. Whole-slide imaging: routine pathologic
diagnosis. Adv Anat Pathol. 2012;19:152-9.

Rohde GK, Ozelek JA, Parwani AV, Viergever MA. Carnegie Mellon University
bioimaging day 2014: Challenges and opportunities in digital pathology. J
Pathol Inform. 2014;5:32.

Rojo MG, Bueno G, Slodkowska J. Review of imaging solutions for
integrated quantitative immunohistochemistry in the Pathology daily
practice. Folia Histo Cyto. 2009;47(3):349-54.

Markiewicz T, Korzynska A, Kowalski A, Swiderska-Chadaj Z, Murawski P,
Grala B, Lorent M, Wdowiak M, Zak J, Roszkowiak L, Kozlowski W, Pijanowska
D. MIAP — Web-based platform for the computer analysis of microscopic
images to support the pathological diagnosis. Biocybern Biomed Eng. 2016;
36(4):597-609.

Kayser K, Borkenfeld S, Djenouni A, Kayser G. Texture and object related
image analysis in microscopic images. Diag Path. 2015;1:14.

Submit your next manuscript to BioMed Central
and we will help you at every step:

* We accept pre-submission inquiries

e Our selector tool helps you to find the most relevant journal

* We provide round the clock customer support

e Convenient online submission

e Thorough peer review

e Inclusion in PubMed and all major indexing services

e Maximum visibility for your research

Submit your manuscript at

www.biomedcentral.com/submit () BiolMed Central



http://dx.doi.org/10.1007/7653_2014_31
http://dx.doi.org/10.1117/12.2043512
http://dx.doi.org/10.1109/EMBC.2015.7319821
http://dx.doi.org/10.1109/EMBC.2015.7319821
http://dx.doi.org/10.1007/978-3-319-32703-7_76
http://dx.doi.org/10.1117/12.911007
http://dx.doi.org/10.1155/2014/970898
http://dx.doi.org/10.1117/12.2043872
http://dx.doi.org/10.1117/12.2043872
http://dx.doi.org/10.1109/TMI.2007.913135
http://dx.doi.org/10.1007/s00422-012-0486-6
http://dx.doi.org/10.1007/s00422%E2%80%93013%E2%80%930583%E2%80%931
http://dx.doi.org/10.1371/journal.pone.0098424

	Abstract
	Background
	Methods
	Results
	Conclusion

	Background
	Methods
	General WSI processing scheme
	Creation of the specimen map
	Texture description and classification
	Vessel wall detection
	Immunopositive cell segmentation
	Color artifact elimination
	Selection of hot-spot fields - hot-spot gradual extinction algorithm
	Statistical analysis

	Results
	Discussion
	Conclusion
	Additional file
	show [a]
	Acknowledgements
	Funding
	Authors’ contributions
	Availability of data and materials
	Competing interests
	Consent for publication
	Ethics approval and consent to participate
	References

