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Abstract
Background  The Default Mode Network (DMN) is a central neural network, with recent evidence indicating that it 
is composed of functionally distinct sub-networks. Methylphenidate (MPH) administration has been shown before to 
modulate impulsive behavior, though it is not yet clear whether these effects relate to MPH-induced changes in DMN 
connectivity. To address this gap, we assessed the impact of MPH administration on functional connectivity patterns 
within and between distinct DMN sub-networks and tested putative relations to variability in sub-scales of impulsivity.

Methods  Fifty-five right-handed healthy adults underwent two resting-state functional MRI (rs-fMRI) scans, following 
acute administration of either MPH (20 mg) or placebo, via a randomized double-blind placebo-controlled design. 
Graph modularity analysis was implemented to fractionate the DMN into distinct sub-networks based on the impact 
of MPH (vs. placebo) on DMN connectivity patterns with other neural networks.

Results  MPH administration led to an overall decreased DMN connectivity, particularly with the auditory, 
cinguloopercular, and somatomotor networks, and increased connectivity with the parietomedial network. Graph 
analysis revealed that the DMN could be fractionated into two distinct sub-networks, with one exhibiting MPH-
induced increased connectivity and the other decreased connectivity. Decreased connectivity of the DMN sub-
network with the cinguloopercular network following MPH administration was associated with elevated impulsivity 
and non-planning impulsiveness.

Conclusion  Current findings highlight the intricate effects of MPH administration on DMN rs-fMRI connectivity, 
uncovering its opposing impact on distinct DMN sub-divisions. MPH-induced dynamics in DMN connectivity patterns 
with other neural networks may account for some of the effects of MPH administration on impulsive behavior.

Keywords  Methylphenidate (MPH), Default mode network (DMN), Resting-state functional MRI (rs-fMRI), Functional 
connectivity, Impulsivity, Graph modularity analysis
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Introduction
The human brain is functionally organized into distinct 
regions that collaboratively form extensive, intercon-
nected neural networks [1]. Resting-state functional MRI 
(rs-fMRI) has emerged as a pivotal tool for delineating 
these large-scale networks, both in their typical func-
tion and in response to various externally induced condi-
tions. This technique capitalizes on the observation that 
functionally related yet spatially separated brain regions 
exhibit synchronized low-frequency fluctuations in their 
blood oxygen level-dependent (BOLD) signals, reveal-
ing intrinsic connectivity networks (ICNs) [2]. Central to 
these ICNs is the Default Mode Network (DMN), that is 
consistently identified as a key network in rs-fMRI stud-
ies [3]. Interestingly, recent evidence suggests that the 
DMN is not monolithic but rather encompasses multiple 
intertwined sub-networks, challenging the traditional 
view of the DMN as a singular entity. Indeed, stud-
ies have pointed on functional heterogeneity within the 
DMN, proposing that the DMN can be fractionated into 
at least two distinct sub-networks [4–10].

The importance of studying DMN rs-fMRI connectiv-
ity patterns, as well as all other ICNs, is indicated by the 
notion that these networks are associated with distinct 
neurocognitive functions [11]. In fact, the majority of 
established ICNs are labeled according to their assigned 
neurocognitive roles, such as for example the attention, 
visual, auditory and somatomotor networks [12, 13]. 
Furthermore, connectivity patterns within and between 
specific ICNs were found to be differentially affected by 
acute pharmacological manipulations [14], as well as to 
predict antidepressant treatment response [15]. Abnor-
mal connectivity patterns in specific ICNs, including the 
DMN, have also been linked to psychiatric conditions 
[16–18]. Given this background, understanding the dis-
tributed effects of acute drug administration on DMN 
rs-fMRI connectivity patterns becomes crucial, as it may 
account for the differential behavioral effects of the drug 
across individuals.

Methylphenidate (MPH) is an indirect dopaminergic 
and noradrenergic agonist and is the first line treatment 
for attention deficit hyperactivity disorder (ADHD) [19]. 
Among ADHD patients, MPH administration has been 
shown to modulate rs-fMRI functional connectivity pat-
terns in the DMN [20–22], as well as in additional neu-
ral networks [21, 23–26]. Interestingly however, the few 
studies that directly assessed the impact of acute MPH 
administration on rs-fMRI connectivity patterns among 
healthy cohorts yielded somewhat inconclusive results 
[27, 28], possibly because DMN fractionation into func-
tionally distinct sub-networks was overlooked.

One of the pathways through which MPH may improve 
clinical status in ADHD is via its impact on impulsivity, 
yielding reduced impulsive behavior [29, 30]. We recently 

demonstrated that a similar effect is also observed in 
healthy adults following acute MPH administration [31]. 
Notably, multiple sub-scales of impulsivity are consid-
ered to rely on DMN and dorsolateral prefrontal cortex 
functionality and connectivity [31–35]. In support of 
that, previous studies associated variability in impul-
sive behavior with connectivity patterns of sub-regions 
within the DMN network, including the medial pre-
frontal cortex (mPFC), posterior cingulate cortex (PCC) 
and anterior cingulate cortex (ACC) [36–42]. Recently, 
impulsivity was also linked with age-dependent altera-
tions of functional brain networks during resting-state 
[43]. Taken together, these findings raise the notion that 
MPH-induced dynamics in DMN connectivity patterns 
may account for the effects of MPH administration on 
impulsivity.

As far as we know, the effects of MPH administration 
on DMN functional connectivity have yet to be defined, 
particularly with respect to distinct DMN sub-networks. 
Nor has it been explored whether these effects relate to 
variability in impulsivity sub-scales. In order to address 
this gap, fifty-five healthy young adults completed two 
rs-fMRI scans, following acute administration of either 
MPH (20 mg) or placebo, in a randomized double-blind 
placebo-controlled design. Analysis focused on the 
impact of MPH (vs. placebo) on DMN functional con-
nectivity with all other ICNs. Graph analysis was used to 
fractionate the DMN into distinct sub-networks. Analy-
ses further assessed the potential association between the 
impact of MPH on DMN connectivity patterns and par-
ticipants’ impulsivity scores. Following previous findings, 
we hypothesized that acute MPH administration would 
yield decreased functional connectivity of the DMN with 
other ICNs. We further hypothesized that MPH may 
have a differential effect on distinct sub-networks within 
the DMN, and that these patterns could potentially relate 
to variability in impulsivity scores.

Methods and materials
Participants
Fifty-seven right-handed young healthy adults (32 
females) were recruited to the study using online and 
posted ads. Inclusion criteria included age between 18 
and 40, normal or corrected to normal visual acuity and 
right-handedness. Exclusion criteria included past or 
present neurological, psychiatric, or developmental dis-
order, head injury, substance use, chronic medication 
(excluding contraceptives), pregnancy or nursing and 
MRI contraindications. Eligible participants provided 
written informed consent to a protocol approved by the 
ethics committees of the University of Haifa (approval 
#368/17) and Rambam Health Care Campus (approval 
#0539 − 16) and received monetary compensation for 
their participation. Two participants were excluded 
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due to poor MRI data quality caused by excessive head 
motion, yielding a final sample size of 55 participants 
(32 F, mean age 26.58 ± 3.91).

Procedure
Screening procedures were employed using a combina-
tion of online questionnaires and two laboratory sessions 
held at the University of Haifa. The initial laboratory 
session involved obtaining informed consent from par-
ticipants, followed by completion of the Hebrew ver-
sion of the Edinburgh Handedness Inventory [44], a 
demographic questionnaire, and an MRI contraindi-
cation inventory. To exclude individuals with undiag-
nosed ADHD symptoms, participants also completed 
the Hebrew version of the Conners’ Adult ADHD Rat-
ing Scale [CAARS; [45]], a self-report questionnaire spe-
cifically designed to assess ADHD symptoms in adults. 
Consistent with established norms, participants scor-
ing 65 or higher on the CAARS ADHD Index subscale 
were excluded from the study. Additionally, participants 
underwent clinical evaluation using the Hebrew version 
of the Mini-International Neuropsychiatric Interview 
[MINI; [46]], a brief structured interview used to diag-
nose Axis I psychiatric disorders. This evaluation aimed 
to exclude individuals with psychiatric or neurological 
disorders, including prior exposure to stimulant drugs 
or head injuries. The second session, occurring approxi-
mately 1–2 weeks later, involved the completion of the 
Barratt Impulsiveness Scale [BIS-11; [47]] questionnaire. 
Subsequently, participants were invited to take part in 
two neuroimaging sessions, conducted at the MRI insti-
tute of Rambam Health Care Campus. The average time 
interval between the two MRI sessions was 8 days (SD: 2 
days). At the commencement of each session, the study’s 
neurologist conducted an electrocardiogram (ECG) and 
a pregnancy test. Afterward, participants received, via a 
double-blind, counterbalanced, within-subject design, 
a capsule containing either 20  mg of methylphenidate 
(MPH) or an indistinguishable placebo (PL) capsule. 
Heart rate and blood pressure were measured by the 
neurologist prior to drug administration, and ongoing 
monitoring of side effects was conducted throughout 
the sessions. Pharmacokinetic data suggest that plasma 
concentration of MPH reaches its peak approximately 
one hour after administration [48]. Accordingly, the 
MRI session began 45  min after drug administration to 
ensure peak drug blood concentration during the scan. 
The neuroimaging sessions involved an anatomical scan, 
completion of a delay discounting task [31] and a spa-
tial attention task [49], and a resting state scan. During 
the resting-state scan participants were presented with a 
fixation cross and were instructed to lie with their eyes 
open.

Measures
Barratt impulsiveness scale (BIS-11) questionnaire
The BIS-11 is a 30-item self-report questionnaire that 
assesses impulsivity across three subscales: attentional or 
cognitive impulsivity, non-planning impulsiveness, and 
motor impulsiveness [47]. Participants rate each state-
ment, reflecting behavioral and cognitive tendencies in 
various situations, on a scale ranging from 1 (“never/
rarely”) to 4 (“always/almost always”). Higher scores indi-
cate a greater propensity for impulsivity. Participants 
completed the Hebrew version of the BIS-11 [50].

MRI data acquisition
MRI data was acquired using a 3T GE scanner with an 
eight-channel high-resolution head coil, located at the 
MRI institute at Rambam Health Care Campus, Haifa, 
Israel. Functional MRI (fMRI) during the resting-state 
scan was carried out with a gradient echo-planar imaging 
(EPI) sequence of functional T2*-weighted images (TR/
TE/flip angle: 2000/30/77; FOV: 240  mm; matrix size: 
64 × 64) divided into 43 axial slices (voxel-size: 3mm3; 
gap: 0  mm) covering the whole cerebrum. The scan 
included 234 repetitions for a total duration of 7  min 
and 48  s. In addition, anatomical three-dimensional 
(3D) sequence spoiled gradient (SPGR) echo sequence 
was obtained at high-resolution 0.9-mm slice thickness 
(matrix: 256 × 256; flip angle: 12; FOV: 231 mm).

MRI data analyses
MRI data analyses were conducted using SPM12 soft-
ware (http://www.fil.ion.ucl.ac.uk/spm/software/). Data 
pre-processing was conducted using the CONN toolbox 
[version 21.A; [51]], and involved co-registration of func-
tional and anatomical images, segmentation using SPM 
tissue probability maps, nonlinear volume-based spatial 
normalization (based on forward deformations obtained 
during segmentation utilizing Montreal Neurologi-
cal Institute [MNI] space), and spatial smoothing with a 
Gaussian filter (full width at half maximum: 6 mm). The 
Artifact Detection Tool (ART; http://web.mit.edu/swg/
software.htm) was used in order to identify and exclude 
outlier time points in the global mean image time series 
(threshold: 3 standard deviations from the mean) and 
movement (threshold: 0.7  mm; measured as scan-to-
scan movement, separately for translation and rotation) 
parameters. Following pre-processing, denoising pro-
cedures included regressing out signals from the seg-
mented CSF, white matter, the six motion parameters and 
their first-order derivatives, and ART volumes. Finally, 
data were linearly detrended and band-pass-filtered 
(0.008–0.09 Hz).

http://www.fil.ion.ucl.ac.uk/spm/software/
http://web.mit.edu/swg/software.htm
http://web.mit.edu/swg/software.htm
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Network reconstruction and analysis
To assess DMN connectivity with other ICN’s, connec-
tivity matrices were reconstructed using the CONN 
toolbox. First, a whole-brain functional network was 
constructed for each subject, with nodes defined based 
on a parcellation atlas containing 300 regions of inter-
est [11] (Figure S1). This parcellation atlas was selected 
because it is based on rs-fMRI data, it has a comprehen-
sive representation of cortical and subcortical areas, and 
it includes a predefined set of 14 networks, including the 
DMN. Of this set of networks, the “unassigned” network 
was omitted from current analyses due to the anatomi-
cal locations of its 12 nodes, carrying high susceptibility 
to motion and magnetic-field artifacts. Next, edges were 
calculated by computing the Fisher Z-transformed Pear-
son correlation between the BOLD time series extracted 
for every two nodes, resulting in a pairwise functional 
connectivity matrix of 288*288 for each subject for each 
condition (PL and MPH). Then, a difference matrix 
was computed by performing paired t-test across sub-
jects for the MPH condition vs. the PL condition for all 
the edges between the 65 nodes that are included in the 
DMN according to the atlas, and the nodes in all other 
12 predefined networks. This resulted in a single matrix 
of 65*223. FDR correction was applied to threshold the 
correlation matrix and correct for the number of com-
parisons to control the expected proportion of falsely 
rejected hypotheses while maintaining higher sensitivity 
to detect true effects across the DMN-networks edges, 
yielding a Fisher Z correlation matrix of edges at p < 0.05 
FDR corrected (range: 0.00002 < q < 0.0499). From this 
matrix, DMN connectivity with the other 12 predefined 
networks was examined by performing network-wise 
t-tests for all the edges per network, applying Bonferroni 
correction for the number of comparisons (i.e., 12 com-
parisons). Relations between individual differences in the 
impact of MPH on resting state connectivity and vari-
ability in impulsivity scores (BIS-11) were assessed using 
Pearson correlations.

Graph analysis
Modular organization of neural networks was assessed 
using the Brain Connectivity Toolbox (BCT; available at 
https://sites.google.com/site/bctnet/), based on the New-
man optimization method [52]. Modularity, a salient 
characteristic of whole-brain functional networks, refers 
to the extent to which a network can be partitioned into 
distinct, non-overlapping communities. Modularity is 
assessed by optimizing the configuration where intra-
community connections are maximized, while inter-
community connections are minimized. Within this 
context, a community is defined as a subset of nodes in 
the network (i.e., sub-network) that exhibit denser inter-
nal connectivity compared to their connectivity with 

external nodes in the network [52]. Here, modularity 
analysis was implemented to fractionate the 65 nodes of 
the DMN into distinct sub-networks. Fractionation was 
based on the impact of MPH on rs-fMRI connectivity of 
each DMN node with the other 12 predefined networks. 
Testing across levels of gamma values (γ) showed con-
sistent results (gamma values starting from 0 and up to 
10 in steps of 0.1). Hence, the resolution parameter was 
set to unity (γ = 1). To assess the reliability of this modu-
lar organization, the modularity detection procedure was 
repeated for 1000 iterations. In each iteration, the algo-
rithm maximized the modularity Q, a metric that quanti-
fies the strength of division of a network into modules, 
such that connections within modules are denser than 
connections between modules. Then, normalized mutual 
information (NMI) values were computed between each 
pair of the 1000 parcellations [53]. Results showed that 
the NMI was constantly one, indicating the same mod-
ule assignment across different parcellations. Conse-
quently, the initial partition was utilized as the modular 
organization.

Results
Impact of MPH on resting state functional connectivity of 
the DMN
Paired sample t-tests for the MPH vs. PL conditions for all 
the edges between nodes within the DMN and all other 
nodes yielded a difference matrix. This matrix depicts 
significant changes in DMN resting state functional con-
nectivity following MPH administration compared to 
placebo, corrected for the number of comparisons. Inter-
estingly, some nodes within the DMN showed MPH-
induced increased functional connectivity, while other 
DMN nodes showed decreased functional connectivity. 
These opposite effects of MPH on DMN functional con-
nectivity patterns were found with relation to DMN con-
nectivity with all the 12 other networks that were tested 
(Fig. 1). One sample t-test on all these edges revealed an 
overall decreased functional connectivity between nodes 
in the DMN and all other nodes across networks (t[901] = 
−6.17, p < 0.001). One sample t-test for the connectivity of 
the DMN separately with nodes within each of the other 
12 predefined network, corrected for the number of 
comparisons, revealed significantly decreased functional 
connectivity of the DMN following MPH administration 
with three specific networks (somatomotordorsal: t[216] 
= −6.11, pBonf. corr.< 0.001; cinguloopercular: t[119] = −7.35, 
pBonf. corr.< 0.001; auditory: t [71] = −3.31, pBonf. corr.= 0.018). 
In contrast, a single network increased its functional 
connectivity with the DMN following MPH (parietome-
dial: t[38] = 4.56, pBonf. corr.< 0.001) (Fig. 2). Supplementary 
Fig. 2S depicts the results of analyses assessing sex-spe-
cific differences in the impact of MPH on DMN resting 
state functional connectivity with all other networks.

https://sites.google.com/site/bctnet/
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Fig. 2  MPH-induced change in DMN connectivity per network. Impact of MPH on DMN resting-state functional connectivity with all other networks, per 
network (*p < 0.05, **p < 0.001; Bonferroni corrected). DMN - Default Mode Network; Methylphenidate – MPH; PL – Placebo

 

Fig. 1  Impact of MPH on DMN resting-state functional connectivity with all other predefined networks. Nodes within the DMN with significantly in-
creased (A) or decreased (B) functional connectivity with all other nodes following MPH compared to PL administration. All nodes are color-coded by 
predefined network classification. The size of the nodes, the width of the lines and their opacity depict the strength of individual connections. DMN - 
Default Mode Network; Methylphenidate – MPH; PL – Placebo
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Impact of MPH on resting state functional connectivity of 
DMN sub-networks
Modularity analysis revealed that the impact of MPH 
administration on DMN resting-state functional con-
nectivity is best accounted for by dividing the DMN into 
two distinct communities of nodes (i.e., sub-networks). 
Of a total of 65 nodes within the DMN, the first com-
munity here included 28 nodes and the second commu-
nity included 37 nodes. Interestingly, both sub-networks 
exhibited a similar anatomical distribution, with both 
sub-networks including DMN nodes in parietal, fron-
tal and temporal lobes (Fig.  3, Supplementary Table 1). 
In order to uncover what drives this differentiation, one 
sample t-tests were performed separately for MPH-
induced changes in connectivity of each DMN sub-net-
work with all other networks, corrected for the number 
of comparisons. Interestingly, these analyses yielded 
opposite effects of MPH on functional connectivity of 
DMN sub-networks. For the DMN nodes included in 
the 1st DMN sub-network, three networks decreased 
their functional connectivity (somatomotordorsal: t[93] = 

−8.16, pBonf. corr. < 0.001; cinguloopercular: t[56] = −12.95, 
pBonf. corr.< 0.001; auditory: t[41] = −9.84, pBonf. corr. < 0.001). 
For the 2nd DMN sub-network, one network increased 
its functional connectivity (parietomedial: t[22] = 3.96, 
pBonf. corr.= 0.015) (Fig. 4).

MPH-induced change in DMN functional connectivity and 
impulsivity
While group results revealed robust effects of MPH 
administration on DMN connectivity with the other 
predefined networks, high variability was also observed 
across subjects. Correlation analyses were focused on the 
four networks that depicted significant group effects of 
MPH-induced change in DMN connectivity (parietome-
dial, somatomotordorsal, cinguloopercular and auditory), 
assessing the relation between individuals’ impulsiv-
ity scores and the impact of MPH (vs. PL) on their sub-
network connectivity. These analyses revealed that total 
impulsivity score and non-planning impulsiveness were 
both negatively associated with the impact of MPH on 
DMN functional connectivity with the cinguloopercular 

Fig. 3  DMN sub-networks. Visualization of the two sub-networks of the DMN that emerged from the graph modularity analysis and differ in the impact of 
MPH on their resting-state functional connectivity. The two sub-networks share similar anatomical distribution (see Supplementary Table 1 for a specific 
list of coordinates)
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network (r = − 0.315, p = 0.019; r = − 0.371, p = 0.005; 
respectively) (Fig.  5A&B). Non-planning impulsiveness 
was also marginally negatively associated with MPH-
induced change in resting-state functional connectiv-
ity of the cinguloopercular network with the 1st DMN 
sub-network as derived from the modularity analysis 
(r = − 0.250, p = 0.068) (Fig. 5C). These results did not sur-
vive correction for multiple comparisons.

Discussion
The aim of the current study was to examine the effects 
of acute MPH administration, an indirect dopaminergic 
and noradrenergic agonist, on resting-state functional 
connectivity patterns among healthy adults. We particu-
larly focused on the connectivity of the DMN as a whole 
with other networks, as well as on connectivity of distinct 
DMN sub-networks as derived from graph modular-
ity analysis. An additional focus was on the association 

between these connectivity patterns and participants’ 
impulsivity scores. Results revealed that, compared to 
placebo, MPH administration was associated with overall 
reduced DMN connectivity with other networks during 
resting-state. This is in accordance with Sripada (2013) 
showing decreased DMN between-network connectivity 
in healthy adults, and Cary (2017) showing increased seg-
regation in multiple networks including DMN in ADHD, 
following MPH administration [21, 28]. Along these 
lines, MPH administration was also shown to increase 
internal DMN functional connectivity [20–22]. Consid-
ering that the DMN is highly involved in internal forms 
of mentalization and spontaneous cognition and is antag-
onistic to networks that are engaged by active attention 
to the external sensory environment, these findings fur-
ther support the notion that MPH-induced alterations in 
DMN connectivity may underlie its attention-enhancing 
effects [54, 55]. Reduced DMN connectivity with other 

Fig. 4  MPH-induced change in DMN sub-networks connectivity per network. Impact of MPH on DMN sub-networks resting-state functional connectivity 
with all other networks, per network (*p < 0.05, **p < 0.001; Bonferroni corrected). DMN - Default Mode Network; Methylphenidate – MPH; PL – Placebo
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externally-oriented brain networks may therfore repre-
sent a neural mechanism for the cognitive enhancement 
properties of MPH in healthy individuals, as well as for 
some of its therapeutic effects in ADHD [19, 56, 57].

Importantly, while MPH decreased overall DMN con-
nectivity, the effect was not uniform across all networks, 
with MPH yielding reduced DMN connectivity specifi-
cally with the auditory, cinguloopercular and somatomo-
tor dorsal networks. Inspection of Seitzman et al., (2020) 

parcellation atlas reveals that nodes that are included 
in the cinguloopercular and somatomotor networks, 
as well as those in the DMN, are all part of the cortico-
striato-thalamo (CST) circuit [11]. This circuit comprises 
the supplementary motor area, frontal eye field, lateral 
orbitofrontal cortex, dorsolateral prefrontal cortex, dor-
sal anterior cingulate cortex, putamen, caudate, globus 
pallidus interna, thalamus [58]. The CST circuit is pos-
ited to function as a modulatory hub exerting broad 

Fig. 5  The impact of MPH on DMN and impulsivity. Negative associations between MPH-induced change in DMN resting-state functional connectivity 
with the cinguloopercular network and (A) BIS-11 total impulsivity score and (B) non-planning impulsiveness; as well as between MPH-induced change 
in resting-state functional connectivity of the first DMN sub-network, as derived from the modularity graph analysis, with the cinguloopercular network 
and non-planning impulsiveness (C). DMN - Default Mode Network; Methylphenidate - MPH
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influences within and between cortical networks [7]. 
Previous research has demonstrated that dopamine ago-
nists decrease, and antagonists increase, functional con-
nectivity within this circuit [59]. Therefore, as suggested 
with other stimulants [26], MPH may facilitate segrega-
tion between internally oriented networks, namely DMN, 
and externally oriented networks, thus enhancing atten-
tion allocation towards external stimuli. In line with this 
suggestion, abnormal functional connectivity within the 
CST circuit was associated with ADHD [60], and MPH 
have been shown to “normalize” connectivity within the 
circuit [61].

MPH administration was also found to increase DMN 
connectivity with the parietomedial network (PMN), a 
relatively newly discovered neural network composed of 
the superior parieto-occipital fissure, posterior cingulate 
cortex and intraparietal sulcus. The PMN is hypothesized 
to be involved in memory functions and attention to 
internal representations [62]. Studies have demonstrate 
increased connectivity between the DMN and the PMN 
in tasks that are characterized by evaluation of internal 
information, suggesting that these large-scale connec-
tivity patterns reflect temporally extended evaluation 
of self-generated thoughts [63]. Hence, the PMN may 
be seen as part of an extended DMN and its increased 
connectivity with the DMN following MPH in here may 
represent MPH-induced increases in internal DMN func-
tional connectivity, as was demonstrated before [20–22]. 
This again supports the scenario that MPH may reduce 
the impact of DMN processing on externally oriented 
networks, thus increasing their potential engagement 
with external stimuli.

Graph analysis revealed that the DMN can be fraction-
ated into two distinct sub-networks with divergent, even 
opposing, impacts of MPH administration. This is con-
sistent with prior seed-based analyses that demonstrated 
MPH’s differentiated impact on DMN sub-networks 
both in healthy adults [64] and in ADHD [65]. Here, 
the first DMN sub-network was the one associated with 
MPH-induced reduced connectivity with the auditory, 
cinguloopercular and somatomotor networks, while the 
second DMN sub-network was associated with MPH-
induced increased connectivity with the parietomedial 
network. These distinct component sub-networks are in 
accordance with previous studies showing a salient fea-
ture that includes distributed, parallel nodes within the 
DMN [7]. Interestingly, here, as in the majority of pre-
vious studies, DMN sub-networks did not differ with 
respect to their anatomical spatial distribution, such that 
the nodes of one sub-network lie side by side with those 
of the other sub-network [7, 9, 10]. Buckner and DiNicola 
(2019) suggested that DMN sub-networks may have orig-
inated from a less differentiated proto-organization that 
specialized over time [7]. Using subject-level clustering, 

Akiki and Abdalla (2019) suggested that the division of 
the DMN into two sub-networks is functionally consis-
tent [66]. Evidence from task activation studies indicate 
that midline DMN structures are functionally specialized 
for self-relevant decisions and the inference of other peo-
ple’s mental states, whereas more lateral temporal DMN 
components are implicated in autobiographical memory 
and self-oriented mental activity [67]. These findings sug-
gest that the DMN sub-networks uncovered here may 
carry distinct functionality. The first DMN sub-network 
may tap into the CST circuit in order to suppress con-
nectivity with external stimuli processing networks, with 
MPH leading to its reduced connectivity with other neu-
ral networks, hence further facilitating this segregation. 
The second DMN sub-network may promote attention 
to internal representations, with MPH increasing its con-
nectivity with other associated networks such as the pari-
etomedial network.

Finally, variability in the impact of MPH on DMN con-
nectivity was associated with impulsivity scores. Specifi-
cally, MPH administration yielded a reduction in DMN 
functional connectivity with the cinguloopercular net-
work, and this decreased connectivity was more potent 
in individuals with elevated impulsivity and non-plan-
ning impulsiveness. These results highly resemble the 
finding of Davis and colleagues demonstrating that differ-
ences in whole-brain functional organization are related 
to impulsivity [68], particularly in brain regions associ-
ated with the cinguloopercular network. Specifically, they 
showed decreased functional coupling between cortical 
control and subcortical drive modules as a function of 
increasing impulsivity. Previous studies have also dem-
onstrated an association between reduced DMN- cin-
guloopercular resting-state functional connectivity and 
impulsivity, specifically relating to non-planning and 
disregard for future consequences [69]. In addition, the 
cingulo-opercular network was found to be associated 
with failure of response control when faced with antici-
pating rewards (i.e. non-planning impulsiveness) [70]. 
This is in accordance with our result showing that more 
decreased connectivity following MPH is associated with 
lower non-planning impulsivity. Taken together, indi-
viduals with elevated total impulsivity and specifically 
non-planning impulsiveness may particularly benefit 
from MPH administration as it leads to greater reduc-
tion in their DMN- cinguloopercular resting-state func-
tional connectivity. Further work could examine whether 
distinct DMN sub-networks and intrinsic (opposed to 
task-induced) connectivity changes play a role in these 
associations.

While providing valuable insights, this study does 
have some limitations worth mentioning. First, we 
assessed the immediate impact of acute MPH admin-
istration hence cannot infer on the impact of chronic 
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administration. Second, given that the current sample 
was composed of healthy adults we cannot assume that 
similar patterns will appear among ADHD population 
nor among other age groups. This is particularly relevant 
given the demonstrated age-dependent relation between 
impulsivity and functional brain networks [43], and in 
light of previous studies reporting on differential impact 
of MPH administration on resting-state connectivity pat-
terns among healthy compared to ADHD cohorts [71]. 
Also important in that regard is that by relying solely on 
fMRI we of course cannot directly link the observed neu-
ral changes to dopamine levels. Future research employ-
ing hybrid PET/MRI techniques could provide more 
nuanced insights into the neurotransmitter pathways 
affected by MPH. It is further important to note that 
we administered a fixed 20 mg dose of MPH to all par-
ticipants, without adjusting for individual differences in 
weight and/or BMI. While this dose is within the range 
commonly used in both clinical practice and research, 
future studies could benefit from exploring the effects of 
varying MPH doses, including weight-adjusted dosing, to 
fully capture variability in the effects of MPH on resting-
state functional connectivity. This variability may also be 
influenced by plasma levels of the drug, as demonstrated 
by Müller et al. (2005), who found task-related fMRI sig-
nal changes to be plasma-level-dependent, emphasiz-
ing the need to consider pharmacokinetic factors in the 
interpretation of MPH’s neural impacts [72]. Lastly, we 
did not account for variability in menstrual cycle phase 
among female participants.

In summary, using a randomized double-blind placebo-
controlled design in a sample of fifty-five healthy adults, 
we were able to characterize the impact of acute MPH 
administration on DMN resting-state functional connec-
tivity patterns. Results revealed MPH-induced reduced 
DMN connectivity, particularly with the auditory, cin-
guloopercular, and somatomotor networks, as well as 
increased DMN connectivity with the parietomedial 
network. Graph analysis further showed that the DMN 
could be fractionated into two distinct sub-networks with 
divergent, even opposing, functionalities, such that one 
DMN sub-network was associated with MPH-induced 
reduced connectivity while the other was associated with 
increased connectivity. Finally, individuals with elevated 
impulsivity exhibited the strongest MPH-induced reduc-
tion in their DMN connectivity with the cinguloopercu-
lar network. Taken together, this study provides novel 
insights into the modulatory effects of MPH on DMN 
connectivity and its implications for impulsivity.
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