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Abstract 

Background:  The objective of this study was to develop a new predictive equation of resting energy expenditure 
(REE) for acute kidney injury patients (AKI) on dialysis.

Materials and methods:  A cross-sectional descriptive study was carried out of 114 AKI patients, consecutively 
selected, on dialysis and mechanical ventilation, aged between 19 and 95 years. For construction of the predictive 
model, 80% of cases were randomly separated to training and 20% of unused cases to validation. Several machine 
learning models were tested in the training data: linear regression with stepwise, rpart, support vector machine with 
radial kernel, generalised boosting machine and random forest. The models were selected by ten-fold cross-validation 
and the performances evaluated by the root mean square error.

Results:  There were 364 indirect calorimetry measurements in 114 patients, mean age of 60.65 ± 16.9 years and 
68.4% were males. The average REE was 2081 ± 645 kcal. REE was positively correlated with C-reactive protein, minute 
volume (MV), expiratory positive airway pressure, serum urea, body mass index and inversely with age. The principal 
variables included in the selected model were age, body mass index, use of vasopressors, expiratory positive airway 
pressure, MV, C-reactive protein, temperature and serum urea. The final r-value in the validation set was 0.69.

Conclusion:  We propose a new predictive equation for estimating the REE of AKI patients on dialysis that uses a non-
linear approach with better performance than actual models.
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Introduction
Acute kidney injury (AKI) occurs in approximately 
3–15% of hospitalised patients and can affect 30–50% 
of patients admitted to intensive care units (ICU). It is 
associated with extremely high mortality rates, rang-
ing from 20 to 50% [1]. Previous observational stud-
ies reported that malnourished and hospitalised AKI 
patients have higher rates of morbidity and mortality 

than well-nourished patients [2, 3] and an association 
between cumulative caloric deficits and poor outcome 
in ICU patients [4, 5]. Accurate determination of energy 
needs is obviously important in critically ill patients as 
both over and underfeeding may be associated with com-
plications and undesired consequences [6].

Determining energy requirements in critically ill 
patients via indirect calorimetry (IC) has long been con-
sidered the gold standard [7]. Limitations for using IC 
include time constraints, equipment availability, staff-
ing and cost. Therefore, many predictive equations exist 
for predicting resting energy expenditure (REE), but 
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the accuracy of these equations for estimating caloric 
requirements of critically ill patients is unclear [7–13]. 
Goes et al. evaluated if nine different standard predictive 
equations for energy expenditure could accurately reflect 
the energy requirements of critically ill, mechanically 
ventilated AKI patients [14]. There was low precision and 
poor agreement between measured and predicted REE 
by the Harris–Benedict (HB), Mifflin, Ireton–Jones, Penn 
State, American College of Chest Physicians and Faisy 
equations. The HB, without using the injury factor, was 
the least precise (18% precision). Modified Penn State 

equation had the best precision, although the precision 
rate was only 41%. In conclusion, none of these equa-
tions accurately estimated measured REE in severe AKI 
patients on dialysis and most of them underestimated 
energy needs [14]. Recently more sophisticated models 
using machine learning were applied in clinical practices 
resulting in better predictive models [15]. These models 
can be applied to build predictive equations aiming to 
capture the non-linearity between variables, resulting in 
better accuracy. These new models have also been applied 
to better predict resting energy expenditure (REE) [16].

Fig. 1  Flowchart of the study design and description of the machine learning approach
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The present study aimed, therefore, to develop a new 
predictive equation of REE for AKI patients, on dialysis 
and mechanically ventilated, using a machine learning 
approach.

Materials and methods
A cross-sectional descriptive study was carried out in the 
Dialysis Unit of the Clinical Hospital of Botucatu Medical 
School. The project was approved by the centre’s ethical 
committee and the protocols used followed the criteria 
of the Helsinki Declaration (protocol 4383/2012). For 
development of the predictive equation, 364 indirect 
calorimetry (IC) measurements in 114 AKI patients on 
dialysis were consecutively selected, aged between 19 and 
95 years. Subjects with a body mass index (BMI) between 
18–55  kg/m2, who gave their consent to participate in 
the study and agreed to comply with its standards were 
included. Inclusion criteria were patients admitted to the 
ICU with a diagnosis of AKI according to the KDIGO 
criteria [17], clinical symptoms suggestive of sepsis and 
acute tubular necrosis (ATN), a need for renal replace-
ment therapy (RRT) (stage 3) and mechanically venti-
lated. Exclusion criteria were patients with AKI of other 
aetiologies, renal transplanted or those with chronic 
renal disease stages 4 and 5 (glomerular filtration rate 
(GFR) < 30  ml/min estimated by the Modification of 
Diet in Renal Disease (MDRD) equation) [18], a fraction 
of inspired oxygen (FiO2) greater than 0.60, expiratory 
positive airway pressure (PEEP) > 10 cm H2O, maximum 
airway pressure > 60  cm H2O, stirring presence, use of 
neuromuscular blockers, air leakage into the ventilator 
circuit around the endotracheal tube cuff or from a bron-
chopleural fistula, as these factors lead to inaccuracies 
in REE measurement by IC. IC was performed using the 
RMR Quark apparatus (Cosmed, Rome, Italy).

Data analysis
For construction of the predictive model, 80% of the 
cases were randomly separated. Twenty per cent of 
unused cases were separated for validation. The pre-pro-
cessing was applied to the training and test set. The con-
tinuous predictor variables were transformed using Box 
and Cox and after dividing by means (centre) and stand-
ard deviation (scale). This transformation led to a uni-
form scale (mean = 0, SD = 1) for all analyses so that they 
were comparable between analytical platforms. The miss-
ing variables were imputed by the median. Categorical 
variables were converted into dummy variables. In fea-
ture engineering, we tested the distribution of each con-
tinuous variable according to the outcome. We choose 
natural splines with three degrees of freedom for age and 
BMI aims to account for the non-linearity. Afterward, 
linear and non-linear models were tested in the training 

data. These models were: linear regression with stepwise 
selection, linear regression with regularisation (glmnet), 
rpart, support vector machine with radial kernel (SVM), 
generalised boosting machine (GBM), extreme gradient 
boosting (XGBoost) and random forest. The optimisa-
tion of hyperparameters was done in the training set with 
ten-fold cross-validation and the performance was evalu-
ated by the root mean square error (RMSE). Therefore, 
we evaluated the final performance of the best model in 
the test set by choosing the model with the lower RMSE 

Table 1  Clinical characteristics of  the  population 
with AKI on dialysis

CVD cardiovascular disease, AKI acute kidney injury, ATN-ISS individual severity 
score in acute tubular necrosis, REE resting energy expenditure, VAD vasoactive 
drug, FIO2 fraction of inspired oxygen, Mv minute volume, RR respiratory rate, 
PEEP expiratory positive airway pressure, Creat serum creatinine, WBC white 
blood-cell count, CRP C-reactive protein

Patients parameters (n = 114)

Age (years) 60.6 ± 16.9

Male gender (%) 78 (68.4)

AKI (%)

 Sepsis-related 93 (81.6)

 ischemic 13 (11.4)

 Nephrotoxic 6 (5.3)

 Mixed 2 (1.8)

 ATN-ISS 0.64 ± 0.18

Race (%)

 White 98 (86)

 Black 11 (9.6)

 Weight (kg) 77.6 ± 22.4

Main diagnosis

 CVD 35 (30.7)

 Sepsis, severe sepsis, shock 56 (49.1)

 Neoplasia 9 (7.9)

 Liver diseases 8 (7)

 Trauma 6 (5.3)

 Death 73 (63)

Patients and IC parameters (n = 364)

 REE using HB (Kcal) 1540 ± 346

 REE using IC (Kcal) 2081 ± 645

 REE using IC (Kcal/kg/d) 27.9 ± 10.4

 VAD (mcg/kg/min) 0.11

(0.00–0.35)

 MV 8.5 ± 2.8

 Freq. (resp/min) 17 ± 5.2

 PEEP (cm H2O) 6 ± 1.5

 FIO2 (%) 38 ± 10.9

 Temperature (°C) 37.6 ± 0.8

 Urea (mg/dl) 157 ± 73

 WBC (mm3) 17,300 (12,300–25,500)

 PCR (mg/dl) 23.1 (7.6–32.8)
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(Fig. 1). The analysis was performed with R version 3.6.3, 
Vienna Austria, 2020 with caret package.

Results
A total of 364 IC measures in 114 patients were evalu-
ated. The mean age was 60.65 ± 16.9  years and 68.4% 
were males. Diagnoses of sepsis and cardiovascular dis-
ease (CVD) accounted for 79.8% of hospitalisations. 
AKI was the aetiology associated with sepsis in most 
patients (81.6%). The REE estimated by the Harris–Ben-
edict (HB) formula averaged 1540 ± 346  kcal; whereas 
the REE measured by the IC was significantly higher 
2081 ± 645 kcal (27.7 ± 10 kcal/kg/day, p < 0.001). Table 1 
shows the clinical characteristics of the general popula-
tion studied at the time when dialysis was indicated.

The variables available to train the models of REE in 
the total population (n = 364) are summarised in attach-
ment 01. In the exploratory data analysis, we plotted the 
REE related to age and BMI (Fig. 2). We demonstrated a 
non-linear association between these predictors and the 
outcome. Then, we applied natural splines with three 

degrees of freedom aiming to capture the non-linearity 
(feature engineering).

We trained different algorithms by ten-fold cross-vali-
dation in the training set (80% of the data) and the hyper-
parameters of each model were tuned based in the lower 
RMSE. After training tuned models, we applied resa-
mples of the training data and selected the best model 
based on the lower RMSE (Fig.  3). Therefore, the final 
models were evaluated for performance in the test set 
(internal validation) aiming to confirm the results of the 
training set (Table 2).

The models that had a non-linear approach had a lower 
RMSE. The linear model may have had the advantage 
of simplicity and interpretability (attachment 02). The 
model with the best accuracy was selected by the lower 
RMSE: random forest. The variable importance of the 
final model (random forest) was plotted in Fig. 4.

Finally, we plotted a correlation between the predicted 
values of REE and observed REE in the test set (unseen 
data). The random forest model (best model) had a final 

Fig. 2  A plot of age-related to REE (a) and BMI related to REE (b). The blue line is a smooth line that was fitted using polymonial regression
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r-value in this test set of 0.69 compared to an r-value of 
0.24 with the Harris–Benedict equation (Fig. 5).

Discussion
Information about the energy expenditure assessment 
of patients with AKI is scarce in the literature. Our 
study found that the REE estimated by the Harris and 
Benedict formula [19] was significantly lower than that 
measured by IC. This finding corroborates the indi-
cation not to use this formula in critically ill patients 
and in patients with AKI [11, 14, 20, 21] and the need 
to propose a new equation for those AKI on dialysis 
[21–25].

It has long been held that critical illness is a hyper-
metabolic state, i.e. that the basal metabolic rate is higher 
than that predicted by simple population characteristics 

[25–27]. Physiological factors such as fever, increased 
substrate cycling, and synthetic functions associated with 
the host response to stress and inflammation provide a 

Fig. 3  Summary statistics of tuned trained models in resamples of the training set. The box summaries the mean values. The statistics were: R 
squared and root mean square error (RMSE)

Table 2  Summary statistics of  final tuned models 
in the test set (20% of the data). R2 (R squared), and root 
mean square error (RMSE)

Models R2 RMSE

Linear model with stepwise 0.28 569.24

Regularized linear model 0.26 578.44

SVM 0.38 530.05

Random forest 0.48 490.05

R part 0.36 566.61

GBM 0.36 535.88

XGBoost 0.45 499.75
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theoretical basis for this generalization. Energy expendi-
ture is also influenced by common ICU therapies [14, 25].

This study aimed to develop and validate predictive 
equations for REE in severe AKI patients using a machine 
learning approach. It was found that the models were 
developed validly and significantly predicted REE in these 
patients and according to several linear and non-linear 
algorithms. In the present study, REE was positively cor-
related with C-reactive protein, minute volume (MV), 
expiratory positive airway pressure, serum urea, BMI and 
inversely with age (attachment 02). The principal vari-
ables included in the best model were age, BMI, use of 
vasopressors, expiratory positive airway pressure, minute 
volume, C-reactive protein, temperature and serum urea. 
The final r-value in the validation set was 0.69. In the lit-
erature, there is no consensus regarding the procedures 
to be used for the validation of predictive models. Some 
authors do not suggest the use of determination and cor-
relation coefficients for the validation of techniques or 
estimated variables [15]. Others consider that the Bland 
Altman plot is likely to show a systematic proportion 
bias [19]. We used ten-fold cross-validation and selected 
the model with the lower RMSE. The performance of 
the best model was confirmed in a test set of 20% ran-
domly selected unseen data (internal validation). The lin-
ear models had the advantage of simplicity of the model 
built and better interpretability but did not capture the 

non-linearity of the data. We confirmed this with a very 
low accuracy of the Harris–Benedict equation in the test 
set. The use of natural splines to age and BMI predictors 
improved the linear models but did not reach the same 
performance as the non-linear models like boost trees or 
support vector machines [22, 23]. The best model had a 
higher performance but a trade-off in lower interpret-
ability. In addition, the traditional model like the Har-
ris–Benedict [19] uses linear models that were easy to 
implement. Otherwise, the implementation of a model, 
like the random forest, that requires a calculator. How-
ever, currently, we have the facility of computers or apps 
that may overcome this difficulty.

Another advantage of the machine learning approach 
is to demonstrate other predictor variables that influ-
ence the outcome by finding complex interactions. 
The principal factors that contributed to the variabil-
ity of REE were the BMI and age that were previously 
described with traditional models [24, 25]. The machine 
analysis in this study reveals other new contributary 
variables that predict the REE, for example, ventilator 
parameters and biochemical values. Otherwise, a sim-
ple linear model with this data set without pre-pro-
cessing and feature engineering results in a model with 
lower accuracy and does not shown new interactions 
(R2 = 0.21, data not shown).

Fig. 4  Variable importance in the random forest model. The importance was reported on a normalised scale
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Thus, this study demonstrates the importance of 
estimating the REE in severe AKI patients, which is a 
determining factor in the assessment of nutrition status 
in critically ill patients. Previous studies reported cor-
relations between morbidity or mortality and REE and 
indicated that sicker patients and non-survivors had a 
lower REE [22, 25] but this is not a universal observa-
tion [26, 27]. Interpretations of these findings are lim-
ited by potential survivorship bias and confounders 
such as age and physical activity.

From a practical and application point of view, it is 
worth mentioning the capacity for technical evalua-
tions to reduce the difference in REE between IC and 
that estimated by other conventional formulas, such as 
HB, the use of these predictive equations for the assess-
ment of passive and active trawling, contributing with 
relevant information for nutritionists and physicians.

The present study has as main limitations the fact that 
the predictive models are not valid for non- severe AKI 
patients and the Bland Altman model was not performed. 
Although we trained models with a robust estimator with 
ten-fold cross-validation using RMSE as a metric, an 
approach regularly used in machine learning analysis, we 
tested the model in unseen data that may be considered 
an internal validation.

Conclusion
We propose a new predictive equation for estimating the 
REE of AKI patients on dialysis that uses a non-linear 
approach with better performance than actual models.

Fig. 5  A correlation plot between the predicted and observed REE in the test set (20% of unseen data). a Predicted REE by random forest model 
and b predicted REE by Harris–Benedict equation. We had an r-value of 0.69 with the random forest model (new model) and an r-value of 0.24 with 
the Harris–Benedict
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