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Abstract
Background Planning and executing movements requires the integration of different sensory modalities, such as 
vision and proprioception. However, neurological diseases like stroke can lead to full or partial loss of proprioception, 
resulting in impaired movements. Recent advances focused on providing additional sensory feedback to patients to 
compensate for the sensory loss, proving vibrotactile stimulation to be a viable option as it is inexpensive and easy 
to implement. Here, we test how such vibrotactile information can be integrated with visual signals to estimate the 
spatial location of a reach target.

Methods We used a center-out reach paradigm with 31 healthy human participants to investigate how artificial 
vibrotactile stimulation can be integrated with visual-spatial cues indicating target location. Specifically, we provided 
multisite vibrotactile stimulation to the moving dominant arm using eccentric rotating mass (ERM) motors. As the 
integration of inputs across multiple sensory modalities becomes especially relevant when one of them is uncertain, 
we additionally modulated the reliability of visual cues. We then compared the weighing of vibrotactile and visual 
inputs as a function of visual uncertainty to predictions from the maximum likelihood estimation (MLE) framework to 
decide if participants achieve quasi-optimal integration.

Results Our results show that participants could estimate target locations based on vibrotactile instructions. After 
short training, combined visual and vibrotactile cues led to higher hit rates and reduced reach errors when visual cues 
were uncertain. Additionally, we observed lower reaction times in trials with low visual uncertainty when vibrotactile 
stimulation was present. Using MLE predictions, we found that integration of vibrotactile and visual cues followed 
optimal integration when vibrotactile cues required the detection of one or two active motors. However, if estimating 
the location of a target required discriminating the intensities of two cues, integration violated MLE predictions.

Conclusion We conclude that participants can quickly learn to integrate visual and artificial vibrotactile information. 
Therefore, using additional vibrotactile stimulation may serve as a promising way to improve rehabilitation or the 
control of prosthetic devices by patients suffering loss of proprioception.
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Background
Information from different sensory modalities must be 
integrated to control and execute movements properly. 
During reaching movements, the visual system provides 
information about the location of potential movement 
goals and the hand. At the same time, proprioceptive 
signals are required to provide information about the 
state of muscles and joints [1, 2]. However, various neu-
rological conditions can lead to a full or partial loss of 
proprioception or impaired processing [3–5], which 
leads to impaired movement control [6]. For instance, 
proprioceptive deficits are common in stroke patients 
[7], affecting control of upper limbs [8, 9] since, for many 
stroke survivors, vision cannot fully compensate for the 
impaired position sense [10]. Recently, research focused 
on providing additional artificial feedback to patients in 
other sensory modalities to compensate for the lack of 
proprioception [11, 12] and providing supplementary 
sensory feedback to improve the control of neuro-pros-
theses and brain-computer interfaces, where no proprio-
ceptive inputs are available [13–17]. One inexpensive way 
of delivering such supplementary feedback is vibrotactile 
stimulation on the skin. However, how humans integrate 
such vibrotactile information with visual signals is still 
unclear.

It has been shown that humans can use pure vibrotac-
tile input in different ways to infer extrapersonal position 
information. Risi et al. [18] showed that human partici-
pants could control movements based on vibrotactile 
stimulation to their contralateral, non-moving arm with-
out visual feedback. The authors provided vibrotactile 
information about the current position of the moving 
hand, that is, state feedback. Alternatively, information 
about the motor error could be given, namely the spatial 
distance between hand position and reach goal. Availabil-
ity of error feedback has been shown to result in higher 
performance [19]. Additionally, Ballardini et al. [20] pro-
vided evidence that stroke survivors can use vibrotactile 
state or error feedback to guide their movements.

These previous studies demonstrate the usefulness of 
vibrotactile feedback in the absence of visual feedback. 
Yet, able-sighted patients can also make use of vision to 
localize target objects and the hand. While this is true 
in good light conditions in the visual part of their work-
space, vision is less helpful in low-light conditions, when 
working in the periphery of the visual field or behind the 
back or an occluding object. Cross-modal calibration and 
flexible weighing of visual and somatosensory informa-
tion is therefore important to allow smooth acting in sit-
uations of varying access to visual information to arrive 
at a coherent percept. Combining multiple sources of 

information becomes especially beneficial if one or more 
inputs are uncertain [21]. Therefore, we want to test if 
and how participants can learn to integrate vibrotactile 
and uncertain visual inputs when both provide spatially 
congruent information.

The way humans integrate inputs from multiple sen-
sory modalities is mostly conceptualized in the maxi-
mum likelihood estimation (MLE) framework (for review 
see 22). According to this theory, modalities are inte-
grated by summing their unimodal estimates weighted 
by their respective variances. This means that the more 
reliable input is assigned a greater weight. Since even less 
reliable inputs carry some information, albeit with higher 
uncertainty, it is still beneficial to consider these inputs in 
the overall integration process. Integrating multisensory 
inputs in this optimal statistical manner results in a more 
precise (i.e., less variable) and more accurate bimodal 
estimate. MLE integration has been demonstrated across 
various sensory systems, such as visual-haptic integration 
[23], audiovisual signals [24, 25], texture and motion cues 
[26], and olfactory-visual signals during the perception of 
emotions [27]. However, studies also found examples of 
suboptimal integration [28–30] or raised caution towards 
over-interpreting previous results demonstrating MLE 
integration [31, 32].

In this study, we wanted to test if healthy participants 
(i) can use vibrotactile information to estimate the loca-
tion of a reach target correctly, (ii) use congruent vibro-
tactile information to compensate for uncertain visual 
inputs, and (iii) integrate visual and vibrotactile inputs 
following MLE predictions. We provided participants 
with visual and artificial multisite vibrotactile cues about 
the location of reach targets. We used a discretized 
vibrotactile stimulation protocol and applied the vibra-
tion using four eccentric-rotating mass (ERM) motors 
attached to the moving arm. We varied visual cue reliabil-
ity to simulate uncertain sensory inputs and to encourage 
integration. Insights gained from this study may inform 
the development of novel rehabilitation strategies for 
individuals with proprioceptive deficits and the design 
of more intuitive and responsive neuro-prostheses and 
computer interfaces.

Methods
Participants
We tested 32 participants with no prior experience in 
cutaneous vibrotactile stimulation for sensory discrimi-
nation tasks. One participant was excluded because the 
minimum performance criterion during training was not 
reached, leaving 31 participants for analysis (17 female, 
24.8 ± 4 [s.d.] years). All participants self-identified as 
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right-handed, had normal or corrected-to-normal vision, 
and reported no neurological or muscular deficits. Each 
participant attended two sessions on separate days within 
one week, lasting approximately 1 h, and received finan-
cial compensation for their participation (8 €/h). Before 
the experiments, participants gave written informed 
consent. The study was conducted following institu-
tional guidelines for experiments with humans, adhered 
to the principles of the Declaration of Helsinki, and was 

approved by the Ethics Committee of the Georg-Elias-
Mueller-Institute for Psychology at the University of 
Göttingen.

Experimental setup
Participants were seated comfortably in a darkened room 
within an augmented reality setup [33] using a hap-
tic manipulator (delta.3, Force Dimension) to perform 
reaching movements in a 2D plane (Fig. 1A). The image 

Fig. 1 Experimental setup and task design. (A) Participants are seated in front of a haptic manipulandum performing center-out reaches. The image of 
two angled monitors is mirrored in front of the participant. Four ERM motors (yellow circles) are placed on the moving arm, each encoding one cardinal 
direction. Movements to the right were considered to be in a direction of 0° (blue arrow). (B) Task design. A trial started with a holding period of 300 ms 
in which the cursor (red dot) was moved into a central fixation point (light gray circle). Next, targets at one of 16 possible directions along the target ring 
were cued for 1500 ms using either visual (VIS), vibrotactile (VIB), or bimodal cues (VIS + VIB). Participants had 1000 ms to initiate their movement and 
leave the fixation point area, after fixation point disappeared and Go sound was played. The outer target ring needed to be reached within 1000 ms after 
leaving the fixation point, causing the trial to end. Yellow frame highlights the period in which motors were active. (C) Block design. Cue modality was 
switched between blocks of 32 trials. Blocks with only VIS trials in gray and with VIS + VIB and VIB trials in yellow. All participants completed 36 blocks over 
two sessions (14 in session 1 and 22 in session 2). (D) Example illustration of visual cues with different levels of target uncertainty. Either the target loca-
tion was revealed (0°) or the target was cued using five bars. Their position was drawn from a normal distribution centered around the target location. (E) 
Distributions for different uncertainty levels (15°, 30°, 60°). The shaded area resembles target size
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of 2 monitors (27-inch diagonal, 60  Hz refresh rate, 
XL2720T, BenQ) on either side of the participant (view-
ing distance 47 mm) was projected in front of the partici-
pants using two semi-transparent mirrors (75 × 75  mm, 
stock #46–643, Edmund Optics Inc.) angled 45° relative 
to the monitors. We covered the back of the mirrors with 
black cardboard to prevent participants from seeing their 
moving hands.

A computer running custom software (C++, OpenGL) 
controlled the experimental task, visual stimulus gen-
eration, and hand position recording (sampled at 2 kHz). 
The computer was connected to a microcontroller 
(Teensy 3.5, PJRC) that controlled four eccentric-rotating 
mass (ERM) vibration motors (310-003, Precision Micr-
odrives) via haptic controllers (DRV2605L, Adafruit) 
and a multiplexer (TCA9548A, Fasizi) for vibrotactile 
stimulation.

Experimental paradigm
To test how well participants can integrate vibrotac-
tile reach instructions when the visual target location is 
uncertain, participants performed center-out reaches 
within a 2D workspace using the haptic manipulan-
dum. The testing phase for the 2 sessions was the same 
for all participants: At the beginning of a trial, they were 
instructed to fixate a gray circle (10  mm radius) posi-
tioned in the workspace’s center (Fig.  1B). The fixation 
point was surrounded by a dark grey ring (inner radius 
90 mm, outer radius 110 mm) in which possible targets 
are located. Following a brief hold period of 300 ms, a 
target (20  mm arc, 100  mm distance to fixation point) 
located at one of 16 locations was cued for 1500 ms (4 
cardinal, 4 oblique, 8 intermediate). Following the disap-
pearance of the central fixation point and a simultaneous 
auditory signal, participants had 1000 ms to initiate their 
movement and leave the area of the fixation point (max. 
reaction time). Afterwards, they had another 1000 ms 
to reach the estimated target location (max. movement 
time). They were asked to aim for the target as accurately 
as possible. No movement speed constraint other than 
the time limit was applied. When the cursor reached the 
outer ring, the trial ended. No feedback about the success 
of the trial or the actual target location was provided. 
This was done to prevent participants from continuing 
to learn the vibrotactile mapping throughout the testing 
phase of the experiment. After 300 ms, the fixation point 
reappeared and the next trial was started by moving the 
cursor into its center.

Targets were cued either visually (VIS), by vibrotac-
tile stimulation (VIB), or with a combination of both 
(VIS + VIB). Cue modalities were switched in alternating 
blocks of 32 trials and indicated to the participant by the 
cursor’s color (Fig. 1C) to ensure participants were paying 
attention to the relevant sensory inputs. A yellow cursor 

instructed participants that targets would only be cued 
visually, whereas a red cursor indicated VIB or VIS + VIB 
trials. All participants completed a total of 1152 trials (36 
blocks). Within each block, target direction and uncer-
tainty level were randomly interleaved. Participants com-
pleted 14 blocks on the first day and 22 on the second.

Additionally, visual target uncertainty was varied by 
target cues consisting of a cloud of bars distributed along 
the ring (Fig.  1D) [34]. The position of each bar was 
drawn from a probability distribution centered on the 
target location. For target uncertainty trials, we used dis-
tributions with three different standard deviations (15°, 
30°, 60°) to modulate the spread of the bars (Fig.  1E). 
Within each modality block, uncertainty levels were ran-
domly interleaved. Visual target cues were always well 
visible (high contrast), the target uncertainty resulted 
purely from the spatial configuration. Also, the size of the 
target relevant for task performance did not change with 
uncertainty but was always an arc of 20 mm length.

Vibrotactile stimulation
To provide vibrotactile reach instructions to the partici-
pants, we placed four ERM motors on their actively mov-
ing right arm using self-adhesive tape. The ERM motors 
have an operational frequency range of 50–190 Hz and an 
amplitude of 0.6–1.1  g. Vibration frequency and ampli-
tude of ERM motors co-vary, which has been shown 
to be beneficial for the perception of vibration [35]. 
Two motors were placed at the initial third of the lower 
arm, situated from the wrist, while the other two were 
attached to either side of the biceps muscle (Fig.  1A). 
Each motor encoded a target in one of the four cardinal 
directions: The motors on the lower arm cued targets 
located up (90°) or downwards (270°) and the motors on 
the biceps encoded targets to the left (180°) or right (0°) 
of the center. To encode the oblique (45°, 135°, 225°, and 
315°) directions, two motors were activated simultane-
ously with the same intensity. To encode the intermediate 
directions (22.5°, 67.5°, etc.), two motors were activated 
with asymmetric intensities.

More specifically, when a target was located in either a 
cardinal or oblique direction, the corresponding motor(s) 
were fully active, generating a vibration frequency of 
approximately 190 Hz and an amplitude of about 1.1 g. In 
the case of a target located in an intermediate direction, 
the motor encoding a cardinal direction closest to this 
target was fully activated, while the more distant motor 
operated at a lower intensity, using a vibration frequency 
of approximately 120 Hz and an amplitude of about 0.4 g. 
We note that frequency and amplitude values can only be 
approximated since they depend on the attached mass. 
While we tried to reproduce as well as we could the pres-
sure with which the motors were attached to the arm 
between participants and sessions, a certain variability 
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was unavoidable. Variability in pressure can translate into 
slight differences in the motor amplitudes.

Training
Each participant took part in a training session on the 
first day to familiarize themselves with vibrotactile stimu-
lation and the experimental setup. During training, we 
introduced vibrotactile stimulation alongside visual cues. 
The training consisted of three blocks: in the first block, 
targets located along the cardinal axis were cued. In the 
second block, targets along the oblique directions were 
added, followed by the third block in which targets could 
appear in all 16 possible directions.

Each block consisted of two parts: in the first part, 
targets were cued visually and vibrotactilely, and par-
ticipants were instructed to reach the target. After each 
target of that block was presented at least three times, 
participants advanced to the second part of the given 
block if the hit rate in the last ten trials exceeded 80%. 
In the second part, targets were cued exclusively through 
vibrotactile stimulation. Participants needed to achieve 
the same performance criterion to progress to the next 
block. Participants were informed about the target loca-
tion at the end of a trial throughout the training in case 
they missed it. In the last block with all 16 target direc-
tions, we applied the performance criterion only to the 
first part with bimodal cues. This was necessary since 
most participants could not reach the required hit rate 
based on vibrotactile cues alone. In that case, training was 
stopped after 30 to 40 min of total training time, depend-
ing on how quickly the participant completed the previ-
ous blocks. On average, participants performed 27.63 ± 
2.65 (SEM) trials for each target in cardinal directions, 
22.97 ± 2.64 in oblique directions, and 18.71 ± 3.14 trials 
for each target in intermediate directions. On the second 
day, the second block with 8 directions was repeated to 
remind participants of the stimulation protocol.

Data analysis
Data were stored for offline analysis with MATLAB® 
R2021a (MathWorks Inc.). All plots were generated 
with GRAMM visualization toolbox for MATLAB [36]. 
Movement trajectories were aligned to movement onset, 
defined as the time at which the hand velocity exceeded 
0.02  mm/ms. For analysis, we excluded all trials where 
participants did not enter the target ring at a minimum 
eccentricity of 90  mm (1.4% of all trials). The hit rate 
was defined as the percentage of trials in which the cur-
sor ended within the target arc. The mid-reach error was 
calculated by computing the absolute angular difference 
of the cued target direction and the vector pointing from 
the fixation point to the cursor after traveling half the 
distance to the target ring. To compute mid-reach stan-
dard deviations, we rotated all trajectories within a given 

uncertainty and cue modality, irrespective of the target 
direction, to a direction of 0°. We then calculated the 
circular variance and standard deviation across all tri-
als of the given condition using the CircStat toolbox for 
MATLAB [37]. Reaction time was defined as the time 
between Go-cue and movement onset while movement 
time refers to the time from movement onset until reach-
ing the outer ring.

Optimal integration predictions
Bayesian integration theory describes the integration 
of two noisy sensory inputs into one bimodal estimate. 
Here, the estimated bimodal target location for a given 
visual target uncertainty level SV IS+V IB,u  can be derived 
from the weighted sum of visual and vibrotactile esti-
mated target locations SV IS,u  and SV IB :

 SV IS+V IB,u = wV IS,uSV IS,u + wV IB,uSV IB  (1)

with weights being proportional to the unimodal 
variances:

 
wV IS,u,mle =

σ −2
V IS,u

σ −2
V IS,u + σ −2

V IB

; wV IB,u,mle =
σ −2

V IB

σ −2
V IS,u + σ −2

V IB

 (2)

Here, only the variance of the visual estimate is depen-
dent on the uncertainty level since we did not experimen-
tally manipulate the uncertainty of the vibrotactile cues 
and, therefore, assume it is constant across uncertainty 
levels. The bimodal variance for a given uncertainty level 
σ 2

V IS+V IB,u  is given by:

 
σ 2

V IS+V IB,u =
σ 2

V IS,uσ
2
V IB

σ 2
V IS,u + σ 2

V IB

 (3)

Equation 3 describes the reduced variance of the bimodal 
estimate compared to any of the unimodal variances, 
which is necessarily fulfilled in the case of optimal cue 
integration. We compared the variance of the mid-reach 
angle in VIS + VIB trials to the variance in the corre-
sponding VIS or VIB trials, depending on which was 
lower, to test this prediction for each subject and uncer-
tainty level.

Next, we compared our data to predicted values 
from the MLE framework. Given that motor variabil-
ity can also influence the observed behavioral variance, 
we assumed it would be reflected in the smallest reach 
variance σ 2

MIN across conditions [38]. From that, we 
determined the predicted bimodal variance for a given 
uncertainty level as follows:
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σ 2

V IS+V IB,u,mle =
(σ 2

V IS,u − σ 2
MIN)(σ 2

V IB − σ 2
MIN)

σ 2
V IS,u + σ 2

V IB − 2σ 2
MIN

+ σ 2
MIN  (4)

To compare the predicted visual weights wV IS,mle,u  
(Eq. 2) with our data, we calculated the empirical visual 
weights for each uncertainty level and subject by:

 
wV IS,emp,u =

σ 2
V IB − σ 2

V IS+V IB,u

σ 2
V IB

 (5)

Statistics
We fitted a series of generalized linear mixed models 
(GLMM) in R (version 4.2.3.) to determine the effect of 
target uncertainty and cue modality on hit rate (model 1), 
mid-reach error (model 2), reaction time (model 3), and 
movement time (model 4) using the package ‘glmmTMB’ 
(version 1.1.8) [39]. We used the package ‘emmeans’ (ver-
sion 1.9.0) for post-hoc testing [40] on the models’ esti-
mated marginal means (EMMs). Specifically, we used 
paired z-tests since the variance derived from the model 
is known, and the sample size is large because all trials 
were included in the models. We included uncertainty 
level, cue modality, and their interaction as fixed effects 
and added random slopes and intercepts for each partici-
pant to account for repeated trials. Models were fitted to 
all VIS and VIS + VIB trials, excluding VIB trials, since we 
wanted to test for improvements in the bimodal condi-
tion over VIS trials. We included uncertainty level as a 
factor since we expected its effect to be non-linear. Note 
that using factors results in n – 1 coding variables, where 
n is the number of levels, to avoid singularities of the 
design matrices of the models. We did not include esti-
mation of the correlation parameters between random 
intercepts and slopes. Model 1 was fitted with binomial 
error distribution and logit link to model the hit rates. To 
fit mid-reach errors, we transformed them to a propor-
tion ([0, 1]) from the range of possible reach errors ([0°, 
180°]) and fitted model 2 with beta error distribution 
and logit link [41, 42]. We similarly transformed reaction 
times and movement times to a proportion of the pos-
sible range ([0 ms, 1000 ms]). Next, we fitted models 3 
and 4 with beta error distribution and logit link function.

Additionally, we used the same method to compare the 
data with the MLE predictions. First, we fitted a GLMM 
to the mid-reach circular variance in VIS + VIB trials and 
the corresponding minimum unimodal variance (model 
5). We used uncertainty level and type (minimum uni-
modal or bimodal variance) as fixed effects and included 
the same random effects as in the previous models. 
Next, to compare our data to MLE predictions, we fit-
ted a GLMM to mid-reach circular variance (model 6) or 
visual weight (model 7). In those models, type differenti-
ated between observed data and MLE prediction. Since 

circular variance and visual weights are defined in a range 
from 0 to 1, we again fitted models 5 to 7 with beta error 
distributions and logit link function.

Models with the additional letter a were fitted to the 
whole dataset, while models with the additional let-
ter b were fitted to trials with only cardinal and oblique 
targets. We first compared all full models to a reduced 
model without the effect of either cue (model 1 to 4) 
or type (model 5 to 7). If likelihood-ratio tests showed 
significantly better fits, the following analyses were 
performed using the full model. For all models, we deter-
mined the significance of individual effects by dropping 
them from the model, one at a time, and comparing the 
likelihood of the resulting models with that of the full 
model (R function drop1). We estimated 95% confidence 
limits of model estimates and fitted values using para-
metric bootstraps (N = 1000 bootstraps; function simu-
late of the package ‘glmmTMB’). Finally, we evaluated the 
stability of the models on the estimated coefficients and 
standard deviations by excluding each subject once, fit-
ting the full model to each of the subsets, and compar-
ing the obtained range of estimates to those from the full 
dataset. All models showed good stability.

For simple comparisons between VIS trials with 60° 
visual uncertainty and VIB trials, we used a paired t-test 
on participants’ means after testing for normality of the 
data. We considered p-values smaller than 0.05 signifi-
cant. P-values of post-hoc tests were adjusted for multi-
ple comparisons using the Bonferroni-Holm method.

Results
Estimation of target location using vibrotactile cues
First, we tested whether participants could accurately 
estimate a target’s location using vibrotactile cues alone. 
The mid-reach angles matched the actual target direction 
(Fig.  2A), demonstrating that participants were indeed 
able to use vibrotactile cues to estimate the location of 
a target. Additionally, we found some variability across 
targets, displaying more errors for oblique and especially 
for intermediate directions. To further investigate these 
differences, we calculated the performance across par-
ticipants depending on the target directions (Fig. 2B). We 
found that the hit rate associated with cardinal directions 
was higher compared to oblique and intermediate direc-
tions in VIB trials. Additionally, mid-reach errors were 
lower for reaches towards cardinal targets compared to 
other target directions (Fig. 2C).

Effect of bimodal cues on task performance
We first tested if the overall performance of participants 
improved with additional vibrotactile cues (Fig.  3A). 
Fitting model 1a to the hit rates, we found that the full 
model fit the data significantly better than the reduced 
model (likelihood-ratio test, χ2

(4) = 99.95, p < 0.001). 
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Using the full model, we found a significant interaction 
between uncertainty level and cue modality (likelihood-
ratio test, χ2

(3) = 75.17, p < 0.001). Post-hoc tests revealed 
significantly higher hit rates in VIS + VIB trials when 
visual target uncertainty was high (paired z-test, 30°: z = 
− 7.44, p < 0.001; 60°: z = − 13.06, p < 0.001). There was no 
significant difference for low (0°, 15°) levels of uncertainty 
(paired z-test, 0°: z = 1.88, p = 0.06; 15°: z = − 1.67, p = 0.09). 
Participants’ hit rates in VIB trials were higher compared 
to VIS trials at an uncertainty level of 60° (paired t-test, 
t(30) = − 13.93, p < 0.001). These findings demonstrate that 
participants benefitted from vibrotactile cues.

Since the hit rate is a binary measure and can only give 
limited insights into participants’ accuracy in estimat-
ing the target location, we compared the absolute mid-
reach error across uncertainty levels and cue modalities 
(Fig. 3B). Again, we found that the full model (model 2a) 
fit the data significantly better than the reduced model 
((likelihood-ratio test, χ2

(4) = 110.0, p < 0.001). Results 
from the full model revealed a significant interaction of 
uncertainty level and cue modality, as seen before for 
the hit rate (likelihood-ratio test, χ2

(3) = 77.52, p < 0.001). 
Using post-hoc tests, we found that mid-reach errors 
were significantly lower in VIS compared to VIS + VIB tri-
als at 30° and 60° uncertainty (paired z-test, 30°: z = 5.09, 
p < 0.001; 60°: z = 15.06, p < 0.001), whereas there was no 
significant difference for low uncertainty levels (paired 
z-test, 0°: z = − 0.24, p = 0.80; 15°: z = 0.38, p = 0.70). Reach 
errors in VIS trials at the highest uncertainty level were 
similar to mid-reach errors in VIB trials (paired t-test, 
t(30) = 1.03, p = 0.31).

Finally, we wanted to test if the planning or the execu-
tion of the movements are affected by target uncertainty 
and during which time integrating additional vibrotactile 
information can have a benefit. Therefore, we analyzed 
reaction and movement times (Fig. 3C, D). For reaction 
times, the full model 3a fit the data significantly better 
(likelihood-ratio test, χ2

(4) = 56.45, p < 0.001). In contrast, 

there was no difference between the full and reduced 
model (model 4a) for the movement times (likelihood-
ratio test, χ2

(4) = 8.64, p = 0.07). Model 3 results revealed 
a significant interaction of uncertainty level and cue 
modality for the reaction times (likelihood-ratio test, 
χ2

(3) = 47.80, p < 0.001). Still, we did not find a signifi-
cant effect of cue modality on movement times since it 
was not included in the reduced model. In addition to 
benefits in accuracy in trials with high uncertainty, we 
found lower reaction times for VIS + VIB trials compared 
to VIS trials for low levels of uncertainty (paired z-test, 
0°: z = 5.39, p < 0.001; 15°: z = 5.23, p < 0.001; 30°: z = 5.12, 
p < 0.001; 60°: z = 0.92, p = 0.36). Detailed GLMM results 
for all models can be found in Table S1.

Integration of visual and vibrotactile cues
We calculated the circular standard deviation of the 
mid-reach angles to further investigate the integration 
of visual and vibrotactile cues in estimating target loca-
tion. We first tested if the reach variance in VIS + VIB 
trials was different from the individually determined low-
est variance of the unimodal estimates (Fig. 4A). Fitting 
model 5a, we found that the full model fitted the data 
significantly better than the reduced model (likelihood-
ratio test, χ2

(4) = 40.96, p < 0.001). Next, we found a sig-
nificant interaction effect between uncertainty level and 
type (likelihood-ratio test, χ2

(3) = 35.98, p < 0.001). Using 
post-hoc tests, we found that only for the highest tested 
uncertainty level (60°), bimodal reach variability was 
lower than the lowest unimodal variability (paired z-test, 
z = 6.53, p < 0.001). There was no difference for all other 
uncertainty levels (paired z-test, 0°: z = − 1.67, p = 0.10; 
15°: z = − 1.89, p = 0.06, 30°: z = 0.77, p = 0.44).

Next, we compared our data to MLE predictions. If 
integration follows MLE, the bimodal reach variability 
can be derived from the unimodal variances. Addition-
ally, we removed movement-associated variability from 
our predictions (s. Methods, Eq. 2). Figure 4B shows the 

Fig. 2 Performance in VIB trials. (A) Mid-reach angle compared to actual target location across all participants (N = 31). Small points represent individual 
participants. Shaded areas highlight cardinal (dark), oblique (medium), and intermediate directions (bright). (B) Hit rate for different target directions 
across all participants. Points represent single participants. (C) Mid-reach error across all participants. Error bars depict 95% confidence intervals
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mid-reach standard deviations as a function of visual 
uncertainty of the observed data and MLE prediction. 
Fitting model 6a to our data, we found a significant dif-
ference between the full and reduced model (likelihood-
ratio test, χ2

(4) = 4.69, p = 0.20). Additionally, we did not 
find a significant interaction effect of uncertainty and 
type, but significant main effects of both uncertainty 
(likelihood-ratio test, χ2

(3) = 343.5, p < 0.001) and type 
(likelihood-ratio test, χ2

(1) = 26.65, p < 0.001). Post-hoc 

test showed that the bimodal variance was higher than 
the one predicted by MLE for all uncertainty levels but 
0° (paired z-test, 0°: z = − 1.64, p = 0.10; 15°: z = − 3.29, 
p = 0.001; 30°: z = − 2.33, p = 0.02; 60°: z = − 6.23, p < 0.001).

Similarly, we computed the visual weights for the dif-
ferent uncertainty levels to determine how much par-
ticipants relied on visual information (Fig.  4C). Again, 
we found a significant difference between the full and 
reduced model 7a (likelihood-ratio test, χ2

(4) = 29.81, 

Fig. 3 Participants’ performance dependent on uncertainty level and cue modality. (A) Mean hit rate. (B) Mean mid-reach error. (C) Mean reaction time. 
(D) Mean movement time. Results from VIS trials in grey, VIS + VIB trials in green, and VIB-only trials in yellow. Shaded points show data from individual 
participants (N = 31). Error bars depict 95% confidence intervals. *p < 0.05, **p < 0.01, ***p < 0.001 for paired z-tests
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p = 0.20). We observed a significant interaction effect of 
uncertainty and type (likelihood-ratio test, χ2

(3) = 9.01, 
p = 0.04). Using post-hoc tests, we found lower visual 
weights than predicted by MLE once visual target uncer-
tainty is introduced but not at 0° uncertainty (paired 
z-test, 0°: z = 1.84, p = 0.07; 15°: z = 3.60, p = 0.003; 30°: 
z = 2.40, p = 0.02; 60°: z = 5.25, p < 0.001). Results of model 
fits can be found in Table S2.

Since we observed deficient performance for the inter-
mediate directions, we wondered if MLE predictions 
were violated because participants were unable to inter-
pret these cues correctly. Therefore, we ran the same 
analyses but excluded trials with intermediate targets. 
The behavioral results were similar to results including 

all directions and mainly differed in effect sizes (Fig. S1, 
Table S3). First we again tested if the empirical bimodal 
variability was different from the lowest individually 
determined unimodal variability. We found a significant 
difference between the full and reduced model when fit-
ting model 5b to trials with only cardinal and oblique tar-
gets (Fig. 5A, likelihood-ratio test, χ2

(4) = 31.04, p < 0.001). 
Further, the interaction between uncertainty and type 
was significant and post-hoc tests showed lower bimodal 
variance compared to the lowest unimodal variability 
for high uncertainty levels (paired z-test, 30°: z = 3.86, 
p = 0.001; 60°: z = 4.56, p < 0.001). There was no differ-
ence for low uncertainty levels (paired z-test, 0°: z = 0.08, 
p = 0.94; 15°: z = − 0.49, p = 0.63).

Fig. 5 MLE predictions including only cardinal and oblique trials. (A) Empirical circular standard deviation of mid-reach angles in VIS + VIB trials versus 
minimum of VIS or VIB trials. Color reflects uncertainty level and marker style cue modality with the lowest reach variability for each participant (N = 31, 
point: VIS, triangle: VIB). (B) Mean mid-reach angle standard deviation and model predictions for different uncertainty levels. (C) Mean visual weights and 
model prediction for different uncertainty levels. Data in dark green and model predictions in blue. Error bars and shaded areas depict 95% confidence 
intervals. *p < 0.05, **p < 0.01, ***p < 0.001 for paired z-tests

 

Fig. 4 MLE predictions including all directions. (A) Empirical circular standard deviation of mid-reach angles in VIS + VIB trials versus minimum of VIS or 
VIB trials. Color reflects uncertainty level and marker style cue modality with the lowest reach variability for each participant (N = 31, point: VIS, triangle: 
VIB). (B) Mean mid-reach angle standard deviation and model predictions for different uncertainty levels. (C) Mean visual weights and model prediction 
for different uncertainty levels. Data in dark green and model predictions in blue. Error bars and shaded areas depict 95% confidence intervals. *p < 0.05, 
**p < 0.01, ***p < 0.001 for paired z-tests
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Next, we tested if the empirical bimodal variability dif-
fered from the MLE prediction when trials with interme-
diate targets were excluded (Fig. 5B). Fitting model 6b, we 
did not find a significant difference between the full and 
reduced model (likelihood-ratio test, χ2

(4) = 9.04, p = 0.06) 
when including only cardinal and oblique target direc-
tions. Since the effect of type (observed data or model 
prediction) was not included in the reduced model, we 
did not find a difference between predicted and mea-
sured reach variabilities.

Similarly, we computed the visual weights for the dif-
ferent uncertainty levels to determine how much par-
ticipants relied on visual information (Fig.  5C). Again, 
we found no significant difference between the full and 
reduced model 7b (likelihood-ratio test, χ2

(4) = 7.14, 
p = 0.13). Again, we did not find a significant difference 
between MLE predictions and empirical data. Detailed 
model results can be found in Table S4.

Discussion
We tested how humans integrate visual and artificial 
vibrotactile reach instructions. We found that (i) partici-
pants could interpret vibration stimuli to estimate target 
locations; (ii) vibrotactile stimulation complementing 
visual information partly compensated for the uncertain 
visual information, particularly in cases of high visual tar-
get uncertainty, as reflected in higher hit rates and lower 
mid-reach errors; and (iii) participants integrated visual 
and vibrotactile cues following MLE predictions when 
targets were cued in cardinal and oblique directions. 
When participants needed to reach towards targets in 
intermediate directions, they still relied on vibrotactile 
inputs, but the integration no longer complied with MLE 
predictions. Additionally, we found reduced reaction 
times when vibrotactile cues complemented visual cues 
of low uncertainty. Our results show that participants 
benefitted from combining visual and vibrotactile cues 
without a need for extended training, highlighting the 
usefulness of such artificial sensory inputs.

Integration of visual vibrotactile cues depends on 
stimulation patterns
Cue integration following MLE requires knowledge about 
the statistical properties of the sensory cues and the cor-
responding sensory system. Participants seemed to 
acquire this knowledge only in cases where targets were 
cued with one motor or two motors active with the same 
intensity. However, when targets were located in inter-
mediate directions and the activity of two simultaneous 
vibrotactile cues had to be discriminated, participants did 
not weigh visual and vibrotactile inputs following MLE. 
Suboptimal integration here is likely due to the applied 
stimulation protocol causing errors in interpreting the 
vibrotactile cues rather than related to the integration 

process itself. This interpretation is supported by the 
strong performance differences between target direc-
tions. Errors in discriminating which motor had the 
higher intensity could have led to biases away from the 
actual target location, resulting in higher reach variance. 
As discussed in the next session, one reason might be the 
inherent complexity of this additional discrimination of 
two vibrotactile cues and the training protocol.

At the same time, we found evidence for nearly opti-
mal integration of visual and artificial vibrotactile cues to 
determine the location of a reach target if it was located 
in cardinal or oblique directions. This finding aligns with 
previous research showing optimal integration across 
various sensory modalities [23–27]. We found reduced 
variability of target estimates in the bimodal condition 
compared to the individually determined lowest variabil-
ity in the unimodal condition for high visual uncertainty 
levels. Additionally, bimodal estimates of the target loca-
tion were not only more precise but also more accurate, 
reflected in higher hit rates and smaller reach errors in 
VIS + VIB compared to VIS or VIB trials.

Considering the comparable short training participants 
received, the results show that participants can quickly 
adopt strategies to integrate artificial vibrotactile inputs. 
In a different study, participants could learn to integrate 
arbitrary visual and touch signals by their statistical co-
occurrence [43]. There, participants learned these asso-
ciations over the time course of multiple sessions. In 
our experiment, they only had around 30  min to learn 
to associate visual with vibrotactile cues. Perhaps, addi-
tional learning could improve interpretation of interme-
diate target cues resulting in variabilities closer to the one 
predicted by MLE.

Moreover, despite suboptimal integration for interme-
diate directions, we found differences in reaction times 
but no effect of additional vibrotactile cues on movement 
times. This suggests that target uncertainty and integra-
tion primarily affect the target selection process during 
movement planning. While participants benefitted from 
additional vibrotactile cues regarding hit rate and reach 
error, particularly in high-uncertainty trials, we observed 
the opposite for reaction times. Here, participants 
reacted faster following bimodal cues only if the uncer-
tainty level was low. Similarly, it has been shown that 
reaction times for visually-guided saccades were lower 
when additional auditory cues were present [44]. How-
ever, this previous study also found that reaction times 
were reduced less if the spatial discrepancy between 
the two cues increased. In the case of high visual target 
uncertainty, the unimodal estimated target locations are 
likely to be further apart in our experiment. This differ-
ence could have led to conflicting signals that needed to 
be resolved, resulting in similar reaction times to VIS 
trials. Indeed, it has been shown that such cross-modal 
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congruency effects (CCE) can lead to shorter reaction 
times when visual and vibrotactile cues are spatially 
congruent [45, 46] and located within or outside of the 
peripersonal space [47]. The observed CCE suggests that 
while we did not find effects of multisensory integration 
on accuracy and precision when uncertainty was low 
(likely because visual cues alone were sufficient), partici-
pants still integrated additional vibrotactile inputs. Taken 
together, this means that participants always benefitted 
from vibrotactile cues, either in terms of accuracy when 
visual information was poor or speed when visual infor-
mation was reliable.

In this study, we tested how visual and vibrotactile cues 
are integrated while participants had considerable time 
to combine the two signals and plan a reach. Future stud-
ies need to investigate how these results generalize to 
active movement control based on visual and vibrotactile 
feedback of hand position.

Different performance in VIB trials depending on targets 
and high variability between participants
With the vibrotactile stimulation protocol presented 
here, we found that participants were able to use vibro-
tactile cues to estimate the location of a reaching target. 
However, there were substantial differences in how well 
participants could estimate a cued target depending on 
its direction. There are multiple potential reasons. First, 
due to the training protocol, individual cardinal targets 
were repeated more frequently than oblique targets, 
which, in turn, were repeated more frequently than tar-
gets in intermediate directions (see Methods section). 
Participants, therefore, had more repetitions to learn the 
vibrotactile mapping for cardinal and oblique targets. 
Hence, the performance in the different direction catego-
ries strongly correlates with the number of training trials. 
Second, for oblique and intermediate targets, the acti-
vation of two motors needed to be detected at the same 
time. Finally, for intermediated targets, the activation 
of two active motors had to be compared to determine 
which one vibrated stronger.

Moreover, previous studies in which only vibrotac-
tile feedback was provided during reaching movements 
showed that participants tended to decompose their 
movements into sub-movements along cardinal direc-
tions [18, 48], suggesting that participants were unable 
to follow intermediate directions. These findings have 
been related to either the inability to form an appropriate 
vibrotactile map, insufficient attentional capacities, or the 
effect of masking, which describes the reduced sensitivity 
to a stimulus in the presence of a second stimulus [48]. 
These possible mechanisms might have led to improper 
weighing of vibrotactile inputs for intermediate target 
directions, which could have led to violations of MLE 
predictions. Potential ways to improve discrimination 

could be stimulating two sites not simultaneously but 
sequentially or placing the motors that need to be com-
pared within the same dermatome [49, 50].

We additionally observed a high variability in perfor-
mance between participants. One reason might be that 
the placement of the motors for individual participants 
was not optimized. As the diameter of the arm changes 
between participants, the motors at the lower arm might 
have been too close for some of them. Hence, the propa-
gating vibration across the skin could have led to confu-
sion about which motor was active [51].

Limitations and alternative models of multisensory 
integration
Determining the predictions by MLE, we simplified 
the model by neglecting participants’ prior expecta-
tions and proprioceptive estimates about possible target 
locations. Since we had discrete target locations, those 
could have influenced the final estimate [52] and might 
explain the slight differences between the data and the 
model for high uncertainty conditions, where we found 
a bias towards vibrotactile cues, and these prior expec-
tations potentially have the most substantial influence. 
Another reason for the observed bias in high uncertainty 
trials might be that participants partly disregarded visual 
inputs as it was too challenging to interpret visual cues 
with high uncertainty levels.

In this study, we focused on the reduction of variabil-
ity resulting from integrating two sensory inputs. How-
ever, MLE makes predictions not only for the bimodal 
variance but also for the estimate itself. Here, we have 
not tested if the estimated target location in bimodal 
trials was consistent with MLE predictions. This could 
provide further evidence of MLE integration but would 
require conflict conditions not included in this study 
(e.g., [28]). Furthermore, we assumed that vibrotactile 
variability remained constant throughout the experiment 
and across sessions. To prevent additional learning of the 
vibrotactile mapping, we did not disclose the success of 
a trial or the actual target location. However, in cases of 
low visual uncertainty, congruent bimodal inputs could, 
in principle, have triggered learning processes, poten-
tially altering vibrotactile variability and affecting MLE 
predictions. Nonetheless, we expect these influences to 
be small because directions and uncertainty levels were 
randomly interleaved within each vibrotactile block, pre-
venting continuous learning signals.

Previous studies investigating multisensory integra-
tion have predominantly used psychometric methods to 
test MLE hypotheses. Our study used a motor task par-
adigm, which introduces a different type of noise in the 
behavioral readout, such as motor planning and execu-
tion noise [53, 54]. We accounted for motor variability 
by removing it from our model [38]. We consider other 
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factors, like proprioceptive noise, negligible given the 
veridical visual cursor feedback about the movement.

Recently, a growing body of literature has raised cau-
tion against overinterpreting results from previous stud-
ies demonstrating MLE integration [31, 32] and argued 
against MLE as a general mechanism by finding evidence 
of suboptimal integration of sensory cues [29, 30]. To rule 
out that participants used the most reliable unimodal 
information, which is referred to as cue-switching [21], 
we determined the most reliable cue for each partici-
pant individually. We then compared it to the observed 
bimodal variance, as suggested previously [31]. Since 
the bimodal variability was lower than the minimum 
variability in VIS or VIB trials when visual uncertainty 
was high, participants showed increased precision in 
VIS + VIB trials, the central MLE prediction [55]. In cases 
of low visual uncertainty, it is likely that our method is 
not sensitive enough to detect small gains in precision. 
However, we note that alternative models, such as proba-
bilistic cue-switching, can lead to predictions similar to 
MLE [30, 31]. Future experiments may disentangle those 
theories by matching the associated individual variances 
of the inputs to increase the sensitivity for differences in 
their predictions.

Considerations for application
Here, we only observed near-optimal integration when 
the interpretation of vibrotactile information was based 
on detecting active motors. Consequently, future stimu-
lation protocols seem favorable that do not require dis-
criminating the intensities of two vibrotactile cues. 
Statistically optimal integration of visual and artificial 
vibrotactile information has an advantage compared 
to other suboptimal strategies: participants are likely to 
benefit from the additional vibrotactile information even 
if the stimulation paradigm is insufficient to achieve per-
formance levels similar to purely visual ones, as we have 
seen in our experiment. By integrating and weighting the 
two inputs by their respective variance, the final bimodal 
estimate will be more accurate and have lower variance 
than movements solely relying on visual cues alone. 
Nonetheless, longer training durations with vibrotactile 
stimulation are likely to improve performance further. As 
shown in a recent study exposing participants to vibro-
tactile feedback over 20 sessions, resulting in accuracies 
comparable to purely proprioception-based reaches [48].

While most participants in our study were relatively 
young, the prevalence of neurological diseases increases 
with advancing age. Consequently, the demand for 
supplementary feedback becomes more critical among 
older cohorts. Interestingly, it has been shown that the 
ability to integrate information from different sensory 
sources varies during a person’s lifetime and seems to 
be enhanced in older adults (see 56 for a review). Thus, 

older patients may exhibit an even greater potential for 
benefitting from additional sensory inputs. However, it is 
worth noting that studies have shown vibration intensity 
discrimination to be worse in older people than in young 
adults while suggesting the potential for improvement 
through targeted training [48, 50].

Conclusion
To conclude, participants can use vibrotactile cues to 
estimate the location of a reach target and benefit from 
vibrotactile cues when visual information is uncertain. 
Participants can adopt near-optimal strategies for vibro-
tactile cues after short training. However, due to the 
choice of vibrotactile stimulation, integration violated 
MLE prediction when vibration intensities needed to be 
discriminated. Therefore, patients provided with addi-
tional vibrotactile information are likely to quickly bene-
fit from such stimulation when combined with uncertain 
visual inputs, even if the additional artificial input on its 
own might not lead to optimal performance levels. This 
rapid adaptability of beneficial integration strategies fur-
ther highlights the usefulness and effectiveness of supple-
mentary vibrotactile input.
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