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Abstract 

Background  Aging degrades the balance and locomotion ability due to frailty and pathological conditions. This 
demands balance rehabilitation and assistive technologies that help the affected population to regain mobility, inde-
pendence, and improve their quality of life. While many overground gait rehabilitation and assistive robots exist in the 
market, none are designed to be used at home or in community settings.

Methods  A device named Mobile Robotic Balance Assistant (MRBA) is developed to address this problem. MRBA is 
a hybrid of a gait assistive robot and a powered wheelchair. When the user is walking around performing activities of 
daily living, the robot follows the person and provides support at the pelvic area in case of loss of balance. It can also 
be transformed into a wheelchair if the user wants to sit down or commute. To achieve instability detection, sensory 
data from the robot are compared with a predefined threshold; a fall is identified if the value exceeds the threshold. 
The experiments involve both healthy young subjects and an individual with spinal cord injury (SCI). Spatial Para-
metric Mapping is used to assess the effect of the robot on lower limb joint kinematics during walking. The instabil-
ity detection algorithm is evaluated by calculating the sensitivity and specificity in identifying normal walking and 
simulated falls.

Results  When walking with MRBA, the healthy subjects have a lower speed, smaller step length and longer step 
time. The SCI subject experiences similar changes as well as a decrease in step width that indicates better stability. 
Both groups of subjects have reduced joint range of motion. By comparing the force sensor measurement with a 
calibrated threshold, the instability detection algorithm can identify more than 93% of self-induced falls with a false 
alarm rate of 0%.

Conclusions  While there is still room for improvement in the robot compliance and the instability identification, 
the study demonstrates the first step in bringing gait assistive technologies into homes. We hope that the robot can 
encourage the balance-impaired population to engage in more activities of daily living to improve their quality of life. 
Future research includes recruiting more subjects with balance difficulty to further refine the device functionalities.
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Background
Physiologic aging processes, musculoskeletal limitations 
and neuropathology are common causes of impaired bal-
ance. Balance control probably has the greatest impact on 
activities of daily living (ADLs) independence and gait, 
because it is a fundamental motor skill and prerequisite 
to the maintenance of a myriad of postures and mobility 
[1–3]. A consequence of weakened balance control is fall. 
Patient falls have been a major issue of concern in geri-
atric care and rehabilitation worldwide as it is the single 
most crucial factor in patient injuries [4]. Falls also have 
psychological impacts in which they cause fear, anxiety, 
and loss of confidence, resulting in activity avoidance, 
social isolation and increasing frailty [5]. The occurrence 
rate of falls among older patients is high in both health-
care facilities and at home.

The idea of an overground gait or balance trainer has 
been explored by the rehabilitation and assistive robot-
ics community in the past decade, most notably is the 
KineAssist [6] developed at Northwestern University and 
commercialized by Kinea Design LLC. A similar technol-
ogy focusing on Parkinson’s Disease patients, the Robotic 
Walker for Gait Rehabilitation, has been reported by 
Mun et  al. [7] from National University of Singapore 
(NUS). Because of the inertia of the robots, the users of 
both systems experience an alteration in gait strategies, 
especially in the stages of transiting between standing 
and walking (i.e. starting and stopping). On the other 
hand, some products were developed based on a sus-
pended harness system to provide body weight support 
for overground mobility training [8]. Most devices cur-
rently available were designed to be used in healthcare 
institutions, rather than home- or community-based, 
thus having a large footprint and low maneuverability.

A device named Mobile Robotic Balance Assistant 
(MRBA) was thus developed to address this problem 
(Fig. 1). The robot provides body weight and balance sup-
port to the user during level ground ambulation through 
its pelvic interface that allows MRBA to track its user 
autonomously. MRBA follows the user closely while 
holding onto their pelvis, mimicking the helping hands of 
a parent when a toddler learns to walk. In case the user 
loses balance, the robot can intervene the fall by securing 
the user in place so that they can regain balance. When 
the user wants to sit down or commute, the robot can 
be transformed into a powered wheelchair. The motion 
between sitting and standing are physically supported by 
the robot. The hybrid design of a gait assistive technology 
and a wheelchair potentially allows the user to perform a 
wide variety of ADLs at home and in the community with 
only one piece of mobility aid.

While the robot is designed for home use, it can also 
be used in clinical settings to relieve the burden of 

physiotherapists. It may also help in rehabilitation as it 
encourages the user to engage in walking and ADLs by 
providing added safety features. Such home- and com-
munity-based rehabilitation is a complement to hospital-
based rehabilitation and may promote better recovery 
in motor capability as it increases the training dose by 
allowing patient to practice more walking and balancing 
tasks. Nevertheless, as patients’ mobility and independ-
ence are encouraged in the paradigm, the risk of falls is 
further increased [9–12]. Notwithstanding, having a 
device like MRBA ensuring the safety of the user allows 
the user to participate in a more active lifestyle.

Methods
Hardware design
MRBA consists of four sub-systems: namely (i) a pow-
ered wheelchair base, (ii) a sit-to-stand assistive sys-
tem, (iii) a balance assistive system, and (iv) the sensory 
system (Fig. 2). They allow the robot to assist the user’s 
mobility in both Wheelchair Configuration and Walking-
assisted Configuration.

Powered wheelchair base
When transformed into the Wheelchair Configuration, 
the device serves as a powered wheelchair that allows 
the user to commute quickly. The mobile base was built 
with a footprint of 1.05 m × 0.7 m, which is comparable 

Fig. 1  Mobile Robotic Balance Assistant (MRBA) with a user attached 
to it
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to regular wheelchairs, making it small enough to navi-
gate in the home environment. The flexibility is further 
enhanced by the mid-wheel driven design, which leads to 
a small turning radius of 65 cm. The two driving wheels 
are driven by DC Motor (EC82N245325ALGB, Motion 
Tech Motors), whereas the four anti-tip omni wheels 
(127  mm Heavy Duty Aluminum, Nexus Automation) 
help to stabilize the platform in case of a loss of balance. 
The robot has a maximum speed of 2.2  m/s, which is 
sufficient to move along with a balance-challenged user, 
whose walking speed is often below 1.0 m/s [13–15].

Sit‑to‑stand assistive system
The sit-to-stand mechanism consists of two parts: a linear 
actuator (LX700S100, LYX) and a customized parallelo-
gram mechanism. They together form a four-bar linkage, 
as shown in Fig. 3. When the linear actuator extends, the 
mechanism lifts the seat from the horizontal orientation 
to the vertical orientation, assisting the user when they 
are standing up; when the linear actuator contracts, the 
mechanism folds the seat such that the user can sit down 
at a safe pace. Throughout the process, the parallelogram 
maintains the orientation of the balance assistive mecha-
nism such that it is always horizontal with respect to the 
ground.

To prevent the user from falling forward during the 
sit-to-stand process, a shank support mechanism was 
designed. The mechanism is actuated to open and close 
the shank holding interface as shown in Fig. 4a, b, d. The 
mechanism is closed before the user starts to stand such 

that the interface comes into contact with the shank to 
prevent the lower limbs from buckling. The mechanism 
then opens after the user stands straight so that it does 
not hinder the walking movements. The details of the 
mechanism are illustrated in Fig. 4c with the motor hid-
den. There are two linkages in the mechanism. In Linkage 
1, the motor drives Link 1 and transmits the movement 
from Link 1 through Link 2 to Link 3. Link 1 connects 
to Link 2 through a round pin and slot whereas Link 2 
connects to Link 3 through a revolute joint. Link 3 moves 
Linkage 2, which is a four-bar mechanism, to perform the 
open and close actions.

Fig. 2  Overview of Mobile Robotic Balance Assistance. Top: 
Wheelchair configuration; Bottom: Walking-assisted configuration

Fig. 3  The sit-to-stand mechanism. Top left: Wheelchair 
configuration; Top right: Walking-assisted configuration. Bottom: The 
process from sit to stand

Fig. 4  The shank support mechanism. a Fully open configuration. 
b Fully closed configuration. c Linkages without the motor. d Shank 
support operates from open to closed configuration
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The entire sit-to-stand assistance process, including the 
seat lifting and shank supporting, takes approximately 
15 s.

Balance assistive system
The balance assistive system consists of the pelvic inter-
face, the brakes and the force transmitting cables.

The interface is a pair of robotic arms formed by four 
rotary joints (R1–R4) and two linear joints (L1, L2), as 
shown in Fig. 5. It is attached to the user at the pelvis and 
thighs via a belt and a harness support, respectively. The 
contact point is chosen to be at the pelvic area because it 
is close to the Center of Mass (CoM) of the human and 
thus allows the assistive forces to be delivered more effec-
tively. Unlike other gait assistive devices that use rigid 
interface coupled with force sensors to follow the user’s 
motion via feedback control, MRBA interface is intrin-
sically compliant due to its rotary and prismatic joints. 
Thus, the interface needs not to be directly actuated for 
compliant interaction. The compliant property decouples 
the dynamics of the mobile base from the user, reducing 
the inertia effect of the mobile platform on the user. In 
total, the interface provides three degrees of freedom that 
caters for natural pelvic movement along the horizontal 
plane. The range of motion is indicated as follows:

•	 Anterior–Posterior: − 200 mm–200 mm
•	 Lateral: − 150 mm–150 mm
•	 Rotation: − 60◦–60◦

In the recent years, variable stiffness actuators or 
mechanisms have been widely adopted in robotic systems 
with direct human contact. The controllable compliance 
reduces the impact on human body as a portion of the 
interaction force or torque is absorbed by the spring and 
damper system in the mechanism. However, such sys-
tems demand complex control algorithms and expensive 

high-power motors. Instead, MRBA utilizes magnetic 
powder brakes (TJ-POD-1.5, Tian Ji) to modulate the 
stiffness of the pelvic interface. The biggest advantage of 
using magnetic powder brake is the linear relationship 
between the input voltage and the brake force, making it 
easy for stiffness adjustment. The system then resists the 
interface movement in unwanted direction such that the 
CoM remains in the safe zone. If the user loses balance, 
the interface can be stiffened almost instantaneously to 
arrest the fall; the pelvic interface can recover its compli-
ance after the user regains their balance.

However, magnetic powder brakes are usually bulky, 
making it impossible to directly couple the brakes to the 
robotic arm joints. Thus, a novel cable driven mechanism 
was developed to transmit the forces from the actuators 
to the joints (see Fig. 6). With the new design, the heavy 
brakes can be installed on the mobile base, greatly reduc-
ing the weight of the robotic arms such that the compli-
ance of the pelvic interface is maintained. Bowden cable 
is used for its flexibility as it can adapt its shape to both 
sitting and standing configurations. A cable routing sys-
tem is used to guide the cables from the Bowden cable 
ends to the brakes. The system contains two types of pul-
leys: the brake pulleys that are directly connected to the 
brakes, and the guide pulleys that guides the cable from 
the brake pulleys to the Bowden end connectors. The 
four variable stiffness brakes are connected to the joints 
R1, R2, L1 and L2 of the pelvic interface through the 
cable driven mechanism. The mechanical response time 
of the fall intervention system is 0.28 s.

The entire system weighs 140 kg and is able to provide 
balance support to patients weigh up to 80 kg.

Sensory system
The intended function of the system is to mimic a 
therapist assisting patient during overground walking 
training. Thus, the robot must be able to identify the 
patients’ movements and balance state to follow the 
patient walking and provide balance assistance when 
necessary. Four potentiometers (WDD35D-4, Wenzhou 
Xinle Instrument and Meter Co., Ltd) are installed to 
measure the motion of joints L1, L2, R3, R4 as labeled 

Fig. 5  The pelvic interface. It connects the robot to the user at the 
pelvic area such that the pelvis can move in three degrees of freedom 
on the horizontal plane

Fig. 6  The variable stiffness actuation system with Bowden cables
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in Fig. 5. They are used to determine the position and 
the orientation of the pelvic interface. As the interface 
is directly connected to the human pelvis, we can mon-
itor the user pelvic movement and use this as the target 
to follow the user.

Evaluating the human balance state is a much more 
challenging task. The literature have suggested moni-
toring the trunk motion to identify one’s instability 
right before a fall impact [16–20]. Hence, an Inertial 
Measurement Unit (IMU) (BN0055, BOSCH) is placed 
on the pelvic interface to monitor the kinematics of 
the subject’s CoM. Meanwhile, as the user loses bal-
ance, part of their body weight will be supported by the 
robotic arm. Thus, as another balance evaluation mod-
ule, a couple of force sensors (ZNHM-7-500 KG, Chino 
Sensor) are installed at each side of the robotic arm to 
measure the vertical forces exerted on the robot.

Figure  7 illustrates the sensory components on the 
robot. The major components of MRBA are summa-
rized in Table 1.

Control architecture
MRBA runs three modes of operation:

•	 Walking Assisted Mode: MRBA is in the Walking-
assisted configuration. It follows the user movement 
as they walk around in the environment. In case of 
fall, assistance will be provided to the user to inter-
vene the fall. Then, the user can recover by them-
selves or call for assistance.

•	 Sitting Mode: MRBA is in the Wheelchair Configura-
tion. It serves as a powered wheelchair.

•	 Transient Mode: MRBA transforms between the 
Wheelchair Configuration and the Walking-assisted 
Configuration, and vice versa. The user receives 
physical support during the standing up and sitting 
down motion.

The remaining of the section discusses the user following 
algorithm and fall intervention strategy implemented in the 
Walking Assisted Mode.

User following algorithm
MRBA follows the user when they walk around by track-
ing the state of the person’s CoM with respect to the robot. 
The CoM position and facing orientation of the subject is 
assumed to be aligned with the pelvic interface (Fig. 8):

where (xP , yP) are the CoM coordinates, α is the facing 
orientation of the interface, dL, dR, θL, θR are the distances 
of the left and right sliders from the rotary joints, and 

(1)xP =
dL cos(θL)+ dR cos(θR)

2

(2)yP =
dL sin(θL)+ dR sin(θR)

2

(3)α = arcsin
dL sin(θR)− dR sin(θL)

D

Fig. 7  Sensor locations on MRBA

Table 1  List of major components of MRBA

Components Manufacturer Model No.

Driving Wheel Motors Motion Tech Motors EC82N245325ALGB

Anti-tip Omni Wheels Nexus Automation 127mm Heavy Duty
Aluminum

Linear Actuator LYX LX700S100

Magnetic Brakes Tian Ji TJ-POD-1.5

Potentiometers Wenzhou Xinle
Instrument and
Meter

WDD35D-4

Force Sensors Chino Sensor TJZNHM-7-500KG

IMU BOSCH BN0055

Fig. 8  Geometry of the pelvic interface. P is the center of the pelvic 
interface, α is the facing orientation of the interface, dL , dR , θL , θR are 
the distances of the left and right sliders from the rotary joints, and 
the angles of the left and right arms with respect to the ML-axis, 
respectively, D is the distance between R1 and R2 of the two robotic 
arms
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the angles of the left and right arms with respect to the 
medial–lateral (ML) axis, respectively, D is the distance 
between the joints of the two robotic arms.

The principle of the User Following Algorithm 
(Fig. 9a) is to maintain a safe distance between the user 
and the robot. If the distance of the CoM with respect 
to the robot | �OP| exceeds some predefined threshold 
dbuffer , the user is assumed to be moving towards the 
direction of the CoM. The robot will move towards the 
user to catch up with them. The maximum robot speed 
vmax is set to be the average human walking speed of 
1.2  m/s [21]. The wheelchair also minimizes the angle 
between the human pelvis and the mobile base to align 
its heading direction with the user’s.

Due to the non-omnidirectional nature of the robot, 
it moves with a turning radius R when xP  = 0 , depend-
ing on the speeds of the wheels. From Fig. 9b, the turn-
ing radius of the robot is given to be:

The desired CoM speed v is set to be proportional to 
the arc 

⌢

OP , i.e. v = k
⌢

OP , where k is a positive scalar. The 
respective wheel speeds can then be computed as:

(4)R =
| �OP|

2 sin( α2 )

where r is the wheel radius.
The control block diagram of the User Following Algo-

rithm is illustrated in Fig. 10.

Instability detection and fall intervention
One of the main objectives of MRBA is to improve 
human safety by intervening falls in vulnerable subjects. 
When a patient is performing ADLs with MRBA, they 
may lose balance due to their weakened balance control. 
To safeguard the user’s safety, an instability detection 
and fall intervention system is critical. As a preliminary 
approach, the force sensors and the IMU are used to 
identify instability. The forces exerted by the user onto 
the robot are monitored through the force sensors. If the 
force magnitude exceeds a certain threshold, the user is 
deemed to have lost their balance. For the case of IMU, 
any increase in the acceleration or gyroscope measure-
ments that exceeds predefined thresholds will be treated 
as a loss of balance. When instability is detected, the 
magnetic brakes connected to the robotic arms joints will 
be activated to restrict any interface motion. The mobile 
base will also come to a halt. This holds the user in place 
so that they can regain balance by themselves or wait for 
help to arrive.

The control block diagram of the Instability Detection 
Algorithm is illustrated in Fig. 11.

(5)ωR =
kα(R+ L

2 )

r
ωL =

kα(R− L
2 )

r

Fig. 9  a The plot of the MRBA speed against the distance between 
the user CoM and MRBA. b Illustration of wheelchair base motion, 
where R is the turning radius, r is the wheel radius, L is the distance 
between the wheels, v , vL , vR are the speeds of the CoM, left wheel 
and right wheel, respectively Fig. 10  The control block diagram of the User Following Algorithm
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Experimental protocols
Experiments were designed to evaluate the perfor-
mances of the User Following Algorithm and the Insta-
bility Detection Algorithm.

An ideal gait assistive device should be completely 
transparent to the user in which it does not inter-
fere with their movement unless a loss of balance is 
detected. Notwithstanding, complete compliance is dif-
ficult to achieve, especially when the pelvic interface of 
MRBA is physically connected to the user to safeguard 
their stability. A compliant User Following Method can 
help to alleviate the hardware impedance to the user 
movement. The User Following Algorithm can thus be 
evaluated indirectly through the effect of MRBA on 
human gait by comparing the user’s gait when walking 
with and without the robot.

The Instability Detection Algorithm can be assessed 
using normal walking trials and simulated falls. The 
Algorithm should identify the loss of balance induced 
during the falls but not produce any false alarms when 
the user is walking normally. To induce instability on the 
subjects, a device named Fall Inducing Movable Platform 
(FIMP) was used to provide ecologically valid, systematic, 
and reproducible falls [22]. The system consists of a metal 
frame in which the person walks; an RGB-D camera on 
the platform allows it to follow the subject’s movement 
by maintaining a fixed distance from the subject. The 
subject’s lower limb is connected to the device, which 

is actuated to perturb the motion of the lower limb and 
cause the subject to lose their balance.

The experiment involved the following actions.

•	 Free Walking (FW): The subject walked in a straight 
line for 7 m at their preferred speed. The action was 
repeated four times.

•	 Normal Walking with MRBA

–	 Straight Walking (NW_SW): The subject walked in 
a straight line for 7 m at their preferred speed. The 
action was repeated four times.

–	 Walking in Circles (NW_C): The subject walked in 
circles within a rectangular area of 5 m × 1.5 m at 
their preferred speed. The subject walked in the 
clockwise directions for two laps. The same proto-
col was conducted for anti-clockwise direction.

•	 FIMP-induced Falls with MRBA

–	 Mid Swing Trip (FE_MS): The subject’s left ankle 
was connected to the electrical brake of FIMP. The 
subject walked in a straight line. After a few steps, 
the brake activated during the left mid-swing to 
prevent the foot from moving forward. The action 
simulated a mid-swing trip in which the foot hits 
an obstacle during the swing phase. The action was 
repeated at least six times.

–	 Slip (FE_SL): The subject’s left ankle was connected 
to the electrical motor of FIMP. The subject walked 
in a straight line. After a few steps, the motor acti-
vated during the left heel strike and pulled the foot 
forward. To increase the effectiveness, the subject 
walked on sliding sheets. The action simulated a 
slip on a slippery surface. The action was repeated 
at least six times.

–	 Knee Buckling (FE_KB): The subject’s left knee was 
connected to the electrical motor of FIMP. The sub-
ject walked in a straight line. After a few steps, the 
motor activated during left mid-stance and pulled 
the knee forward. The action simulated knee mus-
cle weakness. The action was repeated at least six 
times.

During the FIMP-induced trials, the subjects were 
instructed to regain balance by themselves if possible. 
However, to ensure the subjects’ safety, they were allowed 
to press an emergency button when they required sup-
port from the robot. This would trigger the fall interven-
tion function of MRBA, causing it to stop completely and 
hold the subject in place.

Twelve healthy young subjects (four females, age: 27.3 
± 3.2 years of age, height: 1.70 ± 0.06 m, weight: 63.6 ± 

Fig. 11  The control block diagram of the Instability Detection 
Algorithm. Each sensory data is compared to their corresponding 
thresholds
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8.9  kg) were recruited. In addition, to understand the 
effect on pathological gait, a subject with walking and 
balance disability (female, age: 54 years of age, height: 
1.54  m, weight: 66.3  kg) was recruited as a preliminary 
study. The subject suffered from an incomplete spinal 
cord injury (SCI) at L4/5 level 25 years ago, resulting in 
Grade C ASIA Impairment Scale. She had no prior expe-
rience with rehabilitation and assistive robots. Due to 
safety concerns, the SCI subject only performed the FW 
and NW_SW trials.

Nonetheless, the first experiment (Fall Experiment 1) 
revealed the limitations of the FIMP-induced falls (to be 
discussed in subsequent Sections). Hence, a new experi-
ment was proposed to introduce subject-induced falls to 
further examine the instability detection algorithm. The 
second experiment (Fall Experiment 2) involved the fol-
lowing actions:

•	 Normal Walking with MRBA

–	 Straight Walking (NW_SW).
–	 Walking in Circles (NW_C).

•	 Self-induced Falls with MRBA

–	 Reaching Out Fall (FS_RO): The subject stood and 
reached outwards to retrieve an object until lost 
balance. The action was repeated at least six times.

–	 Walking and Fall (FS_W): The subject walked in a 
straight line normally for a few steps and fell at heel 
strike to simulate muscle weakness at lower limb. 
The action was repeated at least six times.

Eight healthy young subjects (three females, age: 28.4 
± 4.6 years of age, height: 1.70 ± 0.10 m, weight: 67.2 ± 
9.1 kg) were recruited for Fall Experiment 2. They were 
instructed to not recover the fall by themselves unless 
necessary, in which they can press the emergency button 
to trigger the fall intervention system.

The MRBA sensory data, namely the acceleration and 
gyroscope from the IMU, as well as the force sensor 
measurement were collected for analysis. Infrared mark-
ers were placed on the lower body of the subjects accord-
ing to the CAST lower body marker set [23] such that 
their movement can be recorded by the motion capture 
system (Qualisys Miqus M3 (2MP)). The motion cap-
ture data were then used to compute the joint angles and 
the gait parameters using Visual3D v6 Professional by 
C-motion. The following joint angles were extracted: 

1)	 Pelvic obliquity
2)	 Hip flexion/extension
3)	 Knee flexion/extension

4)	 Ankle dorsi-/plantar-flexion

The gait events, i.e. heel strike and toe off, were labeled 
manually to segment the data into gait cycles.

To compare the time series data of motion kinemat-
ics and sensory values in a continuous manner, statis-
tical parametric mapping (SPM) [24] was used. SPM 
is commonly applied in biomechanics [25], making it 
ideal in fall-related studies. A Python library developed 
for 1-dimensional SPM (SPM1D) [24] was used in this 
investigation. SPM1D computes the mean and variance 
curves of two or more datasets, which are then ana-
lyzed with linear statistical testing such as t-test and 
Analysis of Variance (ANOVA). The resultant statistics, 
known as parametric maps, are processed with random 
field theory to generate a threshold, from which the sta-
tistical significance is determined. When a part of the 
time series has a significant difference among the data-
sets, it forms a cluster that exceeds the defined thresh-
old. The p-value of that cluster indicates the probability 
of the cluster could have resulted from a smooth ran-
dom process. To implement SPM1D, each sequence 
of the time series data has to be comparable directly. 
Hence, the data were time-normalized in terms of gait 
cycles, i.e. the data in each stride was normalized into 
stance and swing phase, with the former occupying 
60% of the cycle and the latter covering the remaining 
40%; the 0% and 100% marks of the gait cycle indicate 
the heel strike of the stride. In this study, the SPM1D 
analysis of one-way ANOVA was applied with an alpha 
threshold of 0.05.

The proposed Instability Detection Algorithm was 
tested with the sensory data. A trial is considered as 
detected if the sensory data exceeds the threshold. A fall 
trial is only considered as a successful detection if the 
measurement exceeds the threshold after the activation 
of the FIMP fall-inducing actuators. The performance of 
the fall detection algorithm is determined from its sensi-
tivity and specificity using G-mean, which is defined as 
the geometric mean of sensitivity and specificity.

 For each algorithm, different thresholds were tested to 
find the one that gave the largest G-mean score, i.e. iden-
tified the most cases of instability while neglecting the 
normal walking trials.

(6)Sensitivity =
number of detected fall trials

number of fall trials

(7)

Specificity =
number of non-detected walking trials

number of walking trials

(8)G-mean =
√

Sensitivity× Specificity
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The experiment protocols were approved by the Insti-
tutional Review Board of Nanyang Technological Uni-
versity, Singapore (Application ID: IRB-2019-09-028 
and IRB-2021-050). A few pictures taken during the 
experiment are shown in Fig. 12. The reader is referred 
to Additional file 1 for a demonstration video of MRBA.

Results
The recorded data were screened for recording quality 
and instability inducing accuracy. In Fall Experiment 1, 
48 FW, 52 NW_SW, 24 NW_C, 31 FE_MS, 51 FE_SL 
and 35 FE_KB trials from the healthy subjects, and 4 
FW and 4 NW_SW trials from the SCI subject were 
used in the analysis. In Fall Experiment 2, 32 NW_SW, 
16 NW_C, 48 FS_RO and 48 FS_W were used.

User following algorithm
The effect of MRBA on human gait can be demonstrated 
through the healthy subjects’ gait parameters during FW 
and NW_SW, which is tabulated in Table  2. Student’s 
t-test was performed to compute the statistical signifi-
cance between the two datasets. A significant decrease in 
speed was observed as the robot was unable to follow the 
user smoothly at higher gait speed. The robot also forced 
the subjects to take smaller steps for it to follow the user 
more smoothly. The step width of the subjects remained 
constant while the step time increased slightly.

The joint angles comparison is given in Fig. 13, which 
illustrates that the joint angles were altered significantly 
during MRBA walking. The results show that the sub-
jects had smaller hip joint range of movement, smaller 
knee flexion and smaller ankle plantar-flexion due to 
the smaller steps taken. The variation in pelvic move-
ment was also dampened by the robot interface.

The results from the SCI subject are presented in 
Table  3 and Fig.  14. One may expect that the subject 
would not experience any gait speed change as her pre-
ferred speed of 0.70  m/s was comparable to the NW_
SW speed of the healthy subjects. Nonetheless, MRBA 
still slowed her down such that she walked at 0.48 m/s 
with the robot. Like the healthy individuals, the step 
length decreased as she was forced to take smaller 
steps. However, the decreased step width implied that 
the subject was more stable when being supported by 
MRBA. Her step time increases slightly from 0.62 s to 
0.72 s. The robot affected her joint kinematics more sig-
nificantly when compared with healthy individuals.

Fig. 12  Top: An FE_SL trial that involved FIMP to trigger slip by 
pulling the subject’s left ankle forward when the left foot struck the 
sliding sheets. Middle: An FE_KB trial that involved FIMP to trigger 
knee buckling by pulling the subject’s left knee forward during left 
mid-stance. Bottom left: An FS_RO trial in which the subject fell when 
reaching out to grab an object. Bottom right: An FS_W trial in which 
the subject fell when walking

Table 2  The gait parameters (mean ± standard deviation) of 
healthy subjects (n=12) during free walking (FW) and walking 
with MRBA (NW_SW) in a straight line

 The data is compared with a Student’s t-test 

Gait parameters FW NW_SW p-values

Speed (m/s) 1.16±0.19 0.76±0.15 < 0.001

Step length (m) 0.66±0.09 0.46±0.08 < 0.001

Step width (m) 0.13±0.03 0.13±0.04 0.364

Step time (s) 0.58±0.05 0.62±0.07 < 0.001



Page 10 of 17Li et al. Journal of NeuroEngineering and Rehabilitation           (2023) 20:29 

Instability detection algorithm
MRBA sensory data from Fall Experiment 1 were ana-
lyzed to understand how the measurements varied during 
straight walking, turning and a loss of balance. To compare 
the measurements from different trials, the data were seg-
mented according to the labeled gait events as per previ-
ous section. For NW_C, only the portion when the person 
was turning was extracted. For the FIMP-related trials, only 
the gait cycles containing the FIMP actuator triggering 
time were included. As the left foot did not always take a 
new step after the slip and knee buckling, the left foot gait 
cycles for FE_SL and FE_KB are omitted. The sensory data 
from the relevant gait cycles were analyzed with SPM1D. 

Fig. 13  The plots of the data trend of body joint angles and their SPM1D results of free walking (FW) and walking with MRBA (NW_SW) for healthy 
subjects. The blue line and the orange line represent the data of FW and NW_SW, respectively. The dotted line represents the end of the stance 
phase and the beginning of the swing phase. In each subfigure, the first row shows the mean of the data with its standard deviation as shaded 
region. The second row shows the F-values compared against the threshold. Statistical results greater than the threshold indicate a statistically 
significant difference between the two groups

Table 3  The gait parameters (mean ± standard deviation) of 
a subject with SCI during free walking (FW) and walking with 
MRBA (NW_SW) in a straight line

The data is compared with a Student’s t-test

Gait Parameters FW NW_SW p-values

Speed (m/s) 0.70±0.04 0.48±0.04 < 0.001

Step Length (m) 0.43±0.05 0.33±0.04 < 0.001

Step Width (m) 0.25±0.05 0.07±0.03 < 0.001

Step Time (s) 0.62±0.08 0.72±0.10 < 0.001

(See figure on next page.)
Fig. 14  The plots of the data trend of body joint angles and their SPM1D results of free walking (FW) and walking with MRBA (NW_SW) for a 
subject with SCI. The blue line and the orange line represent the data of FW and NW_SW, respectively. The dotted line represents the end of 
the stance phase and the beginning of the swing phase. In each subfigure, the first row shows the mean of the data with its standard deviation 
as shaded region. The second row shows the F-values compared against the threshold. Statistical results greater than the threshold indicate a 
statistically significant difference between the two groups
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(g) (h)

Fig. 14  (See legend on previous page.)
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See Additional files 2, 3, 4 and 5 for the complete plots of 
the data trend comparing NW_SW with NW_C, FE_MS, 
FE_SL and FE_KB, respectively.

For acceleration data, the vibration of the robot was 
captured by the IMU, resulting in a noisy measurement. 
Nonetheless, during a fall, a sharp peak could be seen 
if the loss of balance was severe. The turning motion in 
the NW_C trials causes the gyroscope readings (GYRO) 
along the anterior–posterior (AP) and vertical axes to 
have a larger spread. In the fall trials, GYRO along the 
ML axis went out of phase with NW_SW after FIMP 
was triggered. In some cases of loss of balance, a sharp 
peak in the vertical GYRO could be seen. During a nat-
ural walking gait, the CoM oscillates along the vertical 
axis; the CoM moves downward when approaching heel 
strike and moves upward after heel strike. Such motion 
will exert forces onto the pelvic interface, causing a 
minor change in the force data measured by the sensor, 
as shown in Fig. 15. The forces were smaller in magnitude 
during turning, presumably due to the subjects walking 
more cautiously, resulting in milder motions. After the 
fall-induced actuators were triggered, the force exerted 
on the interface increased as the subjects lost balance. 
The SPM1D results show that the force profiles changed 
differently among the various types of walking trials.

According to the data collected from Fall Experiment 
1, the results of the best three sensory data are shown in 
Table 4.

The force sensor data is the best feature to be used with 
a G-mean score of 0.717, which is 1.5 times the one of 
the second-best feature. It is able to detect more than 
two-thirds of the loss of balance trials, with the highest 
detection rate of 0.714 in the FE_KB trials. Nonethe-
less, the false positive rate is higher than 20% with many 
normal walking trials being wrongly identified as a loss 
of balance. The IMU features perform poorly in instabil-
ity detection, presumably due to the noise present in the 
data and the minimal difference between normal walking 
and loss of balance. Comparing GYRO along the lateral 
axis with a threshold, the algorithm achieves a 0.88 detec-
tion rate for FE_KB. However, the high true positive rate 
comes at a cost of a large number of false alarms, which 
severely impact the usability of MRBA as a product. On 
the other hand, the anterior–posterior acceleration data 
yields mediocre specificity but poor sensitivity due to a 
large number of undetected loss of balance; less than 40% 
of the FIMP-induced falls were identified when using the 
feature. The low G-mean scores of the IMU data shows 
the challenges of utilizing these features for instability 
detection.

Observing the behavior of the subjects in Fall Experi-
ment 1, the FIMP had marginal effects on the subjects’ 
stability due to the high balance capability of the healthy 

young subjects. Also, the subjects were instructed to 
regain balance by themselves during the experiment, 
which further negated the disruption by the machine, 
reducing the severity of the fall. This is demonstrated 
through the human-robot interaction force in Fig. 15, in 
which the force magnitude of some fall trials could be 
comparable to the ones of normal walking. In order to 
cover more realistic fall scenarios, which are likely to be 
more severe for the case of impaired individuals, a sec-
ond experiment was conducted. Healthy subjects were 
invited to perform self-induced falls, in which they were 
instructed not to regain balance by themselves unless 
necessary. Only force sensor is used for the evaluation 
in Fall Experiment 2 due to its higher sensitivity and 
specificity found in Fall Experiment 1. The threshold to 
indicate a loss of balance was further optimized for Fall 
Experiment 2. The instability detection algorithm has 
identified approximately 94% of self-induced falls with a 
false alarm rate of 0%, yielding a G-Mean score of 0.973. 
The details are tabulated in Table 5.

Discussion
When being connected to MRBA, both healthy sub-
jects and the SCI subject experienced a change in the 
gait parameters, in which their walking speed and step 
size decreased. Their lower limb joint kinematics also 
changed significantly from the interaction with MRBA. 
The effects of overground gait rehabilitation and assis-
tive devices on human gait were well-documented in 
the literature. Burgess et  al. have evaluated KineAssist 
with healthy and post-stroke subjects [26]. Similar to 
the case of MRBA, the healthy subject walking speed 
decreased from their regular 1.2± 0.2 m/s to 0.7± 0.2 
m/s when using the device. Their step length also 
decreased as more body weight support was applied to 
the subjects. The lesser gait speed reduction by MRBA 
than KineAssist may be attributed to the intrinsic 
transparency of MRBA pelvic interface; the transpar-
ency of KineAssist heavily depends on their control 
algorithm. Stroke patients experienced a similar change 
in gait with their speed and step length decreasing 
from 0.8± 0.3 m/s to 0.4 ± 0.1 m/s and 0.5± 0.08 m to 
0.3± 0.08 m, respectively. The NUS Walker was evalu-
ated by Mun et  al. by studying the pelvis motion of 
healthy subjects walking with and without the device 
[27]. The mean velocity decreased from 1.0  m/s to 
0.5  m/s and the rotation of the pelvis about the verti-
cal axis was also reduced. The other study found sig-
nificant reduction in ankle plantarflexion, knee flexion 
and hip flexion, as well as decrease in step length and 
step width [7]; similar observations were discovered 
for MRBA except for step width reduction. By provid-
ing support to the users, NaTUre-gaits has decreased 
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muscle activation, produced more consistent walking 
patterns and offloaded the user’s weight [28, 29]. The 
experimental results concur with the literature find-
ings in which that the natural gait speed of both healthy 
subjects and patients was reduced when interacting 
with these devices. This is because the subject’s body 

weight is supported, forcing them to alter their gait to 
minimize the level of energy expenditure [30]. Such 
change in gait patterns is not detrimental as it is a natu-
ral occurrence due to the human–machine interaction 
when a gait assistive device restraints the user’s move-
ment, which causes the user to take smaller steps and 

Fig. 15  The plots of the data trend of force measurement and their SPM1D results when comparing NW_SW with other trials. The blue line and 
orange line represent the data of NW_SW and the respective walking trials, respectively. The dotted line represents the end of the stance phase and 
the beginning of the swing phase while the red dotted line is the fall triggering instance. In each subfigure, the first row shows the mean of the 
data with its standard deviation as shaded region. The second row shows the F-values compared against the threshold. Statistical results greater 
than the threshold indicate a statistically significant difference between the two groups. Only one side of the NW_C gait cycle is shown due to 
symmetry. As the left foot did not always take a step after the slip and knee buckling, the left foot gait cycles are omitted
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hence, smaller joint angle range of motion. For slow 
ambulators with severely impaired balance, the safety 
provided by the assistive robot could potentially out-
weigh the forced reduction in gait speeds.

In Fall Experiment 1, it was found that the instability 
caused by the FIMP-induced falls could be insignificant 
due to the high balance capability of the test subjects. 
As a result, when the instability detection algorithm 
was optimized to identify the FIMP-induced falls, the 
detection threshold was set low in order to detect more 
falls. However, this led to significant false alarms yet 
sub-optimal fall detection accuracy. The best sensory 
data was the force sensor data, which identified the 
loss of balance in more than two-thirds of the FIMP-
induced falls with a false positive rate of around 20%. 
The IMU data yielded poor performance in instability 
detection, which may be caused by the measurement 
noise and the minimal change in sensor value during a 
loss of balance.

To create more realistic fall scenarios which could 
be severe for impaired individuals, a second experi-
ment was conducted with self-induced falls, in which 
the subjects simulate falls as instructed without try-
ing to recover their balance. Due to the severe loss of 
balance, the performance of the algorithm improved 
significantly as the difference between the loss of bal-
ance and regular walking widened. The threshold to 
detect instability was increased such that it exceeded 
the human-robot interaction force of normal walking 
yet was still low enough to cover most severe falls. Nev-
ertheless, as the force sensors were implemented such 
that they only capture forces applied along the vertical 
axis, there were some loss of balance scenarios in which 
the current setup was unable to detect. Such cases were 

considered to be minority based on the experimental 
observation as most falls would cause the users to fall 
downwards when the subjects’ lower limbs gave way 
during a fall.

The two fall experiments show that there is room for 
improvement in the current instability detection algo-
rithm, in which it should identify most if not all the loss 
of balance trials while recognizing the regular gaits as 
non-detrimental. In the study of instability detection, it 
is always hard to define how stringent the criteria should 
be in identifying the loss of balance. If the criteria are 
too loose, while the system can capture all forms of loss 
of balance, it will create a lot of false alarms too. On the 
other side of the spectrum, the safety of the person will 
be severely compromised if their instability goes unno-
ticed. Other learning-based methods should be explored 
to improve the detection quality. The learning-based 
methods can be leveraged to analyze the balance state of 
the user based on multiple sensory data.

One limitation in the instability detection study is that 
all the subjects were healthy young adults. The first Fall 
Experiment showed that the subjects’ stability was only 
mildly affected by FIMP due to the high balance capabil-
ity of the young subjects, which allowed them to recover 
easily from the perturbation of FIMP. The mitigated 
loss of balance might be one of the causes for the poor 
detection rate of the FIMP-trials. The findings led to Fall 
Experiment 2, which required the subjects to simulate 
falls themselves without recovery. Nevertheless, the limi-
tation of simulated falls by healthy young population may 
make the experimental results on the instability detec-
tion algorithm questionable. Thus, the algorithms were 
further assessed by physiotherapists who demonstrated 
various types of falls that commonly occur among the 

Table 4  The results of instability detection methods in Fall Experiment 1

Detection rate = number of detected trials

number of trials

Methods NW_SW 
Detection 
Rate

NW_C 
Detection 
Rate

FE_MS 
Detection 
Rate

FE_SL 
Detection 
Rate

FE_KB 
Detection 
Rate

Sensitivity Specificity G-Mean

Force 0.212 0.292 0.645 0.667 0.714 0.675 0.763 0.717

Gyroscope (lateral) 0.615 0.750 0.581 0.471 0.886 0.624 0.342 0.462

Acceleration (ante-
rior–posterior)

0.385 0.500 0.387 0.216 0.343 0.293 0.578 0.416

Table 5  The results of instability detection method in Fall Experiment 2

 The algorithm compares the force sensor value to a predefined threshold to identify loss of balance. Detection rate = number of detected trials

number of trials

NW_SW NW_C FS_RO FS_W Sensitivity Specificity G-Mean

Detection Rate 0.000 0.000 0.958 0.936 0.947 1.000 0.973
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patient population. For example, a physiotherapist has 
demonstrated that MRBA was able to prevent him from 
falling when he tilted to different directions when stand-
ing; the robot also arrested falls occurred during walking. 
Figure 16 shows the physiotherapist being supported by 
MRBA during prototype testing. In summary, the physi-
otherapists have verified that the robot performance is 
adequate for patient fall prevention.

When evaluating the instability detection algorithm 
optimized based on the healthy subject data on the 
SCI normal walking data, the algorithm produced false 
alarms for all the trials. It was observed that the subject 
relied on the body weight support provided by MRBA, 
causing the force sensors to measure much higher read-
ings than the healthy subject walking. The gait patterns 
also differ between healthy users and impaired users. The 
observation suggests that patients’ data is critical in fine-
tuning the instability detection algorithm for the actual 
application. Nevertheless, collecting fall data from indi-
viduals with balance impairment is a challenging hurdle 
to be overcome.

Conclusions
There are currently no commercially available robotic 
technological solutions for fall intervention in the home 
environment. The available solutions for balance assis-
tance are designed as rehabilitation systems with large 
footprint and low maneuverability, making them undesir-
able to be used at home.

The developed Mobile Robotic Balance Assistant 
(MRBA) seeks to solve this limitation. Unlike the avail-
able solutions, MRBA has a small footprint. It also comes 
with an intrinsically compliant pelvic interface that 
eliminates the need of a feedback algorithm to control 
the motion of the interface. The robot follows the user 
around when they are performing regular activities of 
daily living to provide balance assistance. In an experi-
ment involving regular walking and self-simulated falls, 
the instability detection algorithm can identify more 
than 93% of the falls with 0% false positive rate. When 
the algorithm detects that the user has lost their balance, 
the robot activates its fall intervention system to secure 
the user in place. Combining the assistive technology to 
a regular powered wheelchair allows the user to sit down 
when they are fatigue or need to commute quickly. The 
transition between the sitting and standing posture is 
physically supported by the system, ensuring the safety 
of the user. The study on the able-bodied population and 
balance impaired subjects shows that MRBA has caused 
significant reduction in self-selected walking speed, 
which was also observed in other existing gait assistive 
technologies. The change in gait speed could be a trade-
off for reduction in fall risks. We hope that the device can 
encourage the balance impaired population to walk more 
and engage in activities of daily living, hence promoting 
the recovery of their balance capability and improving 
their quality of life.

Future work
In future research, a more thorough evaluation with 
patients is needed to understand how the robot affects 
pathological gait. The patient data can also help to devise 
the proper instability detection methods for the tar-
get audience. The effectiveness of MRBA can be bench-
marked against manual human assistance and common 
walking aids.

Furthermore, there is room for improvement in the 
current design.

Firstly, the current user following algorithm imple-
ments a simple proportional control that regulates the 
distance between the robot and the user. While it is suffi-
cient to achieve the intended functionality, it still signifi-
cantly alters their walking patterns. Moreover, different 
users usually demand different control parameters, which 

Fig. 16  A physiotherapist evaluating MRBA with different types 
of loss of balance motion. Top: tilting to one side while standing. 
Bottom: simulating a fall when walking with MRBA
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are costly to be customized for each individual. A more 
intelligent approach may be necessary to better cater 
to the needs of different users. The method should also 
understand the user intention accurately for smoother 
human-robot interaction.

Secondly, the fall detection algorithm needs further 
improvement. Solely evaluating the force sensor data 
against a fixed threshold creates false alarms and miss-
detection even for the case of healthy individuals. More-
over, due to patient’s weakened ability, they require more 
body weight support from the system, especially when 
they are exhausted after prolonged physical activities. 
The increased in exerted force causes the fall detection 
algorithm to be triggered more frequently, significantly 
hampering the usability of the device. Depending on how 
the user loses balance, the force sensors may not detect 
the instability if the person falls in a direction that does 
not exert forces onto the sensors, such as the cases in Fall 
Experiment 2. Hence, the fall detection algorithm has to 
examine more sensor data when evaluating the user sta-
bility, as well as to explore machine learning algorithms 
to achieve better sensitivity and specificity.

Lastly, in the current settings, when a loss of balance is 
detected, MRBA immediately stops and locks the pelvic 
interface to allow the user to recover balance by them-
selves or call for human assistance. While this is adequate 
for cases in which an inevitable fall occurs, more sub-
tle assistance is required to further enhance the robot 
capability as an assistive device. Under most scenarios, 
the users do not completely lose their balance; they may 
stumble a little or sway in different directions due to poor 
balance capability. A light intervention force from the 
robot to correct the instability is more appropriate than 
a complete stop of the robot because it allows the user to 
train their balance reflexes while mitigating the implica-
tions of false alarms. To achieve this, the user’s instability 
status has to be accurately quantified such that the vari-
able stiffness actuators can be programmed to deliver the 
appropriate assistive forces.
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Additional file 1. MRBA Demonstration Video. The video shows the usage 
of MRBA on different types of scenarios, namely regular walking, sit-to-
stand and fall intervention.

Additional file 2. MRBA Sensor Data (Comparison between Normal 
Walking and Turning). The plots of the data trend of body joint angles and 
their SPM1D results of straight walking (NW SW) and turning (NW C) with 
healthy subjects. The blue line and the orange line represent the data of 
NW SW and NW C, respectively. The dotted line represents the end of the 
stance phase and the beginning of the swing phase. In each subfigure, 
the first row shows the mean of the data with its standard deviation as 
shaded region. The second row shows the F-values compared against the 
threshold. Statistical results greater than the threshold indicate a statisti-
cally significant difference between the two groups.

Additional file 3. MRBA Sensor Data (Comparison between Normal 
Walking and Mid-Swing Trip). The plots of the data trend of body joint 
angles and their SPM1D results of straight walking (NW SW) and turning 
(FE MS) with healthy subjects. The blue line and the orange line represent 
the data of NW SW and FE MS), respectively. The dotted line represents 
the end of the stance phase and the beginning of the swing phase. In 
each subfigure, the first row shows the mean of the data with its standard 
deviation as shaded region. The second row shows the F-values compared 
against the threshold. Statistical results greater than the threshold indicate 
a statistically significant difference between the two groups.

Additional file 4. MRBA Sensor Data (Comparison between Normal 
Walking and Slip). The plots of the data trend of body joint angles and 
their SPM1D results of straight walking (NW SW) and turning (FE SL) with 
healthy subjects. The blue line and the orange line represent the data of 
NW SW and FE SL, respectively. The dotted line represents the end of the 
stance phase and the beginning of the swing phase. In each subfigure, 
the first row shows the mean of the data with its standard deviation as 
shaded region. The second row shows the F-values compared against the 
threshold. Statistical results greater than the threshold indicate a statisti-
cally significant difference between the two groups.

Additional file 5. MRBA S MRBA Sensor Data (Comparison between Nor-
mal Walking and Knee Buckling). The plots of the data trend of body joint 
angles and their SPM1D results of straight walking (NW SW) and turning 
(FE KB) with healthy subjects. The blue line and the orange line represent 
the data of NW SW and FE KB, respectively. The dotted line represents 
the end of the stance phase and the beginning of the swing phase. In 
each subfigure, the first row shows the mean of the data with its standard 
deviation as shaded region. The second row shows the F-values compared 
against the threshold. Statistical results greater than the threshold indicate 
a statistically significant difference between the two groups.
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