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Myoelectric interface training enables 
targeted reduction in abnormal muscle 
co‑activation
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Abstract 

Background:  Abnormal patterns of muscle co-activation contribute to impaired movement after stroke. Previously, 
we developed a myoelectric computer interface (MyoCI) training paradigm to improve stroke-induced arm motor 
impairment by reducing the abnormal co-activation of arm muscle pairs. However, it is unclear to what extent the 
paradigm induced changes in the overall intermuscular coordination in the arm, as opposed to changing just the 
muscles trained with the MyoCI. This study examined the intermuscular coordination patterns of thirty-two stroke 
survivors who participated in 6 weeks of MyoCI training.

Methods:  We used non-negative matrix factorization to identify the arm muscle synergies (coordinated patterns 
of muscle activity) during a reaching task before and after the training. We examined the extent to which synergies 
changed as the training reduced motor impairment. In addition, we introduced a new synergy analysis metric, dispar-
ity index (DI), to capture the changes in the individual muscle weights within a synergy.

Results:  There was no consistent pattern of change in the number of synergies across the subjects after the training. 
The composition of muscle synergies, calculated using a traditional synergy similarity metric, also did not change after 
the training. However, the disparity of muscle weights within synergies increased after the training in the participants 
who responded to MyoCI training—that is, the specific muscles that the MyoCI was targeting became less correlated 
within a synergy. This trend was not observed in participants who did not respond to the training.

Conclusions:  These findings suggest that MyoCI training reduced arm impairment by decoupling only the muscles 
trained while leaving other muscles relatively unaffected. This suggests that, even after injury, the nervous system 
is capable of motor learning on a highly fractionated level. It also suggests that MyoCI training can do what it was 
designed to do—enable stroke survivors to reduce abnormal co-activation in targeted muscles.

Trial registration This study was registered at ClinicalTrials.gov (NCT03579992, Registered 09 July 2018—Retrospectively 
registered, https://​clini​caltr​ials.​gov/​ct2/​show/​NCT03​579992?​term=​NCT03​57999​2&​draw=​2&​rank=1)
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Background
Stroke, the largest cause of long-term disability world-
wide, often damages motor pathways in the brain and 
induces abnormal spatiotemporal patterns of co-activa-
tion across arm muscles [1], also called abnormal muscle 
synergies [2–5]. Using dimensionality reduction meth-
ods, such as non-negative matrix factorization (NMF) 
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or principal component analysis (PCA), several studies 
characterized the stroke-induced abnormal muscle syn-
ergies based on the electromyography (EMG) signals of 
the arm muscles [6–8]. Commonly observed abnormal 
muscle synergies after stroke include coupling of activ-
ity between elbow flexors and shoulder abductors during 
isometric torque generation [1, 4] and dynamic reach-
ing [9]. Moreover, stroke induces co-activation of the 
anterior, middle, and posterior deltoid during the sta-
ble force maintaining phase of the isometric reaching 
task [7]. This co-activation inhibits the ability to flex the 
shoulder maximally. These abnormal patterns contribute 
to motor impairment and reduced function after stroke, 
partially by limiting range of motion during reaching [10, 
11]. Thus, targeting these abnormal patterns is a potential 
new avenue for stroke rehabilitation.

Our previous study developed a myoelectric com-
puter interface (MyoCI) paradigm to reduce abnormal 
co-activation and thereby impairment [12, 13]. Mugler 
et al. [13] examined 6 weeks of in-lab MyoCI training in 
thirty-two chronic stroke survivors with moderate-to-
severe impairment. Before the training, each participant 
went through a screening process to identify the three 
most abnormally co-activating arm muscle pairs (defined 
by pairwise correlation coefficients) during free-reaching 
to targets, placed at waist and shoulder height, in front 
of and lateral to the impaired limb. After the screening, 
the participants were randomized to three different train-
ing groups (60 and 90  min using isometric activation; 
90  min with activation during unrestricted movement). 
The participants were trained on and learned to activate 
each identified muscle pair separately for 2 weeks. At the 
end of the MyoCI training, participants had reduced arm 
impairment (measured using the Fugl-Meyer Assess-
ment), improved motor function and elbow range-of-
motion, and reduced spasticity (measured with the 
Modified Ashworth Scale). However, it remains unclear 
how MyoCI training affected intermuscular coordination 
in the arm in reaching movements.

Here, we investigate to what extent MyoCI training 
changed intermuscular coordination. We assessed the 
composition and number of muscle synergies as effects 
on the more global arm muscle network. Further, we 
augmented our muscle synergy analysis by developing 
the disparity index (DI), which measures the disparity 
between the synergy activation weights of each pair of 
muscles trained.

Methods
Participants
Thirty-three stroke survivors (15 women; age ranging 
from 27 to 75 years; mean of 6.5 years since stroke) par-
ticipated in the original experiment [13]. The time since 

stroke was 3.8 ± 6.2, 4.3 ± 4.1, and 5.3 ± 3.2  years for 
60I, 90I, and 90  M groups, respectively (mean ± SEM) 
and ranged from 11 to 314  months. All participants 
completed the entire 6  weeks of training; 32 completed 
the 10-week evaluation. An occupational therapist per-
formed the Fugl-Meyer Assessment of the upper extrem-
ity (FMA-UE) on the impaired arm to assess the motor 
impairment of participants. We included adult, chronic 
stroke survivors (at least 6  months from stroke onset) 
who had persistent moderate to severe arm impair-
ment (FMA-UE, 8-40/66) and increased arm tone. Full 
inclusion/exclusion criteria can be found in Mugler 
et  al. [13]. The trial is registered at ClinicalTrials.gov, 
NCT03579992. The study protocol was approved by the 
Northwestern University Institutional Review Board, and 
each participant gave written informed consent prior to 
eligibility assessment.

Training and assessment paradigm
The MyoCI training involved using EMG envelopes of the 
targeted muscle pair to move a cursor to different targets 
in a custom-built game to reduce abnormal co-activation. 
The cursor started in the bottom left of the screen when 
the muscles were at rest. EMG amplitudes were multi-
plied by a gain, such that target distance corresponded 
to 10–20% of maximum voluntary contraction and then 
averaged over the previous 50  ms. At each 50-ms time 
bin, the amplitudes of the targeted muscle pair were 
mapped to the position of a cursor along the cardinal 
[horizontal (X) and vertical (Y)] axes, respectively, and 
the cursor position was determined by a vector sum of 
these two components [12]. Thus, only activating mus-
cles in isolation would move the cursor along the cardi-
nal axes. Participants trained on three muscle pairs for 
six sessions each over 2 weeks. We assigned participants 
pseudo-randomly into three groups: two groups trained 
isometrically (restraining the arm) for either 60 or 90 min 
per session (ISO60 and ISO90, respectively) and one group 
trained without restraining the arm (movement group) 
for 90  min per session (MVMT). Further details of the 
training, including specific muscle pairs, are described in 
our previous study [13].

To assess the effects of the training on motor impair-
ment, an occupational therapist blinded to the training 
group evaluated FMA-UE at −2, 0, 2, 6, and 10  weeks 
relative to the start of training. The occupational thera-
pist was not fully blinded to the number of weeks; they 
knew when the first evaluation was done, but we did not 
explicitly tell them the week number of the subsequent 
sessions. We recorded EMG while each participant per-
formed a reaching task on weeks −2, 0, 2, 4, 6, and 10, 
relative to the training start. As depicted in Fig.  1, the 
task consisted of three reaches to each of six targets 
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(approximately 4″ in diameter and spaced 1 ft apart), 
placed at waist and shoulder height, in front of, and then 
lateral to, the impaired arm (36 reaches, in total, to sam-
ple a broad range of reaching directions). The partici-
pants were asked to reach to the target as best as they 
could (self-paced speed) and no adjustments were made 
for severely impaired survivors. After each reach, par-
ticipants were asked to bring the arm back to the rest 
position at the side (elbow extended maximally, shoulder 
adducted, not flexed nor rotated with the thumb facing 
anteriorly). The resting period in between each reach was 
at least 3 s.

EMG recordings
EMGs were recorded to identify muscle targets for the 
MyoCI training and assess the effects of the training on 
intermuscular coordination in the arm after stroke. We 
identified co-activating muscles as targets for training in 
the study. We defined co-activation as the pairwise cor-
relation coefficient between each pair of EMG envelopes 
during reaching. Muscle pairs with the largest abnor-
mal co-activation—i.e., not seen in healthy arms during 
reaching—were selected for the MyoCI training. The 
selected muscle pairs typically included biceps/anterior 

deltoid, anterior/posterior deltoid, and triceps lateral 
head/posterior deltoid [13].

The skin was prepared by lightly exfoliating and clean-
ing with alcohol to collect EMG signals. We placed wire-
less, active EMG electrodes (Trigno, Delsys, Inc.) on the 
skin over the bellies of 8 muscles on the affected arm: 
anterior, middle, and posterior deltoids (AD, MD, and 
PD); biceps brachii (BI), triceps [long (TRIlong) and lat-
eral (TRIlat) heads]; brachioradialis (BRD); and pectora-
lis major (PECT). EMG electrodes were placed according 
to guidelines of the Surface Electromyography for the 
Non-Invasive Assessment of Muscles—European Com-
munity project (seniam.org); a skin marker was used to 
ensure consistent EMG placement across sessions. EMG 
was sampled at 1926 Hz.

Participants classification
The 32 participants, who completed both 6  weeks of 
training and the 10-week evaluation, were divided into 
two subgroups, responders and non-responders, based 
on their FMA-UE change after 6 weeks of training. Com-
pared to the mean of the FMA-UE measured at weeks 
−2 and 0, if the score at week 6 increased by more than 
2 points, the participant was considered a responder. For 

Fig. 1  A reaching task that participants performed to assess the training effects using EMG data. During the motor assessment, participants 
performed reaches (only away-from-body reaches) three times to each of six targets (approximately 4″ in diameter and spaced 1ft apart), placed 
at the waist and shoulder height, in front of, and lateral to the impaired arm. The participants were asked to bring the arm back to the rest position 
at the side (elbow extended maximally, shoulder adducted, not flexed nor rotated with the thumb facing anteriorly) after each reach. The arrows 
indicate three directions of reach at the waist and shoulder height
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all analyses, we combined subjects across training groups 
(ISO60, ISO90, and MVMT).

Data pre‑processing and synergy analysis
Before the synergy identification, the raw EMG signals, 
recorded at weeks −2, 0, 2, 4, 6, and 10, were high-pass 
filtered at 50  Hz, rectified, then low-pass filtered (4th 
order Butterworth) at 5 Hz to obtain the envelope of the 
signals [14]. The processed EMG envelope of each muscle 
was normalized by dividing it by the maximum ampli-
tude over all trials for each week to avoid any bias in syn-
ergy extraction toward the muscles with high-amplitude 
activation. For each subject, the normalized EMG enve-
lopes, which included the entire segment from rest to 
target and back to rest, were then concatenated across all 
trials per week to identify one representative set of mus-
cle synergies that counted the entire set of 36 reaches. A 
Kolmogorov–Smirnov test was used to test the normality 
of the data distribution, and the data were indeed normal 
(alpha = 0.05).

To identify the muscle synergies, we applied a non-neg-
ative matrix factorization (NMF) to the pre-processed 
EMG. In the NMF algorithm, the EMG was modeled as a 
synergy matrix (W) multiplied by the corresponding acti-
vation profile matrix (C):

The matrix W consisted of N column vectors, each 
of which described a muscle synergy with eight muscle 
weights. C was an N by T matrix, denoting activation of 
N synergies across the trials with T data samples. To esti-
mate the optimal number of synergies that sufficiently 
reconstructed the spatial characteristics of the EMGs 
for each participant at each week, the minimum number 
of synergies that guaranteed the following criteria was 
identified: the global variance accounted for (gVAF) of 
the entire dataset greater than 90%, with less than a 5% 
increase in mean gVAF upon addition of another synergy 
(diffVAF) [7, 15]. The VAF value was defined based on 
the ratio between the summation of the squared errors 
(SSE) and the total sum of the squared with uncentered 
EMG (SST):

For quantifying the changes in the overall composi-
tion of muscle synergies between pre- and post-training 
of each participant, we compared norm synergies (the 
mean across participants) at the baseline week and week 
6 using a similarity index (r-value; between 0 and 1) cal-
culated from the scalar product [16]. The EMG of week 
0 was typically used as the baseline EMG, while that of 

(1)EMGreconstructed = W • C

(2)VAF = 100× 1−
SSE

SST

week −2 was alternatively used for seven subjects to 
ensure the quality of baseline EMG for further analysis.

To determine the significance of the similarity, we gen-
erated 1000 sets of 1 by 8 random synergy vectors con-
sisting of randomly selected muscle weights of synergies 
identified in the study, and we performed the dot prod-
uct of all possible pairs of random synergies [7, 17]. If the 
similarity between two muscle synergies exceeded the 
95th percentile of the similarity indexes of random syner-
gies (similarity threshold = 0.86), we considered the two 
muscle synergies statistically similar. We used the same 
method to quantify the inter-subject variability of syn-
ergy composition within a group. The norm synergy at 
each week was compared with its corresponding synergy 
of each participant using the dot product.

Disparity index (DI) analysis
To explore the training effects on the synergies, the rela-
tive change in the muscle activation weights (W) of 
trained muscle pairs within a synergy between the base-
line week and week 6, post-training, was computed. The 
synergies were extracted from EMG envelopes concate-
nated across all trials for each week, and each trial 
included the entire reaching segment from rest to target 
and back to rest. Therefore, the weights represent the 
activation patterns of arm muscles that can be combined 
to characterize the inter-muscular coordination during 
the entire set of 36 reaches. At the baseline week, we 
selected the trained muscle pair whose muscle weights 
(m1base and m2base, for the first and second muscles of the 
pair, respectively) within a synergy exceeded a co-activa-
tion threshold level ( ThCoA = 1√

8
= 0.35 ). ThCoA was 

determined based on the normalized weight of each 
muscle within a synergy if all eight muscles were equally 
activated. Using the selected m1base and m2base, we quan-
tified the disparity index (DI) of a muscle pair at the base-
line (DIbase) as:

A DI value represents how much the pair of muscle 
weights diverged from their co-activation level, i.e., the 
mean of their weights. Therefore, a higher DI value indi-
cated a lower level of co-activation of the muscle pair. 
After identifying m1base and m2base within a synergy and 
calculating DIbase, we obtained the weights of the same 
muscles in a corresponding synergy at week 6 (m1wk6 
and m2wk6) to calculate their disparity index (DIwk6). The 
selection of the corresponding synergy vector at week 
6 was based on the similarity score calculated from the 
scalar product. Once DIbase and DIwk6 of the trained 

(3)

DI =

√

(m1−
m1+m2

2
)

2

+ (m2−
m1+m2

2
)

2
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muscle pair were obtained, we calculated the change in 
the weight disparity (ΔDIpost-training = DIwk6—DIbase) to 
quantify the training effect on the co-activation of the 
trained muscle pair (Fig.  2). If more than one synergy 
at the baseline week contained both m1base and m2base 
exceeding ThCoA, the synergy with the smallest weight 
disparity between the two muscles was considered the 
representative synergy for the co-activation of the given 
muscle pair. That is, we chose the synergy with the most 
co-activation between the muscle pair because that was 
what we aimed to counteract with the MyoCI training. 
To summarize, as depicted in Fig. 2, the algorithm selects 
the representative weights of each trained muscle pair 
from the baseline week (pre-training), which exceed the 
co-activation threshold and have minimal disparity, and 
compares them with the corresponding weights obtained 
from week 6 (post-training) using the DI method.

We measured the significance of the change in DI 
after  six  weeks of training in three different ways. First, 
we compared ΔDIpost-training with the 95% confidence 
interval of baseline variation, which we computed using 
1000 bootstrap samples of the pre-training ΔDI values 
obtained from the entire participants at week 0 and week 
−2 (ΔDIpre-training = DIwk0 − DIwk-2). To validate whether 

the ThCoA level influenced the results, we compared 
ΔDIpost-training with the bootstrapped ΔDIpre-training cal-
culated using twenty different thresholds set at 5–100% 
of ThCoA (in increments of 5%). Second, we computed 
the ΔDIpost-training for the trained muscle pair and for all 
possible pairwise combinations of untrained muscles. 
Third, we computed the significance of the difference in 
the distributions of DIbase and DIwk6 of all trained muscle 
pairs regardless of their initial weights (no ThCoA applied) 
using a two-tailed t-test (alpha = 0.05).

Results
Estimation of the number of synergies and overall synergy 
composition
Based on the level of improvement in the motor impair-
ment (FMA-UE) after the training, 15 and 17 participants 
were categorized as responders and non-responders, 
respectively. Typically, two to four synergies were identi-
fied from the EMGs of each participant before, interim, 
and after the MyoCI training in both responder and 
non-responder groups (Fig.  3A). The average number 
of synergies across all participants and weeks was 2.41, 
indicating that three synergies predict most of the total 
EMG variance in both groups and across weeks. Overall, 

Fig. 2  Calculating the disparity index (DI). From the synergy set of the baseline week, the synergy with the highest co-activation (lowest difference) 
between the targeted muscle pair (e.g., BI and AD in the second synergy (dark gray); m1base and m2base, their muscle weights) is identified. 
Both m1base and m2base are higher than ThCoA, the threshold of muscle co-activation. The synergy at week 6 (the second synergy of week 6) 
corresponding to the synergy of the baseline week is selected by calculating the scalar product with the baseline synergy 2. DI is calculated (right) 
from m1 and m2 at both time points, as the distance from the mean of m1 and m2 (Eq. 3). Finally, the change in the muscle weight disparity after 
training (ΔDIpost-training in red) is obtained by subtracting DIbase from DIwk6

(See figure on next page.)
Fig. 3  The number and composition of muscle synergies in responders and non-responders. A Estimation of the number of synergies identified 
across weeks including pre-training (Baseline week), interim (week 2), post-training (week 6), and retention (week 10) in the responder and 
non-responder groups. The number of synergies did not differ between the two groups nor across weeks in each group. B, C, The mean and SD 
of muscle weights, superimposed on the distribution of the muscle weights of responders (B, n = 15) and non-responders (C, n = 17), per each 
of three synergies identified in pre- and post-training (Baseline week and week 6, respectively). The muscle weights per muscle were displayed 
in descending order. Eight muscles included: brachioradialis (BRD); biceps brachii (BI); triceps (long (TRIlong) and lateral (TRIlat) heads); anterior, 
middle, and posterior deltoids (AD, MD, and PD); and pectoralis clavicular fiber (PECT). The synergies were characterized as (1) E Flex: elbow flexors, 
(2) E Ext/S Abd: elbow extensors, and 3) Del: three heads of the deltoid. The r-value next to each muscle synergy indicates the scalar products 
between the norm synergy (the mean across the subjects) and its corresponding synergy of each participant (mean ± SD)
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no consistent pattern of change in the number of muscle 
synergies was observed after the training in each group. 
The number of synergies did not change significantly 

from the baseline to week 6 (change in responders 
(n = 15): −  0.27, p = 0.37; non-responders (n = 17): 
−  0.37, p = 0.19, one-way ANOVA). Compared to the 

Fig. 3  (See legend on previous page.)
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baseline week, the number of synergies was preserved 
in 40.6% (n = 13) of all participants, decreased in 37.5% 
(n = 12), and increased in 21.9% (n = 7). Among respond-
ers, the number of synergies was preserved in 46.7% 
(n = 7), reduced in 33.3% (n = 5), and increased in 20.0% 
(n = 3). Among non-responders, 35.3% (n = 6) showed no 
change in synergy number, 41.2% (n = 7) decreased, and 
23.5% (n = 4) increased.

The composition of three muscle synergies extracted 
from each participant at each week was distinctive with 
the dominant muscle weights but with inter-subject vari-
ability. The synergies consisted of (1) two elbow flexors 
(BRD and BI) with PECT, (2) two elbow extensors (TRI-
long and TRIlat) and shoulder abductor/extensor (MD 
and PD), and (3) three heads of the deltoid (AD, MD, and 
PD) with BI for both responders and non-responders 
(Fig.  3B and C, respectively). On average, the similar-
ity (r-value) of three norm synergies (the mean of clus-
tered synergies; Fig.  3B and C) between pre- (baseline 
week) and post-training (week 6) was 0.98 ± 0.01 and 
0.99 ± 0.01 for responders and non-responders, respec-
tively. The high similarity values indicated no signifi-
cant change [i.e., r-value > the similarity threshold (0.86); 
p < 0.05] in the group-wise overall composition of muscle 

synergies due to the MyoCI training. However, when the 
norm synergy per group and week was compared with its 
corresponding synergy of each participant, inter-subject 
variability of synergy composition within the same group 
was observed (Figs. 3B and C). The mean r-value of each 
synergy was lower than the similarity threshold (0.86; 
p < 0.05), indicating substantial inter-subject variabil-
ity of the synergy composition [responders: 0.84 ± 0.11 
(baseline week), 0.83 ± 0.12 (week 6); non-responders: 
0.80 ± 0.15 (baseline week), 0.82 ± 0.13 (week 6)]. Also, 
the same result was obtained even when extracting only 
two, instead of three, synergies (p < 0.05). In terms of the 
activation profile, regardless of the number of synergies 
extracted (two or three), there was no clear pattern of 
change in the mean magnitude of coefficients observed 
in both groups (p > 0.05). Overall, the observations moti-
vated us to develop a more precise way to quantify poten-
tial changes in a pair of muscle weights within a synergy, 
trained in the MyoCI protocol.

Weights of the trained muscle pairs within a synergy 
changed with MyoCI training
The MyoCI training modulated the weights of trained 
muscle pairs within a synergy in responders, not in 

Fig. 4  Exemplary synergies identified pre- and post-training (Baseline week and week 6) of a responder (A Subject 29) and a non-responder (B 
Subject 13). Arrows below the abbreviation of muscle names indicate the first trained muscle pair for each participant. Dashed lines show the 
difference between the weights of the trained muscle pair
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non-responders. Figure  4A shows an example of these 
patterns for a representative responder; the relative 
weights of the first trained muscle pair, the TRIlat and 
PD, in the synergy noticeably changed after the training. 
This finding signifies a reduction in co-activation of the 
first muscle pair. The decrease in co-activation was not 
typically observed in non-responders (Fig.  4B). These 
results suggest that the MyoCI training, which aimed to 
decrease the abnormal co-activation of a pair of muscles, 
increased the disparity of weights of the trained mus-
cle pair within a given synergy in responders but not in 
non-responders.

Before MyoCI training (baseline), the mean DI, 
computed with ThCoA applied, of all three targeted 
muscle pairs was comparable between responders 
and non-responders (Fig.  5; DIR-base = 0.091 ± 0.095, 
DINR-base = 0.074 ± 0.076; p = 0.33, t-test). After the train-
ing (week 6), only the responders showed an increase in 
DI compared to baseline (ΔDIR = 0.044 ± 0.11, p = 0.046; 
ΔDINR = 0.018 ± 0.11, p = 0.10; t-test), which implied 

a decrease in co-activation of the trained muscle pair 
within the synergy in general. Interestingly, in both 
groups of participants, the first trained muscle pair, which 
initially had the highest abnormal co-activation (pair-
wise correlation) among the three pairs, demonstrated 
the most reduction in co-activation due to MyoCI train-
ing (ΔDIR-pair1 = 0.073 ± 0.13, ΔDINR-pair1 = 0.055 ± 0.14; 
ΔDIR-pair2 = 0.002 ± 0.055, ΔDINR-pair2 = 0.011 ± 0.092; 
ΔDIR-pair3 = 0.042 ± 0.14, ΔDINR-pair3 = −  0.021 ± 0.065; 
Fig.  5). However, only the responders showed a signifi-
cant reduction of DI in the first pair (p = 0.016, t-test).

This result was not influenced by the level of ThCoA 
because ΔDIpost-training was comparably similar while the 
threshold was varied systematically (5–100% of ThCoA 
with an increment of 5%). Among the three pairs of 
muscles trained, only ΔDIR-pair1 in responders exceeded 
the 95th percentile level of ΔDIpre-training regardless of the 
level of ThCoA (p = 0.0025; Fig. 6A). In particular, the par-
ticipants in the movement-based training group showed 
a greater ΔDIpost-training value of the first trained muscle 

Fig. 5  The two-dimensional mapping of activation weights of the trained muscle pairs whose initial co-activation level exceeded ThCoA (dashed 
lines). m1 and m2 indicate the activation weights of a pair of trained muscles, muscles 1 and 2. Red, green, and blue indicate the muscle pairs 
trained for the first, second, and third two weeks in the MyoCI training, respectively. The disparity index (DI) measured the average of the distance 
between each dot and the solid diagonal line (representing co-activation since the weights were equal) for responders (A) and non-responders (B). 
The increase in DI indicated a decrease in co-activation
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pair than the isometric training groups (p = 0.0029 for 
comparing MVMT to ISO60; p < 0.001 for comparing 
MVMT to ISO90, ANOVA). For non-responders, the ΔDI 
of the first pair did not significantly change (p = 0.12). 
Similar results were observed when there was no thresh-
old, ThCoA, applied. These findings mean that, even when 
the DIs of all of the first trained muscle pairs across par-
ticipants were considered regardless of their level of ini-
tial co-activation, the responder group demonstrated a 
statistically significant increase in the mean DI at week 6 
(p = 0.011; Fig. 6B).

Discussion
In this study, we investigated the effect of MyoCI train-
ing on intermuscular coordination using muscle syn-
ergy analysis. The number of synergies identified during 
reaching ranged from two to four and did not change due 
to the training. The overall composition of muscle syn-
ergies also did not change. However, there was a notable 
change, within individual synergies, in the disparity of 
muscle weights of the trained muscles in responders to 
the training. While not all muscle pairs changed their co-
activation, the muscle pairs with the largest abnormal co-
activation before training showed the largest reduction in 
coupling after training, especially in the movement-based 
training group. These results suggest that our MyoCI 
paradigm did, in fact, allow participants to decouple 
the targeted muscle pairs (particularly the most abnor-
mally co-activating, muscle pair 1), which, in turn, was 
correlated with improved movement. The fact that the 

training only changed the behavior of the trained muscles 
suggests that the CNS is capable of making highly frac-
tionated changes in motor control, even after a stroke-
causing severe impairment.

Our prior study showed that MyoCI training might 
reduce arm impairment in moderately and severely 
impaired stroke survivors [13]. That study found some 
reduction in pairwise correlations of the trained muscles 
during reaching in the movement group, but not in the 
isometric groups. This study, which looked at the within-
synergy weights of the trained muscles, found increased 
disparity (reduced co-activation). Thus, the more com-
prehensive approach to intermuscular coordination using 
muscle synergy analysis revealed changes that were not 
seen in the simpler, pairwise correlation analysis.

In this study, we found no consistent pattern of change 
(e.g., merging or fractionation) observed in the overall 
composition of the synergy sets. Few studies have char-
acterized the number of muscle synergies after stroke, 
as compared to unimpaired limbs, as having three dif-
ferent patterns: preservation, merging, and fractionation 
of unimpaired synergies [9, 18, 19]. More severe impair-
ment after stroke correlated with having fewer syner-
gies (merging) [18, 20] or fewer muscle networks [21]. 
This observation suggests that we might expect to see 
fractionation of synergies (greater number of synergies) 
with improved function from MyoCI training. However, 
the current MyoCI paradigm was customized for each 
individual’s pattern of muscle co-activation, meaning 
that different muscle pairs were targeted for different 

Fig. 6  Changes in the disparity of activation weight of the trained muscle pairs. A ΔDIpost-training (mean ± SD) of each of three trained muscle pairs 
and all possible pair-wise combinations of untrained muscles in responder and non-responder groups when 5–100% of the ThCoA was applied. The 
dashed line indicates the average 95th percentile of the bootstrapped ΔDIpre-training. B DI of all of the first trained muscle pairs, computed pre- and 
post-training in the responder and non-responder groups, respectively, when no weight threshold was applied (*p = 0.011)
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participants. This inter-subject variability may have 
resulted in a diverse effect on the synergy composition 
across participants, given the variation in initial co-acti-
vation of muscles trained. Moreover, no clear pattern of 
change in the activation profile was observed due to the 
inconsistency of the pattern of change in the number and 
the composition of muscle synergies that arose from the 
high inter-subject variability.

To account for this diversity, we designed DI analy-
sis to focus on the training effect on each individual’s 
muscle synergies, particularly those most relevant to 
the targeted muscle pairs. Previous studies showed that 
conventional synergy analysis can be misleading [22, 
23]. When synergies are identified from a small subset 
of muscles, the conventional method using the VAF and 
its preset threshold for synergy identification can overes-
timate VAF, which affects the estimation of the number 
of synergies and the corresponding synergy composition 
[22]. This overestimation can lead to ignoring important 
features embedded in the residual muscle activities [23]. 
DI analysis captured a consistent change in synergy acti-
vation weights in the responders that was not identified 
by conventional synergy analysis. DI thus complements 
conventional synergy analysis. However, the current DI 
method is limited to reflecting the change in the disparity 
between weights of a muscle pair only.

Only a few recent studies have investigated the effects 
of rehabilitation training on potential changes in the 
number and/or composition of muscle synergies and/
or their activation profiles in stroke survivors [11, 24, 
25]. Two small studies showed that EMG feedback could 
reduce co-activation between agonist and antagonist 
muscles during training in stroke participants [26, 27]. 
While this finding aligns with our overall result, these 
studies did not assess the more global picture of arm 
intermuscular coordination. Pierella et  al. [28] showed 
that improved arm function in the subacute stage, coin-
ciding with exoskeleton training, correlated with an 
increase in muscle synergy number and similarity to non-
stroke controls in some of the participants. Two other 
studies showed some evidence of post-stroke synergies 
becoming more like those of unimpaired arm move-
ment due to different rehabilitation strategies [29, 30]. 
However, other studies showed unclear relationships 
between improved motor outcomes and either the num-
ber of muscle synergies or similarity between impaired 
and unimpaired synergies [31, 32]. Notably, these last two 
studies are pilot studies that included participants with 
only mild to moderate impairment.

One of the characteristics of human upper limb 
movements is that they can be highly fractionated—
i.e., we can precisely control the activation of individual 

joints and even single muscles. This is thought to be 
due to the precise connections of the corticospinal 
tract to small pools of motoneurons [33]. The presence 
of abnormal co-activation after stroke means that less 
fractionated movements are possible; this is thought to 
be due to corticospinal tract damage and higher reli-
ance on the reticulospinal tract after stroke [34–37]. 
Here, we showed that MyoCI training enabled stroke 
survivors to improve arm function not by changing 
entire synergies but rather by reweighting the activities 
of just those muscles that were targeted. This finding 
indicates that even severely impaired stroke survivors 
are capable of fractionated changes in movement con-
trol. This, in turn, suggests that some corticospinal 
tract functions may have remained in our responders to 
MyoCI. Alternatively, it is possible that plastic changes 
occurred at the spinal cord level. While we unfortu-
nately did not directly examine the corticospinal excit-
ability (e.g., with transcranial magnetic stimulation) 
or cortico-reticulospinal responses such as StartReact 
[36, 38], we hope to examine this in future studies to 
determine the extent to which this change is dependent 
on corticospinal tract changes. Regardless of the exact 
mechanism, MyoCI training enabled highly precise tar-
geting of changes in muscular coordination.

This study did have some limitations. The muscle syn-
ergies were not investigated in the arms of neurologi-
cally intact persons or in the ipsilesional arm of stroke 
survivors. Therefore, the comparison of synergies was 
made only within the stroke-impaired arm. Moreover, 
since the total number of analyzed muscles affects syn-
ergy analysis [22], further testing is important to exam-
ine whether the results remain consistent when more 
than eight arm muscles are examined. We are testing 
this in a follow-up, sham-controlled study with a wear-
able version of the MyoCI [39]. Further, some muscles 
may co-activate normally at different times. Overall, 
we selected those muscle pairs for training that were 
typically not synergistic in multiple activities of daily 
living, in particular reaching, i.e., those that showed 
significantly less co-activation in age-matched, able-
bodied individuals performing the same reaching task. 
Lastly, there is no widely accepted definition of “co-
activation” in terms of the weight of muscle within a 
synergy, which makes it unclear how best to quantify 
the degree of co-activation. The proposed DI method 
focuses on the change in weight disparity of a muscle 
pair to quantify the change in pair-wise co-activation 
level. This approach simplifies the quantification of 
change in co-activation. However, other factors, such as 
the change in the mean weight of a muscle pair, could 
be also considered in future studies to interpret the 
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training effect on the intermuscular coordination more 
comprehensively.

Conclusions
In conclusion, we demonstrated that the MyoCI para-
digm improved the upper extremity motor impair-
ment of the stroke survivors by rebalancing the muscle 
weights of trained muscles within muscle synergies. 
While there was no consistent pattern of change in 
the number and composition of muscle synergies after 
MyoCI training, the DI analysis captured the increase 
in weight disparity of trained muscle pairs within a syn-
ergy in the responders. Although not every muscle pair 
was decoupled, the results imply that MyoCI training 
can target abnormal co-activation, particularly of the 
most abnormally co-activating muscle pair. Further, 
MyoCI can enable functional improvement in people 
with severe impairment from stroke, even years after 
the stroke occurs.
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