
Lee et al. Journal of NeuroEngineering and Rehabilitation  (2017) 14:77 
DOI 10.1186/s12984-017-0288-0

RESEARCH Open Access

Identifying predictors for postoperative
clinical outcome in lumbar spinal stenosis
patients using smart-shoe technology
Sunghoon I. Lee1, Andrew Campion2,3,4, Alex Huang2,3,4, Eunjeong Park5, Jordan H. Garst2,3,4,
Nima Jahanforouz2,3,4, Marie Espinal2,3,4, Tiffany Siero2,3,4, Sophie Pollack2,3,4, Marwa Afridi2,3,4,
Meelod Daneshvar2,3,4, Saif Ghias2,3,4, Majid Sarrafzadeh6 and Daniel C. Lu2,3,4,7*

Abstract

Background: Approximately 33% of the patients with lumbar spinal stenosis (LSS) who undergo surgery are not
satisfied with their postoperative clinical outcomes. Therefore, identifying predictors for postoperative outcome and
groups of patients who will benefit from the surgical intervention is of significant clinical benefit. However, many of
the studied predictors to date suffer from subjective recall bias, lack fine digital measures, and yield poor correlation to
outcomes.

Methods: This study utilized smart-shoes to capture gait parameters extracted preoperatively during a 10 m
self-paced walking test, which was hypothesized to provide objective, digital measurements regarding the level of gait
impairment caused by LSS symptoms, with the goal of predicting postoperative outcomes in a cohort of LSS patients
who received lumbar decompression and/or fusion surgery. The Oswestry Disability Index (ODI) and predominant
pain level measured via the Visual Analogue Scale (VAS) were used as the postoperative clinical outcome variables.

Results: The gait parameters extracted from the smart-shoes made statistically significant predictions of the
postoperative improvement in ODI (RMSE= 0.13, r = 0.93, and p < 3.92 × 10−7) and predominant pain level
(RMSE= 0.19, r = 0.83, and p < 1.28 × 10−4). Additionally, the gait parameters produced greater prediction accuracy
compared to the clinical variables that had been previously investigated.

Conclusions: The reported results herein support the hypothesis that the measurement of gait characteristics by our
smart-shoe system can provide accurate predictions of the surgical outcomes, assisting clinicians in identifying which
LSS patient population can benefit from the surgical intervention and optimize treatment strategies.
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Background
Lumbar Spinal Stenosis (LSS) is a chronic spinal con-
dition most commonly experienced by individuals over
50 years of age [1]. It is estimated that approximately
2.4 million individuals in the United States, 8 − 11% of
the country’s population, will be affected by LSS by 2021
[2]. Lumbar decompression surgery is the most effec-
tive and frequently utilized surgical intervention strategy.

*Correspondence: dclu@mednet.ucla.edu
2Neuroplasticity and Repair Laboratory, UCLA, Los Angeles, USA
3Neuromotor Recovery and Rehabilitation Center, UCLA, Los Angeles, USA
Full list of author information is available at the end of the article

However, approximately one third of the patients who
undergo surgery are not satisfied with their postopera-
tive outcomes due to pain and inferior functional level
[3, 4]. Given these findings, identifying preoperative pre-
dictors of surgical outcomes, which is referred to as out-
come research, would be of significant clinical utility as it
allows healthcare providers to define realistic and achiev-
able postoperative goals for patients and their caregivers
[3, 5–7]. Furthermore, a prediction algorithm can prevent
patients who may not benefit from a surgical intervention
from receiving such an invasive and costly treatment.
Outcome research, with the general goal of improv-

ing care to promote the best interests of the patient,
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can take on many forms depending on what the final
outcome of interest is [8, 9]. Regarding LSS specifically,
numerous studies have investigated a wide spectrum of
preoperative clinical variables in order to predict post-
operative outcomes of disability, health, and quality of
life. Measurement tools to quantify these outcomes have
included health-related quality of life measure (HRLQoL),
Oswestry Disability Index (ODI), Short Form 36 (SF-36),
Roland-Morris (RM) questionnaire, Core OutcomesMea-
sures Index (COMI), and pain level [3, 10–13]. Using
the ODI at two-year follow-up, Aalto et al. found regu-
lar preoperative analgesic use, non-smoking status, and
above-average self-rated health as statistically significant
outcome predictors [10]. Similarly, Sanden et al. used
the ODI, SF-36, and EuroQol questionnaires at two-year
follow-up to support preoperative smoking status as a
predictor of poorer outcomes [11]. Use of the modified
RM questionnaire by Athiviraham et al., at these same
time intervals, found a higher BMI and a history of psy-
chiatric disease to be predictors of poorer outcome [12].
Sigmundsson et al. utilized the HRLQoL and ODI to show
that the duration of leg pain prior to surgical intervention
serves as an outcome predictor at a one-year postoper-
ative follow-up interval [3]. Finally, use of the COMI by
Sobottke et al. demonstrated that having a history of fewer
previous surgeries, rigid or dynamic stabilization, and
lower patient comorbidity, were all predictors of improved
outcome [13]. However, despite the statistical significance,
most of the aforementioned work did not provide great
predictability of postoperative outcomes. More impor-
tantly, they focused on finding predictors from clinical
variables that were available in the hospital database sys-
tem, rather than variables that could directly quantify the
patients’ neurological condition relevant to the functional
deficits that surgery attempts to address (e.g., walking
ability).
Recently, researchers and clinicians have started to

investigate walking ability as a predictor in LSS patients
[14–16]. These studies focused on walking capacity, which
is defined as the distance a person is able to walk contin-
uously on a flat surface at a self-selected pace until being
forced to stop due to symptoms of LSS, up to a limit of 30
min. The walking capacity and total walking duration dur-
ing the preoperative visit showed significant correlations
to postoperative ODI scores [14–16]. However, given that
measurements of walking capacity can take up to 30 min,
this protocol has limitations in the busy clinical setting
and poses a significant physical burden on patients. As
a result, various neurological and physical exam maneu-
vers have been investigated as possible supplements, but
none to date have functioned as predictors of surgical
outcomes [6, 7].
The proposed study presents a novel technological

approach that utilizes a pair of sensorized smart-shoes

during a preoperative 10 m walking test to predict
functional outcomes following nerve root decompressive
surgery in LSS patients. Two postoperative outcomes,
namely the ODI and predominant pain level measured
by the Visual Analogue Scale (VAS), were used in this
study. The smart-shoe was equipped with an array of five
pressure sensors on the insole, which allowed to extract
comprehensive analysis of spatiotemporal gait character-
istics. More specifically, this paper first demonstrates that
these preoperative gait parameters obtained from a 10 m
walking test can better predict the postoperative out-
comes when compared to conventional clinical variables
that were previously studied. Then, this paper further
demonstrates that even more accurate predictions can be
achieved by combining the gait parameters with clinical
variables using the linear regression algorithm.

Methods
Patients
A total of 29 LSS patients (21 female) with ages rang-
ing from 59.1 ± 15.9, were recruited from the UCLA
Spine Center. Inclusion criteria entailed diagnosis of LSS
(lumbar disk herniation, lumbar spondylolisthesis, and/or
adjacent segment disease) with radiculopathy and/or axial
pain in the lower limbs that affected their walking ability.
Diagnosis of LSS was verified using Magnetic Resonance
Imaging (MRI). Patients with other neuromuscular or
spinal cord conditions were excluded. All patients under-
went lumbar decompression (laminotomy, foraminotomy,
discectomy) and/or lumbar fusion surgery, performed by
a single neurosurgeon (DCL). Fifteen of these patients (11
female) with ages ranging from 58.4 ± 16.8, agreed to be
reevaluated at least three months after the surgical inter-
vention. The experimental procedure was approved by the
UCLA institutional review board (IRB# 12-000009), and
all patients provided consent to participate in the study.

Walking test procedure
During the preoperative visit, patients were asked to per-
form a 10 m self-paced walking test (SPWT) while wear-
ing a pair of sensorized smart-shoes developed at the
UCLA Wireless Health Institute. Figure 1 illustrates the
smart-shoes that were used in the experiment. The smart-
shoes were equipped with an array of five pressure sen-
sors (FSR400, Interlink Electronics, USA) that have been
widely used to capture kinetic parameters of gait [17, 18].
A microcontroller (Fio, Arduino, Italy) was employed to
sample the pressure data at 50 Hz and wirelessly transmit
to a base station (i.e. a laptop) via the IEEE 802.15.4 (XBee)
standard protocol. The pressure sensors were positioned
at locations that help elucidate spatiotemporal character-
istics of patients’ walking patterns: P1 to detect heel-strike,
P3 to detect mid-lateral plantar pressure, P5 to detect toe-
off, and P2 and P4 to detect weight distribution between
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Fig. 1 a The sensorized smart-shoes platform containing five pressure sensors (P1 to P5) capture spatiotemporal gait characteristics, and a
microcontroller and wireless transceiver to transmit the captured data to the base station (laptop). b An individual wearing the platform for a
walking test in the clinical setting

the aforementioned three locations. A total of ten pairs of
different sized shoes were made (five for males and five for
females), and the pressure sensor locations were placed
linearly proportional to each other. Three different female
(U.S. size 6, 7, and 8.5) and two male (U.S. size 7 and 11)
shoes were used in this experiment.
Patients were asked to walk at their preferred speed

on a 10 m trail that was marked in the hospital hallway.
Then, they were asked to pause for five seconds, turn
around, pause for another five seconds, and walk back
along the 10 m trail to the initial position as shown in
Fig. 2. The pauses between walking and turning were uti-
lized to segment the walking data. Patients repeated the
above procedure twice, producing a total of four 10 m
walks.

Independent variables: gait parameters and clinical
variables
The obtained sensor data produced a total of 39 spatio-
temporal measurements representing various dimensions

4. Pause
for 5s

3. Turn
around

5. Walk 10m

1. Walk 10m 2. Pause
for 5s

Fig. 2 Illustration of the 10 m walking test performed in this work.
Patients were asked to walk at their preferred speed on a 10 m trail,
pause for five seconds, turn around, pause for another five seconds,
and walk back along the 10 m trail to the initial position

of gait characteristics in LSS patients. In this section, we
elaborate on a subset of important gait measurements
that we believe are worth noting. Detailed information for
all 39 measurements is provided in the Additional file 1:
Appendix.
MeanTime-PiPj and StdDevTime-PiPj represent the

mean and standard deviation of the time difference
between the peaks of Pi and Pj, respectively. The com-
puted time difference was normalized to the shoe size
(i.e. length of the shoe) in order to remove distance-
dependent variability. These parameters quantify how
quickly and consistently a subject distributes his/her
weight on the insole of the foot during walking. For exam-
ple, MeanTime-P2P3 computes the time taken to shift the
weight from the proximal to distal regions of the lateral
side of the foot. AutoCorr-Pi computes the maximum
auto-correlation of the time series of Pi, which quantifies
how consistently the subject distributed his/her weight to
the pressure sensor Pi during walking. SumMag-Pi and
StdDevMag-Pi respectively represent the sum and stan-
dard deviation of the amplitudes of Pi, which similarly
quantify the consistency of pressure applied to Pi during
gait. These parameters, except AutoCorr-Pi, were com-
puted per gait cycle on each foot. Then, themeasurements
were averaged over the gait cycles that were obtained
from the four 10 m walks. The value of AutoCorr-Pi
was computed per 10 m walk and averaged out of the
four walks. This resulted in two measurements from
the two feet, one from each foot. Then, the minimum,
maximum, and mean of the two values were consid-
ered in this work in order to emphasize the unilateral
(minimum and maximum), and bilateral (mean) char-
acteristics of the motor symptoms in LSS patients. For
example, MeanTime-PiPj-Max, MeanTime-PiPj-Min, and
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MeanTime-PiPj-Mean represent themaximum,minimum
and mean of the MeanTime-PiPj values of the two feet.
This study also included some gait measurements that
were computed as a function of sensor data from the two
shoes. The symmetry index of gait, SymIndex, investi-
gated the bilateral symmetry between the two limbs as
introduced in [19]: SymIndex = (TR − TL)/

1
2 (TR + TL),

where TR and TL represent the average stride time for
left and right feet, respectively. CrossCorr-Pi computed
the maximum cross-correlation of the time series of Pi of
the left and right shoes, which quantified the similarity of
the gait pattern between the two limbs. Table 1 summa-
rizes the gait measurements considered in this work.
A total of 10 clinical variables that were previously

found to be predictive of postoperative outcome in LSS
patients were also considered. These variables include age
[7, 20], gender [6, 7, 20], self-rated walking ability [6], pres-
ence of scoliosis [3, 7], presence of acute injury, number
of affected spinal vertebrae, number of previous spinal
surgeries [13], duration of symptoms [3], BMI [12], and
smoking history [11]. Furthermore, the preoperative eval-
uations of the patient-reported functional measurements
were also considered as predictors [13].

Dependent variables: patient-reported functional
outcomes
Two dependent variables were considered in this work:
the ODI [21] and predominant pain level measured by
the VAS [3] that were reported by the patients postopera-
tively. The ODI is one of the most commonly used clinical
measures to evaluate low-back disability [3, 22]. The ODI
consists of ten questions concerning intensity of pain and
the degree of disability in performing activities of daily liv-
ing (ADL), such as sleeping, self-care, sex life, social life,
and traveling [21]. is scored out of five or six, with zero
indicating the least amount of disability. Patients must
check the statement that most closely resembles their

Table 1 Description of the important gait measurements that
were considered in this work

Name Description

MeanTime-PiPj The mean of the time different between the peaks of
Pi and Pj .

StdDevTime-PiPj The standard deviation of the time different between
the peaks of Pi and Pj .

AutoCorr-Pi The maximum auto-correlation of the time series
of Pi .

SumMag-Pi The sum of the amplitudes of Pi .

StdDevMag-Pi The standard deviation of the amplitudes of Pi .

SymIndex The bilateral symmetry between the two limbs as
introduced in [19].

CrossCorr-Pi The maximum cross-correlation of the time series of
Pi of the left and right shoes

functional status. The accumulated score is linearly scaled
from 0 (no disability) to 100 (total disability) [21]. The
ODI was administered at the baseline and follow-up vis-
its; note that the postoperative ODI score was used as the
dependent variable. The predominant symptom (either
lower back or leg pain) was also evaluated pre and post-
operatively using VAS. Patients evaluated their pain level
by drawing a position along a continuous line between
two end-points indication no pain and unbearable pain.
The pain level was quantified by ratio between the length
of the patient-specified position from the no-pain end-
point and the total length of the line, which was scaled
from 0 (no pain) to 100 (unbearable pain). Note that the
postoperative VAS score was used as another dependent
variable.
Table 2 summarizes the patient demographics, clinical

variables, some important spatiotemporal measurements
from the smart-shoes, and the self-reported functional
outcome values at both pre and postoperative visits.

Analysis
This section presents the data analyses that investigated 1)
weather the preoperative gait measurements would pro-
vide better predictability of surgical outcomes compared
to the previously studied clinical variables, and 2) weather
combining these gait and clinical variables would lead to
more accurate prediction of surgical outcomes.

Predictability of gait measurements compared to
clinical variables: Each (univariate) predictor candidate
was compared to the two dependent variables using
Spearman correlation [23, 24]. The correlation coefficient
r and its p-value were used to evaluate the correlation. The
value of p < 0.05 was considered statistically significant.

Multivariate prediction: Multiple variables were com-
bined together to predict the dependent variables. Mul-
tivariate linear regression was used to combine multiple
predictors to predict the postoperative ODI and VAS. In
order to avoid over-fitting of the prediction model to our
relatively small number of data, the number of predic-
tors used in the predictionmodel was limited as suggested
in [25]; for a linear model, the ratio between the num-
ber of subjects and number of predictors was restricted
to be 10:1. Since our dataset involved 15 patients with
follow-up visits, a total of �15/10� = 2 predictors were
utilized at a time. All possible combinations of two pre-
dictors were generated out of a total of 51 predictors (i.e.
39 spatiotemporal measurements from the smart-shoes,
ten clinical variables, and two preoperative functional out-
comes), and the combination that produced the largest r
(i.e. strongest correlation) was reported. The prediction of
postoperative outcome measure was made by combining
the two selected variables via linear regression. The root
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Table 2 A summary of the patient demographics and self-reported functional outcomes (ODI and VAS)

Baseline Follow-up
(N = 15) (N = 17)

Patient demographics Age 58.4 ± 16.8 -

Gender 11 female / 3 male -

Self-rated walking ability (0 to 3) 2.2 ± 0.86 -

Presence of scoliosis 1 yes / 14 no -

Presence of acute injury 4 yes / 11 no -

Number of affected spinal vertebrae 2.13 ± 0.35 -

Number of previous spinal surgeries 0.27 ± 0.46 (4 subjects
had 1, 11 had 0)

-

Duration of symptoms 51.1 ± 88.2 days -

BMI 26.3 ± 5.04 -

Smoking status 2 yes / 13 no -

Important spatiotemporal
measurements

StdTime-P2P3-Max 0.12 ± 0.096 -

CrossCorr-P2 4.2 × 104 ± 2.7 × 104 -

AutoCorr-P2-Mean 0.77 ± 0.057 -

SumMag-P2-Min 1.2 × 104 ± 5.7 × 103 -

MeanTime-P2P3-Mean 0.18 ± 0.070 -

AutoCorr-P5-Min 0.81 ± 0.040 -

SumMag-P2-Min 1.1 × 104 ± 5.7 × 103 -

MeanTime-P1P2-Max 0.18 ± 0.15 -

Functional outcome ODI 40.2 ± 19.2 77.3 ± 20.2

VAS - Pain 49.9 ± 34.5 33.4 ± 31.9

mean squared error (RMSE) between the predicted and
actual outcome measures was also reported.

Results
Predicting postoperative ODI
Each predictor candidate (both spatiotemporal measure-
ments and clinical variables) was compared to the postop-
erative ODI score. Table 3 shows the correlation results of
the top five spatiotemporal measurements with the largest
absolute correlation coefficient values (i.e. |r|), all ten clin-
ical variables, and the two functional outcomes (i.e. VAS
and ODI) that were collected preoperatively. StdTime-
P2P3-Max, which represents the standard deviation of
the time between the peaks of P2 and P3 (the maximum
value between the two feet), produced the highest abso-
lute correlation (r = 0.61) with p-value of 0.016. The
clinical variable with the largest absolute correlation coef-
ficient was smoking status, but the correlation was not
statistically significant (p < 0.13). Furthermore, the ODI
that was collected preoperatively did not show significant
correlation to the postoperative ODI (p < 0.21).
When two predictors were combined to predict

the postoperative ODI score using multivariate linear

regression technique, the combination of StdDevTime-
P2P3-Max and SymIndex produced the strongest correla-
tion coefficient of r = 0.78 with p < 5.32 × 10−4. The
RMSE against the reported ODI value was 0.13. Figure 3
shows the scatter plot and the Bland-Altman plot. The
bias of the difference between the predicted and actual
ODI scores was 2.41 × 10−17, and the limit of agreement
was 0.24. The predicted postoperative ODI score based
on the multivariate analysis was subtracted from the pre-
operative score in order to predict the improvement of
ODI after surgical operation. Figure 4 shows the statis-
tically significant correlation between the predicted and
actual improvement, which yielded the RMSE of 0.13 and
Spearman correlation coefficient of r = 0.93 with p <

3.82×10−7. The effect of the unbalanced gender distribu-
tion in the sample (11 female vs. 4 male) on the estimation
error was examined using an unpaired t-test, and did not
show a statistically significant difference with p < 0.55.

Predicting postoperative VAS
Table 4 summarizes the correlation results between the
postoperative VAS and individual predictors. Among all
the considered possible predictors, the correlation results
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Table 3 Correlations between the predictor candidates and
postoperative ODI scores

Type Predictors r p-value

Spatiotemporal
measurements

StdTime-P2P3-Max 0.61 0.016

CrossCorr-P2 −0.54 0.037

AutoCorr-P2-Mean −0.53 0.043

SumMag-P2-Min 0.51 0.053

MeanTime-P2P3-Mean 0.49 0.065

Clinical variables Age 0.15 0.58

Gender 0.077 0.78

Duration of Symptoms 0.13 0.64

Walking ability −0.17 0.55

Presence of scoliosis 0.31 0.26

Smoking Status 0.41 0.13

Acute Injury −0.14 0.62

Previous spine surgery 0.42 0.12

Number of affected disk −0.045 0.87

BMI 0.36 0.18

Preoperative
outcomes

Preoperative VAS 0.30 0.27

Preoperative ODI 0.35 0.21

Top five spatiotemporal measurements with the largest absolute Spearman
correlation coefficients (r) are listed. All clinical variables, including the functional
outcomes that were collected preoperatively, are also listed

of the top five spatiotemporal measurements with the
largest absolute correlation coefficients, all ten clinical
variables, and the two preoperative functional evaluations
(i.e. VAS and ODI) were reported. AutoCorr-P2-Mean,
which represents the maximum autocorrelation of the
time series of P2 (the mean of the feature values from the
two feet), produced the highest correlation (r = −0.70)
with p-value of 0.0035. None of the clinical variables and

preoperative outcomes that were considered in this work
produced significant correlation to postoperative VAS.
Figure 5 shows the scatter and Bland-Altman plots when

two predictors were used to predict the postoperative VAS
score based on multivariate linear regression technique.
The best correlation was achieved when CrossCorr-P2
and AutoCorr-P3-Min were employed, which together
produced r = 0.83, p < 1.28 × 10−4, and RMSE of
0.19. The bias and limit of agreement of the Bland-Altman
plot were −4.22 × 10−16 and 0.39 respectively. Figure 6
shows the statistically significant correlation between the
predicted and actual improvement of VAS after surgical
operation. The RMSE was 0.20 and the Spearman corre-
lation coefficient r was 0.82 with p < 2.58 × 10−4. The
unbalanced gender distribution did not show a statisti-
cally significant difference in the estimation error (t-test,
p < 0.33).

Discussion
This pilot cohort study investigated the use of gait mea-
surements derived from a pair of sensorized smart-shoes
to predict postoperative functional outcomes in patients
with LSS. Two validated functional outcomes routinely
used in the clinical setting (ODI and VAS) were consid-
ered in this work. The gait measurements derived from
the smart-shoes outperformed all other clinically avail-
able variables regarding their capacity to predict the two
postoperative functional outcomes. Our method provides
more quantitative measurements of outcome as compared
to the more qualitative results of other works [3]. Addi-
tionally, the smart-shoe is non-invasive, inexpensive, and
easy-to-use, and the 10 m SPWT takes approximately six
minutes to complete. The reported results support our
hypothesis that this system has great potential to provide a
more accurate prediction of postoperative functional out-
comes in LSS patients as compared to other predictors
that have been studied and utilized to date.
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Fig. 4 Scatter plot between the actual and predicted improvement in
ODI after surgical operation. The Spearman correlation coefficient r
was 0.93, p < 3.82 × 10−7, and RMSE of 0.13

Walking ability has been investigated as a predictor in
LSS patients in a relatively small number of studies. Sig-
mundsson et al. reported that the self-estimated walking
distance can be a predictor for satisfaction with operative
outcomes [3]. Furthermore, preoperative walking capacity

Table 4 Correlations between the predictor candidates and
postoperative VAS scores

Type Predictors r p-value

Spatiotemporal
measurements

AutoCorr-P2-Mean −0.70 0.0035

CrossCorr-P2 −0.69 0.0044

AutoCorr-P5-Min −0.63 0.012

SumMag-P2-Min 0.61 0.015

MeanTime-P1P2-Max 0.60 0.017

Clinical variables Age 0.33 0.22

Gender 0.21 0.44

Duration of symptoms 0.30 0.28

Walking ability −0.10 0.72

Presence of scoliosis 0.12 0.66

Smoking status 0.45 0.089

Acute injury −0.35 0.20

Previous spine surgery 0.47 0.076

Number of affected disk 0.0045 0.87

BMI 0.45 0.093

Preoperative
outcomes

Preoperative VAS 0.38 0.16

Preoperative ODI 0.30 0.27

Top five spatiotemporal measurements with the largest absolute Spearman
correlation coefficients (r) are listed. All clinical variables, including the functional
outcomes that were collected preoperatively, are also listed

was found to be a good predictor of satisfaction with
postoperative walking capacity after surgical intervention
[7]. Conway et al. conducted SPWT and motorized tread-
mill test (MTT) [14], asking LSS patients to walk on a level
ground or treadmill at a self-paced speed until they volun-
tarily stopped due to worsening of LSS-related symptoms
or until they reached the predefined maximum time dura-
tion of 30 min. They reported a significant correlation
(p < 0.01) between the walking distance of the SPWT
and the ODI score with a Pearson correlation coefficient
of −0.60. Rainville et al. compared the changes in walk-
ing time and distance against the changes in ODI score
[15]. A significant correlation (p < 0.05) was reported
between the walking time using the MTT and the ODI
score with a Pearson correlations coefficient of 0.48. Sim-
ilarly, Tomkins-Lane et al. reported a significant correla-
tion (p < 0.01) between the changes in walking capacity
from the SPWT and changes in the ODI score with a
Spearman coefficient of −0.70 [16]. However, the afore-
mentioned works focus on measuring walking capacity,
which require patients to walk up to 30 min for each test.
This time requirement may limit the use of these tests in
the clinical setting, notwithstanding the burden placed on
patients to perform such extensive testing. Comparatively,
the test proposed in this study requires a total of 40 m
walking distance (10 m walking test repeated four times)
and takes approximately 6 min to complete, which makes
it more accessible in the clinical setting and likely more
appealing to patients. Furthermore, the spatiotemporal
gait characteristics provided by the smart-shoes, such as
the ability to fine control the distribution of the body
weight during walking, may provide more comprehensive
interpretation of the LSS patient’s functional level follow-
ing decompression surgery as compared to the relatively
uni-dimensional evaluations of walking capacity.
Table 3 summarizes the results for predicting the post-

operative ODI scores. It is noteworthy that the ODI scores
collected preoperatively did not show statistical signifi-
cance to the postoperative ODI scores (p < 0.21). This
may be explained by operative subjects improving non-
linearly compared to their preoperative status or may be
because of the response shift of the ODI; ODI is known to
suffer from the response shift after surgical intervention in
lumbar spinal cord disorder patients [26]. Thus, accurate
prediction requires additional information, which moti-
vated our study. None of the clinical variables investigated
in this study showed significant correlation to the post-
operative ODI score. The results in Table 3 reveal that
the top five gait measurements with the largest (absolute)
Spearman correlation coefficient contain gait information
collected from P2 (near the heel) and/or P3 (mid-lateral
plantar). For example, StdTime-P2P3-Max showed a pos-
itive correlation to the postoperative ODI. This implies
that patients with superior functional condition (low ODI
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score) showed more consistent weight shifting from P2
to P3, i.e. more consistent walking pattern. Moreover,
the length of time taken to shift their weight from P2
to P3 (MeanTime-P2P3-Mean) was shorter in functional
patients, and thus the cumulative pressure applied to P2
was smaller (SumMag-P2-Min). This also implies that
patients with higher ODI score (non-functional patients)
took longer time to shift from P2 to P3, which can be
explained by the sensory deficit and pain inherent to LSS
resulting in a less fluid walking pattern. Patients with
low ODI score also showed consistent pressure pattern
at P2 for both limbs (AutoCorr-P2-Mean) and across the
two limbs (CrossCorr-P2) during walking. When multi-
ple predictors were considered to predict the postopera-
tive ODI, the StdTime-P2P3-Max and SymIndex yielded
the strongest (and statistically significant) correlation
(p < 5.32×10−4). It is noteworthy that SymIndex was not
one of the measurements that produced the best correla-
tion when considered for the univariate analysis. Themost
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Fig. 6 Scatter plot between the actual and predicted improvement in
VAS after surgical operation. The Spearman correlation coefficient r
was 0.82, p < 2.58 × 10−4, and RMSE of 0.20

likely reason that StdTime-P2P3-Mean were combined
with SymIndex rather than one of the top five measure-
ments shown in Table 3 is that the top five measurements
quantify similar gait characteristics (as most of them were
derived from P2 and/or P3), and thus the maximum infor-
mation gain was achieved when StdTime-P2P3-Mean was
combined with SymIndex, which provides different gait
characteristics [27]. The predicted improvement com-
puted by subtracting the predicted postoperative ODI
score from the preoperative ODI score also showed a
strong correlation compared to the actual improvement
with RMSE of 0.13, r = 0.93, and p < 3.82 × 10−7.
Thus, the ability of the smart-shoes to reliably predict
changes in ODI in response to surgery based on pre-
operative data makes this technology a valuable tool for
identifying which patients will derive the greatest bene-
fit from surgical intervention. This will help the decision
making process for both clinicians and patients when con-
sidering surgical versusmedicalmanagement of LSS, since
it can provide a reasonable prediction for the symptomatic
improvement that a surgical intervention can reliably
provide.
Table 4 summarizes the predictability of the gait mea-

surements and clinical variables for the postoperative VAS
scores. None of the clinical variables showed clinically sig-
nificant correlation to the postoperative VAS. However,
the smoking status and the number of previous spine surg-
eries showed near significant correlations (p < 0.089 for
the smoking status and p < 0.076 for the number of
surgeries). This agrees with previous findings that non-
smoking status [10, 11] and fewer previous surgeries [13]
have a predictive influence for improved functional level
and leg pain relief after surgical intervention. The VAS
score that was collected preoperatively did not show sig-
nificance to the postoperative VAS, which supports that
predicting the improvement in pain level after surgery
requires additional clinical information (other than just
preoperative VAS score). Table 4 shows that the top
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five gait measurements with the most significant correla-
tions measure similar gait characteristics: consistency of
weight distribution during gait. However, unlike the pre-
dictors of the ODI, the predictors of the VAS included
gait parameters that were extracted from different land-
marks of the plantar, e.g., P1, P2, and P5. AutoCorr-P2-
Mean, CrossCorr-P2, and AutoCorr-P5-Min quantified
the consistency of weight distribution at P2 and P5 (or
walking pattern in general). Furthermore, patients with
less postoperative pain had a shorter time to shift the
body weight from P1 and P2 (MeanTime-P1P2-Max) and
smaller SumMag-P2-Min. We believe that these results
resemble the results of the ODI analysis in that patients
with less perceived pain were more apt to shift their
weight rapidly and homogeneously to the whole plan-
tar foot to stabilize themselves during walking. Whereas
patients with higher perceived pain were more hesitant to
shift their weight between limbs for fear of causing dis-
comfort and/or instability.Whenmore than one predictor
was used to predict the postoperative VAS, CrossCorr-P2
and AutoCorr-P3-Min produced the highest correlation
(r = 0.83, p < 1.28×10−4, and RMSE of 0.19). Again, one
of the top individual predictors (CrossCorr-P2) was com-
bined with AutoCorr-P3-Min, which was not included in
the top five individual predictors in Table 4, i.e. a predictor
that provides different dimension of gait characteristics
[27]. The predicted improvement in VAS also showed a
significant correlation compared to the actual improve-
ment. Figure 6 illustrates the relationship that yielded the
RMSE of 0.20, r = 0.82, and p < 2.58 × 10−4. It is
noteworthy that, although the prediction results of post-
operative score and the level of improvement in VAS were
statistically significant, the results of the ODI were more
significant and accurate. This agrees with prior studies
that have found the ODI to be a more sensitive prognos-
ticator as compared to the VAS score regarding surgical
outcome in LSS patients [28].
The work introduced in this paper has some limitations.

All patients who participated in this study were operated
on by a single neurosurgeon (DCL). Thus, the predictors
found in this work may vary from those found in patient
populations of other surgeons. Additionally, the number
of subject participants is relatively small. Thus, the iden-
tification of predictors in a large population needs to be
verified, and the statistical results reported herein (e.g.,
the effect of the unbalanced gender distribution) may not
be generalized. The research team is continuing to col-
lect data from LSS patients and future studies will address
these issues. Some factors that were previously found to
have prognostic value, such as depression and psychiatric
illness [3, 6], were not included in this study and their util-
ity as predictors of outcome cannot yet be compared to
the smart-shoe data. Additionally, patients were reevalu-
ated three months after their scheduled surgeries in order

to obtain postoperative ODI and VAS results. Amundsen
et al. reported that while most patients experienced relief
of pain approximately three months after surgical inter-
vention, pain levels in these patients would continue to
decrease over years [29]. Therefore, longer-term follow-
up may be necessary to discover predictors of more
permanent postoperative clinical outcomes. It is worth
noting, however, that Atlas et al. found that a patient’s
baseline postoperative functional level was reached by
three months after the surgical intervention, i.e. patients
function level did not improve much after three months
postoperatively [30]. This supports our belief that the
reported predictors for our three-month follow-up study
should provide insights into the long-term outcomes of
our LSS patient population.

Conclusion
This paper introduced a method that can be easily imple-
mented in the clinical setting to predict postoperative
functional outcomes and the expected benefit of the sur-
gical intervention in LSS patients, based on the preopera-
tive gait analyses and clinical data. This method analyzes
walking characteristics of LSS patients using a pair of
sensorized smart-shoes and a series of 10 m SPWTs. A
total of 39 gait parameters extracted from the preoperative
walking tests and ten clinical variables were considered as
possible postoperative predictors. Two clinical outcomes,
i.e. ODI and predominant pain via VAS, were used to
establish the postoperative functional level. It has been
demonstrated that the gait parameters extracted from the
smart-shoes can make statistically significant predictions
of the postoperative (and the expected improvement in)
ODI and VAS, thereby assisting clinicians in identifying
which patient population can benefit from the surgical
intervention. It was also shown that the gait parameters
improved prediction accuracy as compared to the clinical
variables that have been previously utilized as postoper-
ative outcome predictors. The smart-shoe system is non-
invasive, inexpensive, easy-to-use, and the walking test
takes approximately six minutes to complete. Thus, the
smart-shoe system is ideally suited for preoperative eval-
uation in the clinical setting. We believe that our findings
enable new clinical and research opportunities for investi-
gating prognostic factors and optimizing patient selection
for LSS surgery.
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