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Addressing an HIV cure in LMIC
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Abstract 

HIV-1 persists in infected individuals despite years of antiretroviral therapy (ART), due to the formation of a stable and 
long-lived latent viral reservoir. Early ART can reduce the latent reservoir and is associated with post-treatment control 
in people living with HIV (PLWH). However, even in post-treatment controllers, ART cessation after a period of time 
inevitably results in rebound of plasma viraemia, thus lifelong treatment for viral suppression is indicated. Due to the 
difficulties of sustained life-long treatment in the millions of PLWH worldwide, a cure is undeniably necessary. This 
requires an in-depth understanding of reservoir formation and dynamics. Differences exist in treatment guidelines 
and accessibility to treatment as well as social stigma between low- and-middle income countries (LMICs) and high-
income countries. In addition, demographic differences exist in PLWH from different geographical regions such as 
infecting viral subtype and host genetics, which can contribute to differences in the viral reservoir between different 
populations. Here, we review topics relevant to HIV-1 cure research in LMICs, with a focus on sub-Saharan Africa, the 
region of the world bearing the greatest burden of HIV-1. We present a summary of ART in LMICs, highlighting chal‑
lenges that may be experienced in implementing a HIV-1 cure therapeutic. Furthermore, we discuss current research 
on the HIV-1 latent reservoir in different populations, highlighting research in LMIC and gaps in the research that may 
facilitate a global cure. Finally, we discuss current experimental cure strategies in the context of their potential applica‑
tion in LMICs.

Keywords:  HIV-1, Cure, Reservoir, Low-and-middle income countries, LMICs

© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material 
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material 
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds 
the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://crea‑
tivecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdo‑
main/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Introduction
The advent of antiretroviral therapy (ART) has con-
verted the HIV-associated death sentence into a life-
long, manageable illness for those with adequate access. 
However, for many low-and middle-income countries 
(LMICs), access to sustained ART for the full popula-
tion is challenging due to a variety of socio-economic 
factors. This is especially true in regions with the great-
est infection burden, Eastern and Southern Africa, which 
account for more than half of all the people living with 
HIV-1 (PLWH). While, globally, more PLWH are aware 

of their seropositive status (~ 80%) and are accessing 
treatment (~ 67%) [1], this still falls short of the original 
90-90-90 goal set forth by the United Nations for aware-
ness of status, accessing treatment, and viral suppres-
sion, respectively. In addition, due to the development of 
drug-resistant strains, the ART failure rate for PLWH on 
first-line regimens is 5% per year, necessitating constant 
development of new treatments over time. Lifelong ART 
also imposes a substantial financial burden on already-
constrained public health systems; as PLWH continue to 
live longer, the overall cost of ART has risen to an esti-
mated 26.2B USD globally in 2020 [1] and could reach 
40B USD if goals for 2030 are going to be met. Even a 
long-term remission of HIV-1 disease [undetectable viral 
load (VL)] in the absence of ART, as opposed to a steri-
lizing cure, would save the world from millions of future 
deaths and trillions of USD in drug and health care costs. 
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Finally, even with full viral suppression there is still a 
high risk for other long-term morbidities, including an 
increased risk of heart, bone, and kidney disease [2, 3], 
and PLWH can be impacted socially, financially, and psy-
chologically due to HIV stigma and discrimination. Thus, 
there is an urgent need for a cure for HIV-1.

The benefits of an HIV-1 cure to PLWH and the public-
health system in LMICs are clear and undeniable (Fig. 1). 
However, as discussed below, most cure approaches in 
preclinical development, or even those tested in clinical 
trials, may be financially prohibitive and impractical to 
administer in the near future in many LMICs, especially 
in sub-Saharan Africa. Currently, even just participation 

in clinical trials testing cure modalities requires frequent 
VL monitoring, reservoir quantification (currently devel-
oped only for subtype B), and full viral suppression, all 
readily available in high income countries (HICs) [4], but 
not in LMICs. Universally, the major barrier for HIV-1 
cure is the existence of a long-lived latent reservoir con-
sisting of stably integrated proviruses that persist in the 
host within various cell types and anatomical locations. 
Proviruses within the reservoir capable of reactivation 
and re-establishing plasma viraemia upon ART ces-
sation persist despite years of suppressive ART [5–7]. 
PLWH exhibit differences in infecting viral subtype, 
immune responses to HIV-1, and disease progression, 

Fig. 1  ART regimen chosen for first-line therapy can affect eligibility for a therapeutic cure. The incidence of treatment failure and/or drug 
resistance on an NNRTI+2 NRTI regimen is greatly increased relative to individuals receiving DTG+2 NRTI treatment. As a result of failing first-line 
therapy, PLWH may initiate PI- and RAL-based regimens, which have heightened incidence of failure and resistance. Effective ART allows more 
PLWH to maintain first-line therapy and facilitates initiatives to achieve therapeutic cure. NNRTI non-nucleoside reverse transcriptase inhibitor, NRTI 
nucleoside reverse-transcriptase inhibitor, DTG dolutregravir, PI protease inhibitor, RAL raltegravir
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notably between individuals in LMICs vs. HICs, as well 
as between sexes [8–10]. Similarly, differences exist in the 
size, composition, and turnover in the reservoir between 
PLWH.

In this review, we discuss the viral and host cellular 
phenomena contributing to HIV-1 proviral latency estab-
lishment and persistence. With this knowledge, we will 
discuss the most relevant strategies for intervention and 
cure, highlighting scientific gaps that may influence gen-
eralizability of findings to LMICs.

The current state of ART in LMICs
Early ART has been shown to limit seeding of the HIV-1 
reservoir and is associated with post-treatment control. 
By diminishing the amount of immune activation, CD4+ 
T cell depletion and VLs in untreated infection, what 
results is fewer target cells for HIV-1 infection, preserva-
tion of the immune response [11–13], and a lower burden 
of viraemia over time. Thus, effective HIV-1 treatment in 
LMICs is necessary to implement a cure therapeutic. This 
may require use of more potent ART as a functional cure 
strategy during early stage of HIV infection. However, 
challenges of limited early HIV diagnosis, and access to 
potent ART regimens in LMICs need to be addressed. 
Successful distribution of generic DTG in LMICs 
through the Medicines Patent Pool (MPP) program [14] 
coupled with high rate of adherence by patients in LMICs 
[15] are good indicators that a cure therapeutic in LMIC 
setting can be achieved. Furthermore, optimization of 
a cure approach that will be effective in the millions of 
PLWH who initiated treatment during chronic infection 
is imperative. Therefore, to establish the potential utility 
of cure strategies in LMICs, it is essential to understand 
differences in ART treatment rollout among diverse 
global populations.

Global access to ART has increased tremendously. By 
end of 2019, over 26 million people had access to ART 
of which 17.9 million (69%) were PLWH in sub-Saharan 
Africa [16]. Despite this staggering number, the pro-
portion of PLWH on ART in sub-Saharan Africa is still 
well below the UN target of 90%, and this is also true 
for South America (62%) and Asia and the Pacific (60%). 
Historically, first-line regimens in sub-Saharan Africa 
have included two nucleoside reverse transcriptase 
inhibitors (NRTIs) and one non-nucleoside reverse tran-
scriptase inhibitor (NNRTI), commonly efavirenz (EFV) 
or nevirapine [17]. However, due to the combination of 
frequent drug supply/access issues in LMICs resulting 
in treatment interruptions [18] and the low genetic bar-
rier to HIV-1 drug resistance mutations associated with 
NRTI + NNRTI regimens [19], 10–15% of patients who 
start ART still fail within one year, and 70–80% of people 
with virological failure develop acquired drug resistance 

[20]. In Kampala, Uganda, failure of first-line treatment 
continues to occur at an annual rate of 9% [21]. This sta-
tistic of treatment failure and drug resistance is rarely 
mentioned in discussion of the 90-90-90 goals by various 
global enterprises championing these goals.

For patients failing first-line therapy, the guidelines in 
most sub-Saharan African countries [and supported by 
the Global Fund and the U.S. President’s Emergency Plan 
for AIDS Relief (PEPFAR)] calls for a second-line ART of 
an NRTI + protease inhibitor (PI) and, subsequent to the 
failure of second-line, a third-line four-drug therapy of 
the NNRTI etravirine, the PI darunavir, and an integrase 
inhibitor with any suitable NRTI [22–24]. The choice of 
“salvage” treatment regimens in LMICs is limited due to 
lack of access to CCR5 antagonists, fusion inhibitors, and 
second-generation PIs and NNRTIs- agents with a higher 
barrier to HIV-1 drug resistance employed when patients 
fail treatment with first-generation PIs and NNRTIs. Lim-
ited ART options may exacerbate problems facing ART 
programs in sub-Saharan Africa, including adherence 
on ART, which directly translates to increased mortality. 
Indeed, a recent modelling study shows that 6  months 
of ART disruption for 50% of people would result in 
296,000 more AIDS-related deaths in sub-Saharan Africa 
over one year [18]. Furthermore, frequent use of subopti-
mal NRTI + NNRTIs regimens has led to a > 10% preva-
lence of strains resistant to either NNRTIs or NRTIs in 
treatment-naïve PLWH [25]. Without pre-screening for 
drug resistance prior to initiation of first-line ART, treat-
ment failure is likely to increase over time. High rates of 
treatment interruption and/or first-line failure present a 
huge barrier to cure therapeutic testing in sub-Saharan 
Africa, as all protocols to date have required participants 
to be fully virally suppressed. However, this need not be 
a barrier; provided there is stable drug supply, effective 
distribution to clinics/pharmacies, and ease of access to 
PLWH, adherence and success of first-line treatment is 
outstanding and often better in LMICs than HICs.

Despite the sombre predictions described above, 
the roll out of a dolutegravir (DTG)-based regimen 
(TDF+3TC/FTC+DTG) as a preferred first-line treat-
ment at the end of 2017 has slowly improved the treat-
ment success rates in all LMICs. Current estimates 
indicate that between 5 and 10 million PLWH in sub-
Saharan African countries and other LMICs are receiving 
a DTG-based regimen [26]. In treatment naïve individu-
als, DTG-based treatment regimens are extremely well 
tolerated with minimal adverse events promoting high 
treatment adherence. Treatment failure and resistance 
to DTG is extremely rare in clinical studies to date due 
in part to high genetic barrier for resistance [27] to these 
second-generation integrase inhibitors (INSTIs). If the 
combination of DTG, bictegravir and the long-acting 
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cabotegravir were available in dual or triple drug formu-
lations, especially as one-pill-a-day, treatment success 
would improve dramatically in LMICs and thus provide a 
population of PLWH in LMICs that could be treated with 
an affordable and practical cure therapeutic.

Treatment outcome studies in Africa and other LMICs 
are heavily affected by different sociodemographic fac-
tors between countries, regions, ethnic groups, tribes, 
and religions [28–31]. As previously described in several 
cross sectional and longitudinal analyses on treatment 
adherence and HIV-1 drug resistance in Uganda and 
other sub-Saharan African countries, one of the great-
est contributors to treatment failure is poor access to 
care/ARVs and intermittent ARV shortages, even more 
so than differential sociodemographic factors. Across 
sub-Saharan Africa and in LMICs during COVID-19 
pandemic, ARV shortages, disruption in shipments, and 
reduced foreign aid will likely contribute to ART failure 
by orders of magnitude higher than the impact of HIV-1 
types/subtypes, human genetics, and sociodemographic 
factors.

In a specific area where the HIV-infected population 
are impoverished and share similar sociodemographic 
conditions, religion, ethnicity, etc., the co-circulating 
HIV-1 subtypes and/or CRFs could impact the effective-
ness of any proposed cure therapeutic. Like all antiret-
roviral drugs developed to date, preclinical development 
and early phase human clinical trials of cure therapeutics 
have all been based on the ability to inhibit HIV-1 sub-
type B isolates, i.e., the HIV-1 strains that predominate 
in HICs. While ARTs have similar inhibitory effective-
ness regardless HIV-1 subtype in terms of initial response 
to treatment [32–35], the effect of subtype on the emer-
gence of drug resistance is not yet fully understood. For 
instance, despite similar in vitro susceptibility of subtype 
C and B strain-derived HIV-1 integrase enzymes to the 
currently-approved INSTIs, differential levels of drug 
resistance were observed between HIV-1 subtype B ver-
sus C viruses in cell culture assays, likely resulting from 
differential mutational pathways being favored between 
different subtypes [36]. Additionally, in vivo development 
of drug DTG resistance occurs at a slower rate among 
PLWH infected with subtype B compared to subtypes 
A/G and C [37]. Drug resistance to NRTIs and PIs has 
been shown to occur more frequent in subtype B com-
pared to subtype C (26% vs. 8% for NRTIs, and 54 vs. 23% 
for PI’s, respectively) [38]. In Uganda, drug resistance and 
treatment failure is more prevalent in subtype D com-
pared to A or C-infected patients (Fig. 2) [39]. These dif-
ferences could be explained by variability of HIV-1 genes 
at the amino acid level between different subtypes and 
higher entropy scores observed at sites where drug resist-
ance mutations emerge [40].

Differences in disease progression exist depending on 
infecting viral subtype [41, 42]. In Uganda and Zimba-
bwe, HIV-1 subtype D is associated with faster disease 
progression [43–46] but lower transmission rates than 
subtype A [45, 47]. Furthermore, subtype C viruses were 
linked with rapid disease progression in South Afri-
can women [48]. The difference in disease progression 
between HIV-1 subtypes is likely multifactorial [33–35, 
39, 46]. However, functional differences between HIV-1 
subtypes may influence reservoir formation, kinetics, and 
the efficacy of a cure therapeutic. “HIV-1 acquisition risk 
(discussed extensively in [49]) and disease progression 
is known to differ between the sexes. Women exhibit a 
faster progression to AIDS-defining illness than men, 
even at matched viral loads [50] and have higher levels of 
inflammation and immune activation [51, 52] than men. 
In addition, women are the most affected by HIV-1 in 
sub-Saharan Africa and disproportionately contribute to 
the global burden of disease [49]. Thus, it is imperative 
that we tailor cure therapeutics to address an HIV-1 cure 
in this population.”

Predicting the effectiveness of cure strategies against 
different HIV-1 subtypes will be complicated. Some cure 
therapeutics aim to activate transcription by targeting 
specific HIV-1 sequences, which will likely vary between 
the subtypes. Patterns of recombination sites in the host 
genome differ by subtype [53]. Integration site may also 
be relevant in determining HIV-1 persistence and vary 
by subtype. New data shows that, compared to in vitro-
derived HIV-1 integration sites, in vivo-derived sites are 
significantly more enriched in transcriptionally silent 
regions of the genome, which has relevance to reactiva-
tion of latent proviruses. With regard to subtype, inte-
gration sites from PLWH infected with HIV-1 subtype 
A, C or D viruses exhibited different preferences for spe-
cific genomic features and were more enriched in tran-
scriptionally active regions of the genome compared to 
subtype B virus [53]. Theoretically, any type of transcrip-
tional activation strategy to induce latency reversal may 
require greater potency in a subtype B setting compared 
to subtype A, C and D infected individuals.

Measuring and characterizing the latent viral reservoir
The evaluation of reservoir stability and the efficacy of 
clinical interventions and/or changes in the reservoir 
after “drug holidays” or other periods of ART cessation 
necessitates a reliable method of quantifying the fre-
quency of latently-infected cells that is cost and time 
effective [54]. This method would ideally not only enable 
the determination of reservoir size, but also characterize 
the proviral landscape to monitor qualitative changes in 
the reservoir. Several methods have been developed to 
quantify the reservoir to date. Each method measures 
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different aspects of the reservoir and each has cave-
ats on the conclusions that can be drawn. Table  1 pro-
vides a summary of current sizing methods and assay 
examples. However, only the detection of HIV-1 DNA 
by qRT-PCR could currently be widely implemented in 
most LMICs and even this methodology would be dif-
ficult to apply in some small hospitals and more rural 
clinics in sub-Saharan Africa. However, this method 
significantly overestimates the theoretical “true” repli-
cation-competent reservoir, which is the frequency of 
cells harbouring genetically intact proviruses that are 

capable of recrudescence in the absence of suppres-
sive ART, because resting CD4+ T cells harbour ~ ten-
fold more defective than intact proviruses [55–58]. This 
distinction is especially important when assessing effi-
cacy of a potential cure therapeutic, as differences in 
decay between intact and defective proviruses have been 
reported, with a slow but significant decline in intact 
proviruses over time on ART and little to no decline in 
defective proviruses [59].

In contrast, the quantitative viral outgrowth assay 
(QVOA) [5, 60, 61] is currently the gold standard for 

Fig. 2  Faster subtype D versus subtype A HIV-1 treatment failure observed over first- and second-line treatments. The Joint Clinical Research Centre 
in Kampala, Uganda follows approximately 12,000 HIV-infected patients treated with antiretroviral drugs. Resistance testing is performed in cases 
of treatment failure—VL > 1000 copies/ml or two CD4 cell counts < 200/ml. ~ 95% of all patients on first-line treatment maintain undetectable VL 
in Uganda. < 50% reach and maintain undetectable VL on salvage therapy. As part of standard of care, we subtype (C) and analyze drug resistance 
genotypes of all patients failing treatment (D) on first-line (E) or “salvage” therapy (F)
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measuring the frequency of cells harbouring replication 
competent provirus, but underestimates the true reser-
voir as this assay relies on ex vivo reactivation of latently 
infected cells, and it has been demonstrated that in vitro 
reactivation methods are not 100% efficient and their 
efficacy may vary between populations of PLWH [58]. 
Additionally, this assay is resource-intensive and requires 
additional biosafety containment for the culture of live 
HIV-1. As such, the QVOA may only be practical in 
LMIC sites performing clinical trials of cure therapeutics 
and this assay would likely not be adopted as standard-
of-care assay to monitor the effectiveness of cure thera-
peutics upon approval.

Using QVOA, the size of the latent reservoir has 
been estimated to be one infected cell per million rest-
ing CD4+ T cells in PLWH in North American cohorts 
[62, 63]. Historically in sub-Saharan Africa, treatment 
has most commonly been initiated in chronic infection, 
leading to an expectation that the barrier to a cure would 
to be greater due to lack of restriction of reservoir size 
through early treatment (as highlighted in the section 
to follow). However, we have previously reported that 
PLWH in Uganda (who initiated ART during chronic 
infection) have reduced replication competent reservoir 
size (three-fold lower by QVOA) compared to North 
Americans [8], and that Ugandan females have addition-
ally smaller replication-competent reservoirs than males. 
Interestingly, despite lower QVOA outgrowth, HIV-1 
DNA levels were similar between males and females [9]. 
Other studies report lower intracellular HIV-1 DNA in 
females compared to males [64, 65], highlighting impor-
tant differences that may need to be considered when 
assessing latency reversal strategies. These studies in 
Uganda are two of only a handful of published studies of 
replication-competent reservoir size in Africans, high-
lighting the need for more studies in diverse LMIC set-
tings to examine if other differences in populations exist 
that may help us to better understand the latent reservoir. 
Given that close to two thirds of women bear the burden 
of disease in some LMIC [66], such differences between 
the sexes need to be established if a global cure is to be 
achieved.  Furthermore, only one study exists showing 
the association between early ART initiation and HIV-1 
DNA levels in children, highlighting a paucity of cure 
studies in children living with HIV-1 in LMICs.

HIV‑1 reservoir establishment, heterogeneity, and kinetics
Studying the mechanisms that dictate reservoir estab-
lishment is challenging. Specifically, cells isolated from 
an infected individual have already entered into a latent 
state and therefore can only provide a pseudo-measure 
of this process. The long-lived reservoir in PLWH dis-
plays significant heterogeneity in sequence composition, 

clonality, genomic integration sites, rates of decay and 
the proportion of replication-competent to defective pro-
viruses present in cells.

Infected resting memory CD4+ T cells are the most 
well-characterised of HIV-1 reservoir cells, are highly 
stable, with a half-life (t1/2) of ~ 44 months, and can the-
oretically persist for the lifetime of an affected individ-
ual [6, 62, 63]. Resting CD4+ T cells exhibit decreased 
expression of T cell activation markers, lower RNA con-
tent, and are not cycling [67], resulting in reduced HIV-1 
transcription and favouring latency. Activated effector 
CD4+ T cells represent a primary target for HIV-1 infec-
tion due to their high permissiveness and metabolic state 
relative to resting cellular subsets. Many of these cells, as 
well as other non-HIV-specific CD4+ T cells, are produc-
tively infected with HIV-1 and produce viral products, 
which are then detectable by host immune mechanisms. 
Such cells are primed for elimination and are unlikely to 
contribute to persistence in vivo [68, 69]. Rather, latency 
establishment likely occurs as cells that are transitioning 
towards a long-lived memory phenotype [70]. Alterna-
tively, proviral integration can occur directly in resting 
CD4 T cells [71, 72]. However, despite their high abun-
dance in the body, resting cells are relatively resistant to 
infection, due to low expression of the HIV-1 co-receptor 
CCR5, limited dNTP availability, and an increase in het-
erochromatic structures [73, 74].

Differences in integration sites, viral diversity, and decay 
in the HIV‑1 reservoir
Following transmission, HIV-1 variants diversify rap-
idly [75–79], reaching a plateau in chronic infection 
[80]. However, not all variants are equally likely to 
be represented in the long-lived viral reservoir [10]. 
Rather, variants present at the time of ART initiation 
are significantly over-represented, measured by both 
HIV-1 DNA [81, 82] and QVOA [10]. Our South Afri-
can study (where subtype C predominates) evaluating 
cells from nine women showed that 17 to 100% (aver-
age: 71%) of the replication-competent viruses in the 
reservoir after five years of suppressive treatment were 
genetically similar to the viral variants circulating in 
the patient’s plasma the year immediately preceding 
ART initiation [10]. In comparison, the percentage of 
viruses seeded into the long-lived reservoir within the 
first year from the estimated time of infection ranged 
from 0 to 17% (average: 4%). Similarly, a study in Ken-
yan women on ART for up to 5  years showed that 59 
to 99% (median: 86%; measured by gag sequences) of 
HIV-1 DNA during ART comprised of sequences pre-
sent in plasma within 2  years of ART initiation [82]. 
These findings indicate that the long-lived reservoir 
may not be formed continuously at the same rate. 
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Instead, it is possible that ART initiation establishes 
an environment favouring latency. Work by Jones et al. 
[83, 84] highlights the persistence of viral variants from 
earlier time-points in infection, even if in smaller pro-
portion. The mechanism of persistence of these vari-
ants or factors affecting their longevity in the reservoir 
are still to be elucidated.

In early treated individuals infected with subtype C 
viruses, the reservoir was found to have a majority of 
proviral sequences intact, a low frequency of hyper-
mutated genomes, and a paucity of truncated genomes 
which are found commonly in chronically-infected, 
untreated individuals [85]. While this scenario may not 
represent the majority of PLWH in LMICs due to late 
initiation of ART, the future of cure in these settings 
will benefit from more longitudinal studies character-
izing reservoir heterogeneity.

Cellular and tissue reservoirs
One area with currently no reported characterization 
in LMIC studies to our knowledge, is that of cellular 
and tissue reservoir sites. Specific lineages of memory 
CD4+ T cells, the major cellular reservoir of HIV-1, can 
persist for an individual’s lifetime. Their memory differ-
entiation status, as well as their functional polarization 
dictates longevity, anatomical location, and likelihood 
of being a stable reservoir. Central memory (TCM) cells 
are most likely to harbour provirus, followed by tran-
sitional memory (TTM) and effector memory (TEM) T 
cells [86–88]. A recent study showed that intact provi-
ral DNA copies in each of these subsets varied greatly 
between individuals [57], but the distribution of rela-
tive abundances were similar between subsets and 
there were no differences in the contribution of each 
subset to the total pool of intact proviral copies. Less 
abundant subsets, such as stem cell memory T cells 
(TSCM), also contribute to the reservoir, although only 
substantially in some individuals [89, 90]. Early treat-
ment appears to increase the contribution of TSCM to 
the total CD4+ reservoir, reducing per-cell HIV-1 DNA 
levels in TEM and TTD (terminally differentiated) sub-
sets [91]. The contribution of each subset to the reser-
voir over time on suppressive ART is difficult to study 
due to the dynamic nature of cell differentiation where 
a cell can evolve from one subset into others. Thus, the 
contribution of each subset to rebound virus remains 
an understudied topic. However, studies have showed 
that viral rebound likely does not have a singular source 
of cell type or anatomical location [92–94]. The pro-
portion and number of T cell subsets during disease 
and following treatment is poorly understood between 
viral subtypes and may also differ between early- and 

late- treated populations. This merits further investiga-
tion in the context of the HIV-1 reservoir in LMICs vs. 
HICs.

Clonality and homeostatic proliferation
The proliferation of CD4+ T cells brought about by pro-
liferation from homeostatic regulation and in response 
to antigen stimulation [95] results in large pools of clonal 
sequences in  vivo [92, 96–102], comprising both defec-
tive and intact proviruses. In our South African study, 
we reported between 0 and 47% (by sequence identity) 
of outgrowth viruses form PBMCs were clonal in nature 
[10]. Furthermore, another small study found that clonal 
sequences were rare over the first year of ART in early 
treated PLWH, providing insights into the difference in 
reservoir composition between early- and late-treated 
individuals infected with subtype C viruses [85]. Replica-
tion-competent clonal populations have been found to be 
distributed across different T cell memory subsets [57, 92, 
103], indicating that infected cells differentiate and prolif-
erate during ART unabated by the immune system [103, 
104]. In addition to memory differentiation, differences 
in functional polarization may influence reservoir size. 
One study found that functional polarization may lead 
to preferential clonal expansion of replication-competent 
HIV-1 in Th1 cells [105]. Furthermore, these clonal popu-
lations are found in different tissues and can contribute 
to plasma viral rebound when treatment ceases [92, 94]. 
A caveat with some of these studies is that frequently 
only a small region of the HIV-1 genome is sequenced, 
so that it cannot be definitively known if cells with identi-
cal sequences in that region are the result of integration 
by a pool of homogenous viruses, or due to homeostatic 
proliferation of infected cells, the latter defining a true 
clonal population. Integration site analysis is required to 
distinguish between these two possibilities, as the likeli-
hood that integration will occur multiple times in the 
same location in the human genome is negligible [106]. 
Nevertheless, it is clear that clonal populations of HIV-1 
contribute markedly to reservoir maintenance. Antigenic 
stimulation and immune modulation are likely different 
in LMICs vs. HICs, and further studies are needed to 
assess the contribution of clonal expansion and latency in 
different cellular subsets in other populations in LMICs.

Viral factors contributing to HIV‑1 persistence
The role of infecting subtype in reservoir formation, size 
and maintenance is greatly understudied. Particularly in 
LMIC where the predominant infecting subtypes differ 
from the most studied cohorts (predominated by subtype 
B infections), this may result in significant geographical 
differences in the latent viral reservoir. The viral pro-
moter element of HIV-1, the long terminal repeat (LTR), 
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has been reported to impact latency [107], with ‘latency 
potential’ (defined as the ratio of latently infected cells to 
actively infected) differing between subtype-specific LTR 
genotypes in vitro [108]. In subtype C viruses, increased 
levels of transcriptional activity resulted in more rapid 
silencing of the viral promoter due to negative feedback, 
and was associated with a greater number of NF-ĸB bind-
ing sites within the LTR [109]. Furthermore, the AP-
1genotype (a binding motif in the LTR) has been shown 
to confer greater latency potential (i.e. reduced propor-
tion of cells that lack transcription of HIV-1 genes) to 
subtype A and C viruses compared to subtype B [110]. 
Conversely, another study showed no differences in ini-
tial latency potential between subtypes with the excep-
tion of subtype AE in primary T cells [111].

The HIV-1 transcriptional switch protein, Tat, is heav-
ily implicated in the establishment and persistence of 
latent provirus. Tat regulates transcriptional elongation 
via RNA polymerase II (RNAP II) recruitment in the 
viral 5’ LTR. For viral transcription to occur, Tat must 
bind the trans-activating response (TAR) hairpin present 
on the viral transcript. In a study by Razooky et al., Tat-
mediated feedback was able to induce proviral reactivity 
in the absence of cellular stimulation [112]. In fact, in the 
absence of multiply spliced RNA encoding tat/rev, the 
feedback loop was disrupted and led to non-productive 
infection [113]. Due to the heavy implication of HIV-1 
Tat on transcriptional status, this protein is critical to 
many therapeutic strategies being utilized today, high-
lighting the importance of characterizing tat variants in 
the reservoir. Subtype C Tat (TatC) has been shown to 
have a higher transcriptional activity in T cell lines than 
Tat from subtypes B (TatB) and E [114]. Furthermore, 
genetic variations in TAR can impact the ability of Tat 
to facilitate viral transcription [115]. Studies identified 
intra-subtype C variation in the TAR element as well as 
Tat that correspond to key functional sites that affect Tat 
binding and Tat-induced transcriptional activity, respec-
tively [116–118]; including evidence of positive selec-
tion in primary infection [117]. In addition to mediating 
transcription, the viral protein Tat is also responsible for 
RNA silencing suppressor activity (RSS) in infected cells 
[119–122]. RSS serves to attenuate translation of HIV-1 
transcripts, determining viral load set-point and favour-
ing latency. TatB has been shown to have more potent 
RSS activity than that of TatC viruses, however, a greater 
range of RSS activity was observed among TatCs [123].

The HIV-1 accessory protein Nef is an element of 
interest as a reservoir determinant. Nef facilitates the 
pathogenesis of HIV-1 by interfering with host protein 
trafficking [124]. Furthermore, sequestration of major 
histocompatibility complex-1 (MHC-I) by Nef precludes 
antigen presentation by infected cells and evasion of 

the host CTL response as a result [125, 126]. In a recent 
study, the strain-specific ability of Nef to downregu-
late MHC-I in  vitro was associated with in  vivo reser-
voir size [127]. Furthermore, in a multivariable analysis 
adjusting for multiple clinical factors, HIV-1 DNA levels 
were found to be higher in individuals infected with sub-
type B compared to those infected with non-B subtypes 
(CRF_01 AE and G), and this higher abundance of cells 
harbouring HIV-1 DNA was attributable to the superior 
Nef function of subtype B viruses. However, this study 
included only men who initiated treatment in acute/
early infection and were on treatment for less than a year 
[127]. Given that Nef function has been shown to differ 
across subtypes, with subtype C exhibiting reduced Nef 
function compared to other subtypes [128], it will be 
beneficial to assess Nef function in the context of other 
HIV-1 subtypes, females, and PLWH who initiated treat-
ment during chronic infection, to determine the general-
izability of these findings to LMIC.

Clinical and immunological correlates of the HIV‑1 
reservoir
The most well-characterized clinical measure that corre-
lates with reservoir size is pre-ART viral load (VL). Sev-
eral studies show that pre-ART VL setpoint, or even just 
the VL the time of ART initiation, correlates positively 
with HIV-1 DNA [13, 127] and QVOA estimates of reser-
voir size [8, 9], which is consistent with studies showing 
that early ART restricts reservoir size (both replication-
competent and HIV-1 DNA) [91, 129–131]. In ART-
treated patients, CD4 counts over time have also been 
shown to predict replication-competent reservoir size in 
PLWH who initiated treatment in acute infection [132], 
and several studies have identified the extent of CD4 
depletion as shaping the HIV-1 DNA proviral load [133, 
134], with nadir CD4 count and CD4:CD8 ratio shown 
to be strong negative correlates of reservoir size. Fur-
thermore, time on ART has also been shown to correlate 
negatively with replication-competent reservoir size [9].

Events soon after the establishment of infection impact 
disease progression, and there is mounting evidence that 
this may be the case for characteristics of the latent res-
ervoir. Immune activation and inflammation play an 
important role in the disease progression of HIV-1 [135, 
136]. Immune activation is very strongly correlated with 
set-point VL, and predicts progression to AIDS-defining 
illness more robustly than VL [13, 135, 137]. Early initia-
tion of ART not only reduces the cumulative viral bur-
den before ART, preserves CD4+ T cells, and maintains 
CD4:CD8 ratios, but also reduces T cell activation and 
inflammation [11–13]. T cell activation may increase the 
pool of target cells available to sustain HIV-1 replication, 
but also augments antigen-driven clearance of infected 
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cells and thus increases T cell turnover. Following ART 
initiation, many measures of immune activation decline 
rapidly, but this does not occur equally in all individu-
als, and residual inflammation is a strong predictor of 
non-AIDS mortality in the context of successful ART 
[138]. Understanding upstream contributors to T cell 
activation, such as cytokine expression throughout both 
treated and untreated infection, may shed light on sub-
sequent HIV-1 reservoir dynamics over time. IL-10, and 
sTNFRII concentrations were positively associated with 
levels of total HIV-1 DNA in peripheral blood mono-
nuclear cells (PBMCs) after 96  weeks of treatment [13], 
while MIP-3β showed a trend towards a correlation.

Since immune activation and inflammation are known 
to differ between the sexes, detailed studies into the 
immune correlates of reservoir size in males and females 
are needed. We recently reported a difference in the 
immune correlates between males and females in PLWH 
in Uganda [9]. While in males the frequency of PD-1+ 
CD4+ T cells and IL-2+ CD8+ T cells were positive and 
negative correlates of replication-competent reservoir 
size, respectively, only TNF+ CD8+ T cells was found to 
have a positive association with replication-competent 
reservoir size in females. The lack of a positive asso-
ciation between PD-1 expression and reservoir size in 
women may be of particular concern, as this association, 
well-established in men, has led to the development of 
PD-1 agonists as latency reversal agents. The efficacy of 
this therapy, and other immune-based cure therapeutics, 
should be carefully tested in both sexes.

Several studies have suggested that inflammation 
and immune activation are different in African cohorts 
[139–143]. High levels of genital inflammation have been 
observed in a well-characterized cohort of South Afri-
can females [144] and high levels of inflammation during 
early infection in this cohort correlated with VL set-point 
and, to a lesser degree, disease progression (as measured 
by CD4 depletion). Few studies have addressed ongoing 
immune activation in the context of Africans receiving 
ART. Understanding of the impact of immune activation 
on viral reservoir dynamics at multiple stages of HIV-1 
infection, particularly in cohorts where ART was initi-
ated in chronic infection, is imperative to formulating 
cure strategies in LMIC.

Finally, the paucity of reservoir studies in different 
geographical settings also means that critical informa-
tion on reservoir establishment and dynamics in the face 
of co-infections is overlooked. Moreover, an in-depth 
discussion of co-infections and the HIV- 1 reservoir is 
precluded by the absence of studies on the topic. Co-
infections have been shown to increase pathogenesis 
and HIV-1 viral loads, increase immune activation, and 
inflammation. Thus, our discussion on how increased or 

decreased viral loads, immune activation, and inflam-
mation impacts reservoir size would extend to the more 
general effect of co-infections. Effective treatment of 
co-infections (excluding hepatitis B and C) results in a 
reduction of plasma viraemia in ART naïve PLWH [1]. 
As there remains fundamental questions on the tim-
ing of viral reservoir seeding prior to ART initiation [10, 
145–148], the effects of longer term (e.g. TB) or periodic/
sporadic (e.g. malaria or HSV) co-infections on the viral 
reservoir may depend on the timing of these event(s) 
during acute and chronic disease and the timing of ART 
initiation. Furthermore, infections that lower the barrier 
to HIV-1 acquisition such as bacterial vaginosis and other 
sexually transmitted infections, resulting in an increased 
HIV-1 risk or a higher multiplicity of infection, may 
influence HIV-1 reservoir size or composition. This topic 
has been reviewed extensively elsewhere [2], including a 
detailed summary of knowledge gaps with regards to spe-
cific co-infections such as Mycobacterium tuberculosis, 
Hepatitis B and C, helminth infections, and other STIs. 
LMICs have a higher burden of co-infections and thus, 
latent reservoir studies in this context are of great impor-
tance for cure strategies in the future.

Strategies for HIV‑1 eradication and cure
In the context of HIV-1, researchers often refer to cure as 
either ‘functional’ or ‘sterilizing’. In either instance, a cure 
would allow for PLWH to interrupt ART without expe-
riencing viral rebound. For a functional cure, HIV-1 is 
durably controlled in the absence of ART, while remain-
ing, in some form, within the body. Alternatively, a steri-
lizing cure aims to remove all traces of HIV-1, including 
provirus, from PLWH. The primary strategies being 
investigated for HIV-1 cure are mentioned below and 
will highlight the practicality of implementation of these 
strategies/therapeutics in LMICs based on ease of poten-
tial clinical use, cost, and availability.

Hematopoietic stem cell transplant
To date, an apparently sterilizing cure has been achieved 
in two individuals [149, 150]. These individuals received 
a homozygous CCR5∆32 hematopoietic stem cell trans-
plant following immune ablation. The CCR5∆32 muta-
tion renders cells impervious to strains of HIV-1 that use 
CCR5 as a co-receptor. These; the ablation eliminates a 
substantial portion of the cells harbouring replication 
competent provirus, and the transplanted CCR5∆32 that 
reconstitute the immune system are resistant to HIV-1 
infection. While these cases of sterilizing cure offer proof 
that a cure is possible, this procedure is associated with 
high mortality and would not be appropriate for an oth-
erwise healthy person living with HIV. For those with 
treatment access, ART provides a lower risk alternative 



Page 11 of 19Ismail et al. Retrovirology           (2021) 18:21 	

with relatively fewer co-morbidities, while excluding the 
possibility of treatment-associated death. Additionally, 
the high procedure-associated cost (i.e., approaching sev-
eral hundred thousand dollars per patient for treatment, 
hospitalization, and follow-up monitoring) limit scalabil-
ity and global rollout. Aside from the risk to the patients, 
this approach will never be widely adopted even in HICs 
based on cost alone.

Shock‑and‑kill
The ‘shock-and-kill’ strategy aims to induce transcrip-
tional reactivation of the replication-competent proviral 
reservoir, and has been recently reviewed by Kim et  al. 
[151]. The intention is that induced cells will produce 
viral products that are recognizable by host immune 
mechanisms, prompting their clearance by cytotoxic 
immune mechanisms. During this process, an individ-
ual would maintain daily ART to prevent de novo infec-
tion of bystander cells by virus produced by reactivated 
cells.  Since post-ART rebound occurs at a frequency of 
approximately once a week, a substantial proportion 
of the reservoir must be cleared for this approach to be 
feasible [152]. For instance, a 1,000-fold reduction in the 
replication competent reservoir is theoretically required 
to achieve an average remission of 20  years [153]. Such 
modeling reveals the innate challenge of developing a 
functional ‘shock-and-kill’ therapeutic, while also indi-
cating that it is theoretically possible with the correct 
approach.

Latency-reversing agents (LRAs) comprise small mol-
ecules and biologics designed to induce transcriptional 
reactivation of virally infected cells. Amongst the most 
investigated are histone deacetylase inhibitors (HDACi), 
which function through direct inhibition of the HDAC 
enzyme.  HDACi can induce highly variable latency 
reversal in cell lines engineered with latent HIV-1 provi-
rus [154] but fail to induce appreciable HIV-1 from cells 
isolated from PLWH on stable ART [155–157]. HDACi 
activate a low level of transcription, but undetectable 
HIV-1 protein synthesis, which is necessary for immune 
recognition and elimination of these latently infected 
cells. They have been utilized with low level, daily dosing 
in phase I/II clinical trials, but have failed to reduce the 
latent HIV-1 pool [145]. Increased dosage may provide 
better latency reversal, but HDACi are not selective for 
latent, integrated HIV-1 proviral DNA and would result 
in general transcription upregulation of host genes.

In lieu of epigenetic manipulation, some approaches 
target cellular activation pathways. Protein kinase C 
(PKC) agonists, for example, induce global T cell signal-
ling and transcription factor recruitment [158]. Similarly, 
toll-like receptors (TLRs) that recognize RNA viruses, 
such as TLR 3/7/8, can mediate T cell activation and 

downstream induction of latent proviral expression, 
while also enhancing cytolytic activity [159]. One exam-
ple is the TLR-7 agonist, GS-9620 (Vesatolimod; Gilead), 
which became a strong candidate after pre-clinical data 
showed clearance of hepatitis B in several models of 
infection [160, 161]. In clinical trials, GS-9620 could 
potently induce expression of interferon-stimulated 
genes (ISG), leading researchers to investigate the ago-
nist’s potential as a latency-reversing agent for HIV-1. A 
subsequent ex  vivo study revealed that TLR-7 agonists 
could promote HIV-associated RNA production by 1.5–
twofold [162]. In a recent Phase Ib study, GS-9620 was 
well-tolerated at doses sufficient to induce ISG expres-
sion (> 4 mg) [163], providing feasibility for use in future 
regimens.

Interestingly, several studies have indicated that opti-
mal latency reversal could require stimulation through 
the T cell receptor (TCR) [164, 165]. Signalling through 
the TCR, best demonstrated by the use of PMA/Iono-
mycin or anti-CD3/anti-CD28 antibodies, results in an 
intracellular cascade for multi-kinase activation, chro-
matin remodelling and transcription factor induction 
necessary for immune activation of memory and naïve T 
cell subset [166]. Interestingly, the same activation cas-
cade is required for productive HIV-1 replication in acti-
vated T cells, and reactivation of latent provirus is more 
potent after stimulation with HIV-1 antigen, as opposed 
to non-HIV-specific antigen, which may be due to the 
preferential infection of HIV-specific T cells [167]. Upon 
primary HIV-1 infection, antigens consisting of HIV-1 
virus particles and proteins are transported to primary 
and secondary lymphoid tissues/organs by antigen pre-
senting cells. These APCs will ultimately present HIV-1 
antigens on MHC class II to CD4+ T cells with TCR spe-
cific to these HIV-1 antigens, leading to activated CD4+ 
T cells, which are now susceptible to HIV-1 infection 
and replication [168]. We hypothesize that this cycle of 
HIV-1 antigen presentation and activation of HIV-spe-
cific T cells leads to a skewing of the antigen-specificity 
of latently infected cells towards HIV-1 antigens [169]. 
This hypothesis is supported by the observation that 
most variants in the reservoir arose from strains circu-
lating immediately prior to ART initiation [10, 81, 82]: 
once ART is initiated and HIV-1 antigens are cleared 
HIV-specific T cells will revert to a resting state en masse. 
The use of HIV-1 antigens as an immunogen could spe-
cifically reactivate and eliminate this substantial por-
tion of the reservoir [169], We have recently developed 
heterogenous virus-like particle (VLP) derived from the 
quasi-species of five HIV-1 infected patients [169, 170]. 
This VLP formulation contains all the HIV-1 proteins 
and is morphologically identical to wild type HIV-1 but 
lacks genomic RNA and has additional mutations to 
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ensure it is not replication-competent and can be tested 
as a cure therapeutic [170]. Heterogenous HIV-1 VLPs 
have so far out-performed all other LRAs at induction of 
the latent HIV-1 pool from CD4+ T cells isolated from 
patients on stable ART. The level of latent HIV-1 induc-
tion by these VLPs is comparable to PMA/ionomycin but 
the VLPs, unlike PMA/ionomycin, target only a fraction 
of CD4+ T cells for activation and therefore is unlikely 
to create generalize and toxic immune activation. These 
findings suggest that VLPs may result in targeted activa-
tion of a sizeable proportion of the latent pool. However, 
for this therapeutic to be useful in LMIC, the effect of 
subtype congruency between VLP and patient must be 
ascertained. Additionally, while activation of the latent 
HIV-1 pool in response to VLP has been observed using 
cells form patients treated during both acute/early [169] 
and chronic infection, it must be ascertained if the res-
ervoir of individuals treated during chronic infection 
is as heavily skewed towards HIV-specific T cells. Indi-
viduals who initiated ART soon after infection will have 
been exposed to fewer non-HIV antigens while viremic, 
but only a minority of PLWH in LMIC initiated treat-
ment during acute infection. Aside from these remain-
ing uncertainties, compared to the use of small molecules 
lacking a specific targeting mechanism, the use of VLPs is 
safe, effective, and is an inexpensive cure therapeutic that 
could potentially be widely used around the world.

Many of these small molecule or even peptide-based 
inhibitors/agonists would be a suitable cure therapeutic 
for testing and potential roll-out in LMICs. Importantly, 
such strategies would greatly benefit from longitudinal 
follow-ups to ensure viremia is suppressed in the absence 
of ART. Currently, their cost remains prohibitive, but 
with relaxation of the agreement on trade-related aspects 
of intellectual property rights (TRIPS) agreement/patent 
regulations for greater drug access for LMIC markets, it 
is possible that investment by the Global Fund, PEPFAR, 
and various other foundations, would be offset by the 
reduction in the burden of ART, the concern of ART drug 
resistance, and the prevention of new infections.

Block‑and‑lock
The ‘block-and-lock’ approach aims to provide a func-
tional cure for HIV-1 through the suppression of tran-
scriptional activity. One way to achieve this is by altering 
methylation and acetylation status. For a block-and-lock 
approach, this will typically involve a combination of 
hyper-methylation and/or hypo-acetylation. Further-
more, many strategies are utilizing small interfering (si) 
RNA to induce epigenetic changes at sites of transcrip-
tional relevance, such as the HIV-1 NF-kB promoter 
site [171–173]. An alternative approach is blocking the 
HIV-1 accessory protein, Tat, which is involved in the 

recruitment of RNA polymerase II. Blocking its function 
might greatly limit transcriptional output. Didehydro-
Cortistatin A (dCA) is one small molecule capable of 
engaging with HIV-1 TAR RNA—the binding domain of 
Tat [174]—and dCA treatment renders cells resistant to 
the effects of LRAs [175]. Another study proposed the 
use of “naked” cyclic Tat peptidomimetics that have rapid 
cellular uptake, that bind HIV-1 TAR RNA with high 
affinity, and inhibit Tat transactivation/mRNA transcrip-
tion as well as reverse transcription [176, 177].

For a block-and-lock strategy to be curative, virtually 
all replication competent provirus would require dura-
ble, drug-mediated post-translational modification. This 
means that, even if a small proportion remains unmodi-
fied, the chance of productive re-infection exists. How-
ever, studies have shown that reducing the size of the 
replication competent reservoir can prolong the time to 
viral recrudescence [153]. This would arguably be true 
of epigenetic silencing as well. Therefore, the lock-and-
block strategy likely reduces risk of re-infection short-
term, but will invariably lead to rebound unless complete, 
sustained reservoir silencing is achieved.

The block-and-lock approach is uniquely positioned 
from a therapeutic perspective. Since the goal here is 
not the removal of the viral genomes but rather their 
suppression, blocking agents could potentially function 
on multiple distinct cellular reservoirs. Block-and-lock 
inhibitors are also easier to design, test, and possibly uti-
lize for treatment. However, long acting formulations are 
necessary for these inhibitors to be considered as a cure 
therapeutic, as opposed to a form of ART. Long-acting 
ART will provide a benefit for those PLWH who have 
issues with adherence (adolescents, etc.), and was found 
to be more acceptable than oral ART in the context of 
pre-exposure prophylaxis [178], but may not replace oral 
ART completely in the very near future. One of the draw-
backs of long-acting ART administration is having more 
frequent clinic visits: once a month or every two months 
as opposed to biannually. In addition, well-resourced set-
tings may be able to handle the operational challenges 
associated with switching from oral to injectable medi-
cations: potentially more staff required on site, more 
frequent VL testing to ensure viral suppression between 
visits, increased challenges with regards to ensuring all 
visits occur timeously, storage and transport of injecta-
bles/infusions. In terms of LMICs, this may ease the 
burden on PLWH who have access to these resources in 
urban and suburban settings but may not work well in 
rural settings unless distribution of these interventions 
can be decentralized (i.e. administered outside of a clini-
cal setting). More research is needed into whether these 
treatments can be administered by non-medical per-
sonnel or whether self-administration of these drugs is 
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feasible. Despite the challenges, intermittent administra-
tion of block-and-lock therapeutics could reduce pill bur-
den and alleviate ART-associated co-morbidities. As with 
all potential therapeutics, global investment and robust 
organizational initiatives are mandatory for proper roll-
out and maintenance in LMICs, assuming a clinically 
successful ‘block-and-lock’ strategy is realized.

Broadly neutralizing antibodies as a cure therapeutic
The discovery of monoclonal antibodies capable of potent 
neutralization of a wide range of HIV-1 isolates, termed 
broadly neutralizing antibodies (bNAbs), has provided 
new avenues for functional cure research. In-human tri-
als (passive immunization) have been conducted with 
several bNAbs and they have been shown to be toler-
able and safe, even at high doses and when administered 
repeatedly in both HIV-1 uninfected [4, 5] and infected 
adults [6, 7]. Monoclonal bNAb therapy did not result in 
decrease in residual plasma viraemia [8], HIV-1 DNA/
RNA [8, 9] or outgrowth viruses (demonstrated with 
VRC01) [8] but did result in a delay in viral rebound after 
analytical treatment interruption (ATI), demonstrated 
with VRC01 [10, 11], 3BNC117 [12], and UB-241 [13], 
although results were highly variable across trials (rang-
ing from 4 to 16 weeks median time to rebound). Com-
bination bNAb therapy has also shown promise, with the 
benefit of a decreased likelihood of developing resist-
ance to multiple antibodies [7]. Trials testing sequential 
administration of 2G12, 2F5, and 4E10 resulted in 8–10-
week delay in viral rebound upon ATI [14, 15]. Admin-
istration of 3BNC117 and 10–1074 in combination 
during ATI resulted in maintained viral suppression for 
a median of 21 weeks in participants who had antibody 
sensitive viral reservoirs [6].

A phase I clinical trial is ongoing in South African 
women (CAPRISA 012), testing CAP256V2LS, a potent 
bNAb isolated from a subtype C infected individual capa-
ble, alone and in combination with VRC07-523LS and 
PGT121 for use in pre-exposure prophylaxis [16]. How-
ever, this trial could pave the way for investigation into 
CAP256V2LS (likely in combination) as a functional 
cure in Africans. Finally, the first studies in non-human 
primates showed efficacy of bNAbs produced in  vivo 
through the administration of adeno-associated viruses 
encoding bNAbs [17]. Although host-elicited immune 
responses limited effectiveness of the treatment [18], one 
macaque was functionally cured. While this approach is 
still in development and needs refining before in-human 
trials, it is a proof of concept for the role bNAbs in a 
functional cure strategy. A disadvantage associated with 
bNAb therapy in resource-limited settings is the require-
ment for resistance screening both before administration 
of therapy to ensure antibody sensitivity of viruses, and 

during therapy to monitor antibody escape. Similar to 
long-acting ART, these drawbacks significantly limit the 
scalability of bNAbs as a cure therapeutic.

Summary
The development of a HIV-1 cure has been a major initia-
tive for the global scientific community and a dominant 
target for drug development. Having over 40 million peo-
ple on lifelong ART is not a sustainable global strategy 
and with increasing circulation of drug resistant HIV-1, 
new infections may not be prevented by ART alone. An 
affordable and effective cure therapeutic that could be 
rapidly deployed during first ART is a necessary goal for 
the elimination of HIV-1 from the human population. 
However, HIV-1 cure research has been largely focused 
on the eventual application to PLWH in HICs, and 
potential therapeutics are not being designed or tested 
with the majority of PLWH in mind. Until the rollout 
of second-generation INSTIs for treatment, the rate of 
treatment failure and resistance was already preventing 
the testing of cure therapeutics in as much as 10–20% of 
the 20 + million PLWH receiving ART in LMICs. Consid-
ering HIV cure strategies/therapeutics currently under 
investigation, cost and feasibility present challenges to 
implementation in LMICs. This is complicated by the 
lack of studies characterising reservoir size, composi-
tion and determinants of HIV persistence in these key 
populations. We identified research topics that would aid 
in the development and implementation of a global cure 
therapeutic: (i) reservoir sizing studies in LMICs and the 
development of a cheap, meaningful and standardized 
assay to assess reservoir size changes in PLWH; (ii) iden-
tifying subtype differences in various HIV-1 proteins/ele-
ments linked to pathogenesis including Tat, the LTR, and 
Nef, along with their interplay in reservoir establishment 
and kinetics; (iii) differences in clonality and cellular 
distribution of the reservoir particularly in chronically-
treated individuals. Finally, resources need to be made 
available for the study of cure therapeutics in the setting 
of LMICs, since this will address the largest burden of 
HIV-1 infection globally.
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