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Abstract 

Traumatic brain injury (TBI) is a major cause of disability and mortality worldwide, particularly among the elderly, 
yet our mechanistic understanding of what renders the post-traumatic brain vulnerable to poor outcomes, and sus-
ceptible to neurological disease, is incomplete. It is well established that dysregulated and sustained immune 
responses elicit negative consequences after TBI; however, our understanding of the neuroimmune interface 
that facilitates crosstalk between central and peripheral immune reservoirs is in its infancy. The meninges serve 
as the interface between the brain and the immune system, facilitating important bi-directional roles in both healthy 
and disease settings. It has been previously shown that disruption of this system exacerbates neuroinflammation 
in age-related neurodegenerative disorders such as Alzheimer’s disease; however, we have an incomplete under-
standing of how the meningeal compartment influences immune responses after TBI. In this manuscript, we will offer 
a detailed overview of the holistic nature of neuroinflammatory responses in TBI, including hallmark features observed 
across clinical and animal models. We will highlight the structure and function of the meningeal lymphatic system, 
including its role in immuno-surveillance and immune responses within the meninges and the brain. We will provide 
a comprehensive update on our current knowledge of meningeal-derived responses across the spectrum of TBI, 
and identify new avenues for neuroimmune modulation within the neurotrauma field.
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Background
Traumatic brain injury (TBI) is a leading cause of death 
and disability, posing a significant socioeconomic and 
public health burden, with an estimated 64–74 million 
people sustaining a TBI each year [1, 2]. While the preva-
lence of TBI is centered around young adults and the 
elderly [3, 4], the consequences of TBI are more severe 
in aged populations. Slower recovery, worse functional, 

cognitive, and psychosocial outcomes, all highlight the 
influence of age on overall TBI pathogenesis [5–11]. 
Strikingly, there were 69,473 TBI-related deaths in the 
United States alone in 2021 [12], emphasizing the need 
for disease modifying interventions. There are no com-
prehensive pharmacological treatments for TBI, with 
the diversity of injury still considered a significant bar-
rier toward the translation of effective therapeutics [13]. 
Although TBI can be influenced by many variables, it is 
accepted that neuroinflammation contributes to nega-
tive outcomes after TBI. Evidence suggests that the 
synergistic functioning of innate and adaptive immune 
cells, crucial for orchestrating and sustaining a healthy 
brain microenvironment, becomes dysfunctional after 
TBI. This dysfunction results in sustained, uncontrolled 
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neuroinflammatory responses which detrimentally affect 
outcomes and recovery timeframes. Indeed, therapies 
targeting inflammatory responses display efficacy in pre-
clinical and single-center trials; however, they fail to show 
improvement in larger multicenter clinical trials [14, 15]. 
This may be due to the fact that the majority of preclini-
cal TBI studies tend to analyze these cellular responses 
individually, with interventions focused on targeting a 
singular cell modality. It is now evident that neuroinflam-
matory responses in TBI are not confined to a single cell 
type, and it is more likely that a combination of complex 
cellular interactions determines the nature of inflamma-
tory cascades. Therefore, in order to develop more effec-
tive therapeutics, we require a greater understanding of 
the bi-directional crosstalk between the innate and adap-
tive immune response and how they contribute holisti-
cally to TBI-induced neuroinflammation.

Neuroinflammation in TBI
The complexity and challenges in understanding cellu-
lar interactions and signaling cascades in TBI is largely 
due to the heterogenous nature of injury. Primary injury 
causes brain lesions from fractures, intracranial hemor-
rhage, epidural and subdural hematoma, brain contusion 
and direct mechanical damage to neural tissue. Second-
ary injury occurs immediately following head impact, 
initiating cascades including neuroinflammation that can 
persist for weeks and even years, contributing to neuro-
logical impairment. Temporally, primary injury results in 
blood–brain barrier (BBB) dysfunction, neural damage, 
and release of endogenous damage-associated molecular 
patterns (DAMPs). These DAMPs subsequently engage 
pattern recognition receptors (PRR), such as the toll 
like receptors (TLRs) on innate (microglia/astrocytes) 
or adaptive (myeloid/lymphoid) cells, leading to their 
immune activation. The molecular diversity of DAMPs 
binding PRRs is vast (reviewed in [16]), and their signifi-
cance after trauma is critical, with DAMP level correlat-
ing with injury severity and inversely related to clinical 
outcomes [17]. Indeed, clinical insights offer invaluable 
translational knowledge to identify secondary injury trig-
gers and processes, information that may identify ave-
nues for therapeutic intervention.

Clinical hallmarks of neuroinflammation in TBI
Physical trauma to the brain causes BBB disruption, with 
increased fibrinogen, immunoglobulin and heightened 
cerebrospinal fluid (CSF) to serum albumin quotients 
detectable within hours of clinical evaluation, persist-
ing for weeks or even years [18–26]. Increases in serum 
and CSF levels of brain specific glial fibrillary acid pro-
tein (GFAP), ubiquitin carboxyl-terminal hydrolase 
isozyme L1 (UCH-L1) and S100 calcium-binding protein 

B (S100B) are correlated with early barrier permeability 
[20, 27]. Similarly, increased CSF levels of matrix metal-
loproteinases (MMPs) [28] and the complement media-
tors C3, factor B and sC5b-9 are also associated with 
BBB dysfunction [23, 29]. The CSF of severe TBI patients 
also contains DAMPs, PRRs and mediators downstream 
from PRR activation, with elevated levels of high mobil-
ity group protein B1 (HMGB1) [30–32], double stranded 
DNA (dsDNA), absent in melanoma 2 (AIM2), apop-
tosis-associated speck-like protein (ASC), NLR Family 
Pyrin Domain Containing 1 (NLRP1), and caspase-1 [33, 
34]. Fluid biomarkers (CSF/serum/blood) show temporal 
increases in cytokines and chemokines, including mem-
bers of respective interferon, interleukin, tumor necrosis 
factor, transforming growth factor and C-C motif ligand 
families (Table 1).

Indeed, tissue samples from patients with TBI indi-
cate that this inflammatory response is composed of 
both innate and adaptive cellular elements, includ-
ing monocytes/macrophages, reactive microglia, poly-
morphonuclear cells, and CD4+, CD8+ T cells [83–88]. 
Using positron emission tomography (PET) scans, TBI 
patients show elevated translocator protein (TSPO) 
expression in microglia, demonstrating microglial activa-
tion which could be seen up to 17 years after injury [89, 
90]. Indeed, in brain tissue, activated microglia (CD68+, 
CD11b+, TMEM119+) are highly expressed after injury 
across acute and chronic timepoints [83, 85, 91–94], 
alongside markers for toll like receptor (TLR) signal-
ing including TLR4 and myeloid differentiation primary 
response 88 (Myd88) [95, 96]. Peripheral cell contribu-
tions are observed in blood samples after TBI, with acute 
decreases of the number CD4+ and CD8+ and natu-
ral killer (NK) cells, followed by transient increases in 
T regulatory (Treg) cells after injury [35, 97–100]. The 
temporal series of these responses may be influenced 
by injury severity, with expansion of Th17-type CD4 T 
cells alongside IL-17 and IL-22, seen at 5 days post injury 
[35]. Concurrently NK cells have reduced T-bet expres-
sion and lower IFNγ and TNFα, all indicating cell specific 
responses after TBI [35].

Hallmarks of neuroinflammation in animal models of TBI
Animal models have proven invaluable for studying TBI 
and unraveling the complicated mechanisms under-
lying both primary and secondary injuries. Similar 
to clinical studies, pre-clinical models show BBB per-
meability within hours, with spontaneous closure at 
approximately 7–10 days post-injury [101–105]. Mech-
anistically, TBI has been shown to affect processes at 
the neurovascular unit, with reductions in tight junc-
tion proteins (claudins, occludins) and pericyte loss 
[104, 106–108]. Across the spectrum of TBI models, 
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various signals and triggers are elevated following 
injury, including DAMPS, cytokines, chemokines and 
soluble factors similar to those previously identified in 
clinical studies. Critically, their time and cell depend-
ent function can be influenced by a myriad of context 
dependent factors (Fig.  1). Broadly, experimental TBI 
increases levels of DAMPs including HMGB1, ATP, 
heat-shock, GM-CSF, mtDNA and S100 proteins and 
their receptors such as TLRs and receptors of advanced 
glycosylation end-products (RAGE) and purinergic 
receptors. In addition, alterations in levels of proin-
flammatory cytokines TNF-α, IL-1β, IL-6, IL-18, IFNγ, 
Type-I interferons (IFNs), anti-inflammatory cytokines 
Arg-1, IL-4, IL-10, TGF-β and chemokines IL-8, MCP1, 
CCL2, CCL5, CXCL2 are all involved within the holistic 

nature of inflammation in TBI models (detailed review 
in [14, 109, 110]).

Innate CNS responses
Microglia are resident central nervous system (CNS) 
immune cells, making about 10–13% of the cell popu-
lation in the mouse and human brain [111, 112]. Their 
primary functions can be grouped to include surveil-
lance, phagocytosis, and the secretion of soluble factors 
[113]. To determine functionality, microglia react to 
changes and context specific stimuli within CNS, eliciting 
a diverse array of tailored responses. Indeed, advance-
ments in technologies (transcriptomics, proteomics 
and metabolomics) have highlighted that categorizing 
microglia into simplistic dichotomies like "good or bad" 

Table 1  Cytokines and chemokines modulating neuroinflammation in clinical TBI

Immune signature/trigger Time

Fluid biomarkers

 IFNγ ↑ 1–5 days after injury [35, 36], ↑ up to 12 months [37]

 TNF ↑ 6 h–2 weeks days [24, 35, 38–50], ↑ up to 12 months [37]

 IL-1β ↑ 1 day–1 month [39, 46, 51–59]

 IL-6 ↑ 6 h–2 weeks [24, 36, 46, 47, 49–52, 56, 58–68], ↑ up to 6 months [69]

 IL-10 ↑ 6 h–3 days [24, 39, 46, 51, 68, 70–73]

 IL-8 (CXCL8) ↑ 2 h–5 days [48, 50, 51, 59, 69, 74], ↑ up to 12 months [37]

 IL-12p70 ↑ 1–3 days, peaks at days 3–5 [46, 50, 51]

 TGFβ ↑ 1–21 days after trauma [75, 76]

 CCL2 ↑ 1–10 days [46, 77, 78], ↑ up to 3 months [58]

 CCL3 ↑ 1–3 days [46, 51]

 CXCL8 (IL-8) ↑ 1–4.5 days [46, 51, 63, 79]

 IL-18 ↑ up to 10 days [80]

 sIL-2R ↑1–21 days [81]

 IL-17, IL-22 ↑ day 5 after injury [35], ↑ up to 12 months [37]

 IL-2 ↑ 24 h post injury [67]

 IL-9 ↑ admission–12 months [37]

 IL-4 ↑ within 48 h post injury [59]

 iNOS ↑24 h post injury [47]

 NADPH ↑24 h post injury [47]

 COX-2 ↑24 h post injury [47]

Tissue

 IFNγ ↑ 17 min–5 days injury [70]

 TNF ↑ 17 min–5 days injury [70]

 IL-1β ↑ 6  h–5days after injury [70]

 IL-6 ↑ 17 min after injury [56, 70]

 CCL2 ↑ 3  h–15 days post-injury [78]

 CCL3 ↑ 3  h–15 days post-injury [78]

 IL-8 (CXCL8) ↑ 3  h–15 days post-injury [70, 78]

 IL-2 ↑ 17 min–5 days injury [70]

 NOX2 ↑12–24 h post injury [82]

 NOX4 ↑12–48 h post injury [82]
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or "M1 or M2" does not adequately capture the full spec-
trum of microglial states across disease settings, and that 
updated nomenclatures and terminologies are warranted 
[113]. We agree with this principle, and to that extent, 
in assessing the role of microglia in pre-clinical TBI, we 
use the term Trauma Associated Microglia (TAM) to 

characterize the unique functionality of microglia in TBI 
versus other disease contexts (Fig. 1).

In healthy environments, microglia surveil their envi-
ronment and can aid in synaptic remodeling, cell sur-
vival, and controlled phagocytosis removing CNS 
debris and waste products [114–116]. Morphologically, 

Fig. 1  Hallmarks of neuroinflammation in Traumatic Brain Injury. Summary of hallmark characteristics that encompass the holistic nature 
of TBI-induced neuroinflammation. Based on decades of clinical research and mechanistic knowledge gained from the diverse range of injury 
models, key neuroinflammatory events include: barrier dysfunction, immune triggers and signaling, neural damage or release of soluble factors, 
neutrophil infiltration, monocyte recruitment, resident CNS microglial and astrocyte responses and activation of T and B cell responses. Importantly, 
all areas of this neuroinflammatory wheel can be influenced by context dependent factors, and should be considered across the spectrum 
of the neurotrauma field
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microglia are described as ‘ramified’ in their normal 
homeostatic state, and transform to a spectrum of mor-
phologies during disease. In models of TBI, a dynamic 
range of TAMs are observed at both acute and chronic 
timepoints, initially clearing necrotic debris by adopting 
phagocytic states in response to ATP mediated puriner-
gic signaling [117–119]. In the days and weeks following 
TBI, microglial cells undertake various functions, includ-
ing, but not limited to, initiating immune responses, syn-
aptic engulfment and clearance phagocytosis, influencing 
neuronal activity through bidirectional synaptic contact 
with neurons, and the potential to promote neurogen-
esis [120–123]. This dynamic functionality is generally 
delineated by the expression of Cd11b, CD68, CD86 
and MHCII markers and accompanied by the release of 
proinflammatory mediators like TNF-α, IL-1β, NOX, 
IFNs or alternatively the expression of CD206 and Arg-1 
markers and the release of anti-inflammatory factors 
including IL-10 and TGFβ [117, 121, 124–129]. Mecha-
nistically, this functionality is determined by immune 
triggers that signal microglia to undergo morphological 
alterations resulting in highly activated states where they 
release soluble factors [118, 130]. Specifically, microglia 
are shown to respond to DAMPs activating PRRs, with 
TBI upregulating HMGB1, TLR2, TLR4 and NF-κB [31, 
131–133]. Moreover, TLR2- and TLR4-deficient mice 
display decreased levels of TNF-α, IL-1, IL-6 and NF-κB 
signaling, evidencing their role in the TBI-induced pro-
inflammatory response [134, 135]. In addition to TLRs, 
purinergic receptors P2Y6, P2Y12, and P2X4, detect ATP 
released from damaged cells and influence microglial 
responses after TBI [118, 119, 136]. Alongside the pro-
duction of cytokines and chemokines, TAM also adopt 
functional states that promote oxidative stress through 
chronic NOX2 activation [137, 138]. In recent times, 
pharmacological depletion of microglia in the subacute 
and chronic timepoints after TBI is shown to be neuro-
protective and improves outcomes [127, 139], under-
scoring the key role they play in deleterious TBI-induced 
neuroinflammatory responses.

Similar to microglia, astrocytes undergo morphologi-
cal, molecular, and functional remodeling, with their 
classification now determined by the sum of their multi-
factorial impact in context specific pathological set-
tings [140]. In healthy contexts, astrocytes contribute to 
immune signaling, synaptogenesis regulation, BBB for-
mation and maintenance, neurotransmitter recycling, 
ion and water homeostasis, and blood flow control [141–
145]. In TBI, astrocytes are best known for the formation 
of the glial scar as a protective mechanism to limit sec-
ondary injury and promote regeneration [104, 146–149]. 
Astrogliosis is categorized by increased GFAP+ and 
vimentin across TBI models, yet away from the glial scar, 

the morphological significance of this gliosis is tempo-
rally and spatially dynamic [14]. They contribute to brain 
edema after injury [150–152], and contain decreased 
expression of GLT-1, GLAST and EAAT1/2, evidencing 
their role in TBI-induced glutamate dysregulation [153–
156]. They also contribute directly to immune responses 
through DAMP/TLRs signaling as well as proinflamma-
tory cytokine and chronic complement production after 
TBI [157–160]. Recent advances in high throughput 
sequencing and ‘omic analysis has generated datasets 
to begin to unravel the context specific nature of astro-
cytes in TBI [127, 161–164], yet these studies are still 
in early stages, especially when considering the range of 
heterogeneous immune responses that underpin the hall-
mark characteristics of TBI (Fig.  1). Furthermore, these 
responses often involve more than just a single cell type, 
exhibiting bidirectional communication, as evidenced by 
HMGB1 release from necrotic neurons, activating micro-
glial TLR4, and subsequently increasing levels of astro-
cytic aquaporin-4 (AQP4), influencing BBB dynamics 
after TBI [31]. Indeed, this communication is now being 
explored in disease settings, with microglial release of 
C1q, IL1β and TNFα shown to transform astrocytes into 
neurotoxic states via their secretion of lipids contained in 
APOE and APOJ [165–167]. Blockade of this interaction 
is beneficial after stroke [168], suggesting studies of this 
pathway in TBI may yield promising targets to reduce 
inflammation mediated cell death pathways.

Adaptive immune responses
Peripheral interactions and cell specific processes 
play important roles in the overall neuroinflamma-
tory response in TBI. Temporally, within minutes an 
initial wave of neutrophils crosses the BBB to phagocy-
tose injured tissue, followed by potent chemoattractant 
signals that encourage the migration and infiltration of 
peripheral macrophages and lymphocytes (Fig.  1). The 
temporal series of these cellular events within the brain 
parenchyma has been extensively reviewed elsewhere 
[169, 170]. Within the scope of this review, we would 
like to discuss the contribution of the adaptive immune 
response in relation to its interaction at meningeal barri-
ers, including the recently discovered immune rich lym-
phatic vessel interface.

Meningeal structures and barriers
The meninges, essential components of the CNS’s pro-
tective and functional architecture, are composed of 
three distinct layers: the innermost pia mater, the inter-
mediate arachnoid, and the outer dura mater. Structur-
ally, the dura predominantly comprises collagen fibers 
that anchor it to the skull, as well as thin layer of fibro-
blasts demarcating the dura from the arachnoid [171]. In 
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addition, the dura contains fenestrated blood vessels and 
lymphatics that form a connection with the periphery 
[171–176]. Beneath the dura lies the arachnoid barrier 
layer, composed of an outer layer of epithelial-like cells 
interconnected by tight junctions [177, 178]. It is this 
barrier that serves as a key component of the blood-CSF 
barrier, restricting the movement of molecules from the 
dura to the subarachnoid space [171, 175, 179]. The suba-
rachnoid space plays host to vasculature networks and 
immune cells, with arachnoid trabeculae consisting of 
flattened fibroblasts-like cells connecting the arachnoid 
to the pia [180, 181]. CSF flows within this space and pro-
vides brain nourishment and buoyancy, as well as waste 
removal via venous flow and resorptive transport in the 
choreoid plexus [182, 183]. Tightly adhered to the brain, 
the pia mater is composed of a thin layer of fibroblasts, 
followed by a basement membrane that separates it from 
the underlying glia limitans. Collectively the arachnoid 
and pia are commonly referred to as the leptomenin-
ges [184], within which the non-fenestrated vasculature 
contains tight junctions to form the leptomeningeal bar-
rier [184–187]. Lastly, the glial limitans is constituted by 
astrocytic end feet processes to form a boundary between 
the brain parenchyma and the pia.

Meningeal lymphatic vessels (mLVs)
The presence of lymphatic vasculature within the menin-
ges, though hinted at and often misconstrued in various 
anatomical accounts in the seventeenth century [188], 
was first visually depicted in the late eighteenth cen-
tury by the anatomist Paolo Mascagni [189]. However, 
subsequent to this, knowledge of these lymphatic ves-
sels lapsed into relative obscurity until the mid-twen-
tieth century [190]. Its ’rediscovery’ in modern times in 
both mice [173, 175] and humans [174, 176] had led to 
a resurgent wave of interest within the neurosciences, 
challenging the long-lasting dogma of the “immune-
privileged” brain. Anatomically, healthy meningeal lym-
phatic vessels (mLVs) are found alongside dural sinuses, 
arteries and veins, including the superior sagittal sinus, 
transverse sinus, sigmoid sinus, retroglenoid vein, rostral 
rhinal vein, middle meningeal artery, and pterygopala-
tine artery [173, 175, 191–194]. Insights into the mecha-
nistic development of lymphatic vessels is largely drawn 
from studies of networks in peripheral tissues. In mice, 
lymphatic vasculature (LV) formation is predominantly 
venous-derived, originating from the cardinal vein dur-
ing embryogenesis. At embryonic day 9.5 (E9.5), a sub-
population of venous endothelial cells express Sox18 (a 
SRY-related HMG-box transcription factor), which acti-
vates prospero homeobox  1 (PROX1) [195–198]. This 
PROX1 activation induces specific lymphatic endothelial 
cell (LEC) gene expression, and inhibits blood endothelial 

cell-specific genes by binding to the nuclear receptors 
COUP-TFII [199–202]. Indeed, Prox1−/− endothelial 
cells fail to express LEC markers, instead retaining blood 
vascular endothelial properties [195], evidencing their 
role as a master regulator of lymphatic identity. Ulti-
mately Sox18-PROX1 activation initiates the acquisition 
of LEC properties for the subsequent creation of lymph 
sacs and lymphatic vessel networks [203, 204]. Addi-
tional lymphangiogenic mediators include lymphatic 
vessel endothelial hyaluronan receptor 1 (LYVE-1), 
which increases the expression of the platelet aggregat-
ing protein podoplanin (PDPN), in LECs at E12.5. Vas-
cular endothelial growth factor C (VEGF-C) activation of 
vascular endothelial growth factor receptor-3 (VEGFR-3) 
is also essential for the sprouting of LVs from the embry-
onic veins [205, 206], allowing for the ability of LECs to 
migrate and form the lymphatic sacs, visible at E12.5 
[207]. Buds and sprouts progress until E14.5, by which 
time the lymphatic development stage is completed [208, 
209].

In contrast to the embryonic formation of peripheral 
LV, the development of the intracranial mLV occurs post-
natally, in a VEGF-C dependent manner [210]. Starting at 
the base of the skull LEC sprouting begins at birth, post-
natal P0. Temporally, lymphangiogenesis continues in a 
characteristic pattern alongside veins, arteries, and cra-
nial nerves during the first weeks. The mLVs appear at the 
cribriform plate at P2, middle meningeal artery after P4, 
and grow into the transverse sinus at P8 [210]. Between 
P13 and P20, lymphatic vessels expand along the trans-
verse sinus appearing at the confluence of sinuses at P16 
[191, 210], before extending the length of the superior 
sagittal sinus toward the olfactory bulb by P20 [191]. At 
this time, the mLVs become functional, draining content 
from the CNS into the peripheral lymphatic system at the 
base of the skull, with the mLV network fully developed 
at approximately P28 [175, 191, 192, 210–212].

In terms of functionality, mLVs can be categorized into 
thin-walled “initial” lymphatic vessels, and the larger 
“collecting” vessels. In mice, initial lymphatic vessels are 
highly permeable and are located dorsally near both the 
transverse and superior sagittal sinus. Initial lymphat-
ics lack smooth muscle cell (SMC) coverage, and are 
composed of discontinuous button-like LEC junctions 
[173, 175, 213]. These button-shaped junctions con-
sist of tight junction- and adherens associated proteins, 
that attach adjoining LECs at the base of interdigitating 
flaps between cells [214–216]. This flap-like overlap cre-
ates mini-valves that permit the entry of interstitial fluid, 
macromolecules, soluble antigens and immune cells 
including antigen presenting cells (APCs) [215–221]. 
In contrast, collecting lymphatic vessels at the base of 
the skull are surrounded by SMCs to help propel fluid 
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movement and contain tight continuous zipper-like con-
nections and secondary intraluminal valves [217, 220]. 
This makes them virtually impermeable, facilitating uni-
directional drainage, whilst simultaneously preventing 
lymphatic backflow [222, 223]. In both mice and humans, 
collecting meningeal lymphatic vessels extend along the 
jugular vein, exit the skull through various foramina, 
before merging with peripheral collecting lymphatics that 
predominantly drain into the deep cervical lymph nodes 
(dCLNs) [173, 174, 192, 210, 224–226]. On the journey 
between initial to collecting lymphatics, fluid transitions 
into specialized pre-collecting lymphatic vessels. Located 
at the basal foramina, they exhibit features of both ini-
tial and collecting vessels, as they lack SMC, but contain 
one-way valves and a mix of both button- and zipper-
like junctions [192, 227]. These findings emphasize the 
distinct morphological characteristics of various mLV 
subsets, providing insight into their specialized roles in 
immune cell and CSF waste clearance cascades from the 
CNS to the periphery.

The (previously missing) link from the brain 
to the periphery
The 2015 multi-group discovery of mLVs in the dura 
mater, evidenced a role for these vessels as an initial col-
lection site for CSF before its drainage to the dCLNs. 
Physically, the arachnoid barrier delineates the CSF 
contained in the subarachnoid space from the dura 
mater; however, the mechanism by which the CSF car-
rying waste products and immune signals from the brain 
reaches these mLVs in the dura was unclear. It has pre-
viously been suggested that arachnoid granulations, 
which are protrusions of the arachnoid mater into the 
venous sinuses of the dura mater, enabled drainage of 
CSF directly to the bloodstream [228], but tracers admin-
istrated into the CNS or CSF can drain directly to the 
dCLNs, demonstrating that there must be a direct route 
from the CSF to the dura that bypasses the bloodstream 
[194]. In 2024, a pioneering study identified arachnoid 
mater cuffs around the bridging veins that connect the 
subarachnoid space to the dura [229]. This finding was 
made by experiments that involve injecting tracers into 
the intracisternal magna (i.c.m) and observing their 
transport. The experiments revealed that the i.c.m. trac-
ers were being transported into the dura before they 
had reached either the blood or the dCLNs, indicating 
that the drainage occurred directly from the CSF into 
the dura before being drained out by lymphatic vessels. 
This connection between the dura mater and the suba-
rachnoid space consists of bridging veins that create dis-
continuities in the arachnoid barrier, forming structures 
termed arachnoid cuff exit (ACE) points. ACE points 
are present in humans and can work bi-directionally, 

enabling molecules and immune cells to enter from the 
dura mater into the brain [229]. This may explain how 
cytokine responses from meningeal immune cells influ-
ence brain function, a discovery that will shape the way 
we think about neuroinflammation in future TBI studies.

The immunological environment 
within the meninges
It is now recognized that the meningeal layers act as vital 
immunological reservoirs, hosting an array of adaptive 
immune cells that first arrive in development via blood 
vessels or calvarium bone marrow that connects the dura 
via specialized vascular channels [211, 230–235]. Col-
lectively, the meningeal layers contain lymphoid cells, 
macrophages, mast cells, eosinophils, dendritic cells 
(type 1 and type 2 classical dendritic cells, plasmacytoid 
dendritic cells and migratory dendritic cells), neutro-
phils, innate lymphoid cells (ILCs), natural killer cells, 
plasma cells, B cells (immature and mature) and T cells 
(CD4, CD8 and T cell receptor gamma/delta (TCRγδ)) 
[186, 211, 231, 236–240]. Proportionally, the distribution 
of these cells varies across layers, with the dura largely 
thought to contain a higher diversity and frequency of 
immune cells versus the leptomeningeal layer [186]. This 
may be attributed to the need for tissue specific support, 
with the niche environment around dural sinuses con-
taining innate lymphoid cells, macrophages, T cells, B 
cells and plasma cells [234, 241]. In leptomeningeal lay-
ers, macrophages, CD4, and CD8 cells, are found in large 
part around blood vessels in the CSF containing suba-
rachnoid space [242–245].

Meningeal macrophages
Macrophages are heterogeneous groups of cells that carry 
out distinct functions depending on their location and 
phenotype [246]. Meningeal macrophages belong to a 
specialized group called border associated macrophages 
(BAMs), originating from yolk sac CD206+ myeloid pro-
genitor cells [230]. In the adult, leptomeningeal BAMs 
can be transcriptionally delineated by CD206, Lyve1, 
P2rx7, and Egfl7 expression [186, 236]. In contrast, adult 
dural BAMs differ to their leptomeningeal counterparts 
as they lack Lyve-1 expression, and can be transcription-
ally divided into subgroups based on major histocom-
patibility complex II (MHCII) expression [247, 248]. 
This may represent divergent roles under homeostatic 
or disease conditions, with MHCIIHi BAMs displaying 
enhanced levels of CCR2, whereas MHCIIlow BAMs con-
tain gene signatures that include Clec4n, Clec10a and 
Folr2 expression [186, 211, 246, 249]. Of note, a deter-
mining factor that drives postnatal MHCII high or low 
differentiation, is the fms intronic regulatory element 
(FIRE), a highly conserved super enhancer of the colony 
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stimulating factor 1 receptor (CSF1R) and its down-
stream signaling [250, 251]. This may be pertinent to 
consider in studies examining microglial driven inflam-
mation in CSF1R deletion models (or via Pexidartinib 
(PLX) inhibition), as the effect of CSF1R in modulating 
facets of meningeal immunity has yet to be fully investi-
gated. In healthy settings the functional role of BAMs is 
largely unknown, however evidence suggests they can act 
as sentinels in anti-viral defense. Following lymphocytic 
choriomeningitis virus infection (LCMV), BAMs become 
rapidly activated, acquire the viral antigen and trigger 
engagement by infiltrating cytotoxic T lymphocytes that 
are essential to resolve the infection [252]. Further, the 
type-1 interferon-Stat1 anti-viral pathway is induced in 
BAMs, blocking further LCMV infection [253]. Tran-
scranial delivery of PLX3397 or PLX5622 to specifically 
deplete BAMs resulted in the death of LCMV-infected 
mice [253], emphasizing the importance of further inves-
tigation into BAMs in CNS disease models that contain 
inflammatory components within their etiology.

Border associated dendritic cells
Dendritic cells (DCs) are professional APCs that play 
key roles in immune surveillance in both peripheral and 
meningeal layers [254]. DCs in the meninges and cho-
roid plexus arise from circulating and skull bone marrow 
precursor-DCs, which transform into conventional den-
dritic cells (cDCs) at these sites [233, 255, 256]. Investiga-
tions into their trafficking ability, revealed that peripheral 
DCs can migrate into the CNS across barrier sites via 
the C–C motif chemokine receptor 2, chemokine ligand 
2 (CCR2-CCL2) signaling pathway [257]. This migra-
tion can be bi-directional, with DCs observed in the 
cervical and auxiliary lymph nodes 3–7 days after their 
injection into the CSF or brain parenchyma [258–260]. 
Meningeal mediated migratory drainage of DC occurs 
via initial mLVs in a CCR7 dependent manner. CCR7 is 
a potent receptor of DC migration toward the ligands 
CCL19 and CCL21, which are highly expressed by lym-
phatic vessels (Fig. 2). In pathological states, DCs recog-
nize and capture antigens, upregulate CCR7 and migrate 
to initial mLVs before draining into the dCLNs where 
they can activate antigen-specific T-cell inflammatory 
responses [173, 225, 239, 261]. Indeed, dural and cribri-
form plate mLVs express CCL21, facilitating a gradient 
for DC migration and drainage into peripheral lymph 
nodes [175, 211, 225, 262]. Additionally, dural fibroblast-
like cells express CCL19, providing further stimulus for 
CCR7 mediated signaling within the meninges; however, 
the role of these fibroblasts in relation to CNS lymphatic 
drainage is yet to be elucidated [211]. Collectively, DC 
populations within the meninges and CSF may contain 
both parenchymal infiltrating DCs as well as migratory 

draining DCs in transit to lymph nodes, suggesting that 
the holistic neuroinflammatory environment unique to 
specific disease states influences DC capacity, drainage 
and antigen presentation.

Border associated T cells
The interplay between the innate CNS and adaptive 
immune response contributes to neuroinflammation 
within disease contexts. T cells are found in the menin-
geal space, with populations identified at dural and cribri-
form lymphatic sites [173, 192, 262]. Initial evidence of T 
cell migration into dCLNs was noted 12–48 h after their 
CNS injection into healthy or lesioned mice [263], with 
subsequent lymphatic ablation studies offering extensive 
characterization of T cell migration pathways via dural 
mLVs [225]. Mechanistically, drainage of T cells into the 
dCLNs via mLVs occurs in a CCR7 dependent manner 
[225], a process similar to that seen in inflammatory-
induced peripheral T cell migration [264, 265]. Indeed, 
CCR7 expressing T cells are found in human CSF, most 
of which are thought to be central memory T cells con-
ducting immune surveillance within the healthy suba-
rachnoid space [266, 267]. While trafficking to dCLNs 
may reduce meningeal T cell pools, they are replenished 
by blood circulating T cells that enter the brain via the 
dural sinuses, and adopt tissue-resident phenotypes [211, 
231]. Indeed, evidence shows elevated densities of APCs 
and T cells at dural sinuses, serving as an active site for 
APCs to acquire blood- or brain-borne pathological anti-
gens, presenting them to local T cells [211]. Functionally, 
the role of a well-regulated adaptive immune response 
is paramount, as CD4+ and TCRγδ cells can influence 
CNS neuronal, glial, and homeostatic activities through 
cytokine secretions including IL-4, IL-17 and IFNγ [231, 
268–272]. Furthermore, mice lacking functional T cells, 
and consequently deficient T cell drainage to dCLNs, 
have notable deficits in exploratory, social, and cognitive 
behaviors. [268, 273, 274]. These deficits are reversed fol-
lowing adoptive transfer of T cells or secondary lymphoid 
organ lymphocytes, further evidencing their important 
role in the regulation of CNS behaviors [268, 274, 275].

Border associated B cells
B cells play versatile roles within the adaptive immune 
response. Known predominantly for their antibody pro-
duction and as precursors to antibody-producing plasma 
cells, they also function as APCs, and producers of pro-
inflammatory cytokines and chemokines (reviewed in 
[276]). In humans, the expression of B cells and plasma 
cells is sparse within the CNS parenchyma [277, 278], 
however they are abundantly located in the meninges 
[277], specifically the dural layer [279]. In mice, the iden-
tification of meningeal B220+ CD11c− B cells was first 
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reported within the dural mLVs [173], with subsequent 
single-cell sequencing studies identifying a diverse range 
of progenitor, early and resident B cell populations [234, 
279–281]. Constitutively, B cells represent ~ 15–30% of 
all CD45hi cells within the dural meninges, encompass-
ing multiple stages of B cell development from pro-B to 
mature B cells [234, 279]. Meningeal B cells derive locally 
from the calvaria bone marrow niche before migrating 
to the meninges through specialized skull vascular chan-
nels [234]. Following this calvarial–meningeal migration, 

B cells complete their development locally, with factors 
such as CXCL12 and CXCR4 critical for their survival 
and differentiation [234]. IL-7 has also been implicated 
in supporting B cell development, alongside other niche 
factors in the meninges including the CNS specific anti-
gen myelin oligodendrocyte glycoprotein [281]. For the 
most part, the majority of mature B cells in the CNS are 
naïve IgM+ cells, with small numbers of IgA+ B cells [234, 
279]. In terms of migration, B cells have the capacity to 
drain to the dCLNs via mLV in a similar fashion to their 

Fig. 2  The meningeal neuroimmune interface influencing inflammatory responses in TBI. Simplified schematic of the meningeal interface 
in healthy and injured settings. In homeostatic conditions (left), border-associated immune cells may synergistically support brain environments 
through cytokine secretion (IL-4, IL-17), which can directly influence neurons. A network of initial and collecting mLVs expressing Lyve1, drain 
CSF solutes/molecules to the dCLNs. Immune cell drainage of dendritic and T cells into the dCLNs occurs via chemokine gradients (E.g. CCR7 
expressing cells migrating towards its ligands CCL19 and CCL21). TBI (right) causes BBB breakdown and mLV dysfunction, resulting in reduced Lyve+ 
mLVs, and impaired drainage of solutes to the dCLNs. This TBI-induced lymphatic dysfunction and immune activation at the meningeal interface, 
exacerbates neuroinflammation by resident CNS cells within the brain parenchyma
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T cell counterparts. Plasma cells (IgA+) are also found in 
the meninges, with a portion of this population derived 
from gut plasma cells [282]. This meningeal plasma cell 
expression is age dependent, with young mice displaying 
IgA+ cells, switching to an IgG+ and IgM+ plasma cell 
phenotype in aged mice [234].

Neuroimaging of meningeal disruption in clinical 
TBI
Neuroimaging provides valuable data to assist in patient 
evaluation and diagnosis following TBI. Common imag-
ing modalities include conventional non-contrast com-
puted tomography (CT) and magnetic resonance imaging 
(MRI), often used in the clinical work-up for injury indi-
cations in patients with GCS < 13 [283]. CT scans pro-
vide initial class I assessment of injury extent (lesion, 
fracture), extradural, subdural or intracranial hemor-
rhage, traumatic subarachnoid hemorrhage and ventric-
ular abnormalities [284, 285]. This data is beneficial for 
diagnosing the mechanically induced primary trauma, 
yet sophisticated imaging techniques are necessary to 
detect subtle injuries to the brain structure and second-
ary injury processes. Enhanced imaging of dysregulated 
secondary injury cascades including glucose metabolism 
(functional MRI), diffuse axonal injury (diffusion tensor 
imaging, DTI), protein accumulation and neuroinflam-
mation (radiotracer positron emission tomography, PET) 
could lead to the discovery of new imaging biomarkers 
and therapeutics [286].

Advancements in MRI using contrast agents (such as 
gadolinium) have improved the specificity of diagnostic 
images, allowing for identification of novel biomarkers 
and insights into disease progression [287, 288]. Ordi-
narily gadolinium is unable to cross the blood–brain 
barrier, and therefore acts as a surrogate for leakage of 
proteins and other macromolecules when detected out-
side of the vasculature [289]. Gadolinium post-contrast 
fluid-attenuated inversion recovery (FLAIR)-MRI merges 
a high intensity of T2 weighting with the attenuation 
of cerebrospinal fluid (CSF) signal. This allows for the 
detection of leakage of the gadolinium contrast agent 
across damaged barriers into the CSF space, and high-
lights hyperintense regions at CSF adjacent borders. 
This is relevant in the context of TBI, as vascular injury 
can occur in the parenchyma and vessels traversing the 
meninges [290]. Meningeal arteries and veins in the dura 
and subarachnoid space are particularly vulnerable to the 
primary impact of TBI. Indeed, recent findings suggest 
that Traumatic Meningeal Enhancement (TME), associ-
ated with meningeal injury and inflammation, is a novel 
biomarker observed by FLAIR-MRI in patients following 
TBI (Table 2).

Although meningeal enhancement has been observed 
in neuroinflammatory contexts and in neurological dis-
ease [299–301], its identification in TBI is a relatively 
recent development (Table  2). In 2014, Roth and col-
leagues first reported focal enhancement of the meninges 
in approximately 50% of patients following a mild TBI 
(mTBI) [119]. A temporal follow up study identified simi-
lar TBI induced TME positive patients (50%) [293], of 
which 76% displayed resolution by approximately 22 days 
post-injury; however, 17% had persistent TME for several 
months (72 to 103 days post injury) [293]. This TME time 
course may be associated with, and influenced by, injury 
severity, with TME detected in moderate to severe TBI 
patients at 1-year post injury [296]. Collectively, these 
likely represent chronic inflammatory or other second-
ary injury cascades occurring within this compartment in 
the weeks, months, and years post-injury. Anatomically, 
TME positive mTBI patients display thick linear menin-
geal enhancement of the dura, including diffuse and 
localized convexity patterns, as well as enhancement of 
the falx cerebri [119, 289, 291, 292]. As the volume of data 
and studies expand, the diagnostic value of positive TME 
findings has become more apparent. TME signatures 
have been shown to be associated with loss of conscious-
ness, implying clinically significant head injury [291], 
and FLAIR imaging protocol demonstrate superiority in 
detecting trauma-related abnormalities not visible on CT 
scans, distinguishing between acute trauma from non-
specific conditions [292]. Specifically, FLAIR protocols 
outperform T1W1 post-contrast sequence in identify-
ing the presence or absence of TME, where T1W1 failed 
to show it in 38% of patients where it was readily shown 
using FLAIR [295]. To gain insights into biological mech-
anisms associated with TBI-induced meningeal enhance-
ment, transcriptomic analysis from patients with TME 
identified 76 differentially expressed genes, including 
increases in IgA, FCαR, MCTP2, GPR2, and decreases in 
CD79A [294]. Furthermore, innate lymphoid cells (ILCs) 
are found in the dura and CSF of TBI patients, suggest-
ing meningeal immune interactions [298]. Increases in 
VEGF2 expression in meningeal vasculature [297], sug-
gests regenerative capacity of dural vessels; however, this 
finding should be repeated in subjects with clinical classi-
fication data, for meaningful translational interpretation.

Meningeal lymphatic dysfunction after TBI
Neuroinflammation, characterized by the intri-
cate interplay between innate and adaptive immune 
responses, contributes to the pathophysiology of TBI 
(Fig. 1). A fine balance exists whereby acute activation 
of neuroimmune cells may be a beneficial physiologi-
cal response to promote injury resolution, in contrast 
to aberrant neuroimmune activation that may manifest 
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toward deleterious chronic outcomes. Identification of 
the immune rich lymphatic system at the meningeal 
barrier interface, has triggered a new area of previously 
unexplored research, investigating the contribution of 
this neuroimmune crosstalk to TBI-induced neuro-
inflammatory responses (Table  3) In 2020, Bolte et  al. 
reported seminal findings evidencing the temporal 
series (across seven timepoints) of meningeal lym-
phatic disruptions in a closed head impact model of 
TBI. Here, they detail mLV drainage of CSF molecules 
to the dCLNs is impaired as early as 2  h, and per-
sists for at least 1-month, following injury [302]. This 
impaired drainage was associated with changes to lym-
phatic vasculature, with a decrease in Lyve-1 expres-
sion observed within the first 2 to 24 h post-injury 

[302]. Interestingly, mLVs demonstrated a capacity 
for regenerative lymphangiogenesis, evidenced by the 
spontaneous increase of Lyve-1 coverage and complex-
ity in meningeal whole mount preparations 1–2 weeks 
post injury [302]. Photothrombotic vascular damage 
to the dura mater and pia mater causes immediate vas-
cular degeneration followed by revascularization at 
7d post-injury [297], suggesting that changes in mLVs 
may occur in parallel with regenerative endothelial 
angiogenesis at dural sites (Fig. 2). However, across the 
spectrum of TBI, the extent of this naturally occur-
ring vascular and lymphangiogenic responses varies 
upon injury type and severity. Lyve-1+ mLV coverage/
expression is decreased at 3d (mice, impact 1.9atm) 
[303] and 7d (rats, impact 2.6  atm) [304] after lateral 

Table 2  Imaging of meningeal-brain border disruption in clinical TBI

mTBI: mild traumatic brain injury; GCS: Glasgow Coma Scale; MRI: magnetic resonance imaging; IQR: interquartile range; FLAIR: fluid-attenuated inversion recovery; 
ME: Meningeal enhancement; TME: traumatic meningeal enhancement; THINC: Traumatic Head Injury Neuroimaging Classification study (NCT01132937); DEGs: 
differentially expressed genes; ECSAS: extravasation of contrast into the subarachnoid space; HARM: hyperintense acute reperfusion marker; ILCs: innate lymphoid 
cells

TBI
Severity

Age
(IQR)

MRI Image time (h/d) Result N (%) Meningeal enhancement 
observations

Refs.

mTBI
GCS = 15

THINC (Age undis-
closed)

FLAIR Within 48 h ME 69/142 (48.6%) Focal enhancement [119]
2014

mTBI
GCS ≥ 13

59.8
(26–84)

FLAIR 3.2 d
(0.2–14 d)

TME 32/54
(59%)

Diffuse (12/32), Localized 
(8/32), Falx (12/32)

[291]
2014

mTBI
GCS = 15

48
(41–55)

FLAIR 5.4 h
(3.6–5.3)

TME 10/22 (45%) Diffuse (4/10), Localized 
(3/10), Falx (3/10)

[292]
2017

mTBI
GCS > 12

42
(28–55)
THINC

FLAIR 11.6 h
(4.9–20.2 h),
Temporal follow-ups

TME 104/209 (50%) ME resolved in 79 
patients (76%) at 22d 
(7–37 d). Chronic ME 
in 17% of patients at 87 d 
(72–103 d)

[293]
2018

mTBI
GCS ≥ 13

39.8
(22.7–57.8)
THINC

FLAIR 21 h
(14–26 h)

TME 17 TME+
13 TME-

76 DEGs in TME + vs TME-
↑ IgA ↑FCαR, ↑MCTP2,
↑ GPR27, ↓CD79A

[294]
2017

mTBI
GCS ≥ 13

49
(35–62)
THINC

FLAIR 6.07 h
(4.3–19.6 h)

TME 9/25 (36%) Conspicuity of TME 
is higher on FLAIR MRI 
than on post-contrast 
T1WI

[295]
2020

Mild 7,
Mod 19, Severe 4

46.4
(SD 16.5)

FLAIR within 48h TME 16/30 (53%) Of 16 with TME, 10 (63%) 
resolved 1-year follow-up,
6 TME persisted

[296]
2020

mTBI
GCS = 15

39.8
(22.7–57.8)
THINC

FLAIR 19 h
(5.9–44 h)

TME 12/36 (33%) Regions- 11 Falx, 6 Vertex, 
5 Frontal, 4 Temporal, 3 
Occipital, 1 Cerebellar

[289]
2020

mTBI
GCS = 14–15

57
(41–67)
THINC

FLAIR 4.3 h
SD ± 0.87

TME, ECSAS 44/75(59%), 
2ndscan 23/32 
(72%)

18/32 (56%) positive 
for ECSAS

[289]
2020

Fatal vertical falls Data not provided Dural
Tissue

24 h for Histology + IHC 4 samples ↑VEGFR2 in blood vessels 
in injured dura mater

[297]
2020

Moderate-to-severe 39.2
(28–56)

Dural
Tissue (1 m2)

Resected from de-
compressive craniec-
tomy

Flow, ex vivo assays 5 males,
1 female

ILC1: 
CD45+Lin−CD127+CD161+ 
NKp44+, produce IFNγ;
ILC2: CD45+Lin− CD127+ 
GATA3+ CRTH2+, produce 
IL-5/IL-13;
ILC3: CD45+ Lin− CD127+ 
RORγt+AhR+, produce IL-17

[298]
2021
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Table 3  Meningeal insights in pre-clinical models of traumatic brain injury

TBI model Animal/Age/Sex Interval time Tissue/Cell type Injury-induced meningeal 
signature

Refs

Thinned skull, manual 
blade compression mTBI

Male, Female
C57Bl/6J mice
(8–12 wks)

6 h, 1 d, 4 d Whole mount meninges, 
QPCR analysis

At 6 h, 1 d ↑Cxcl1 (neu-
trophils), ↑Ccl2, Ccl12 
(CCR2himonocyte) ↑Cxcl10, 
Il1β
At 1 d, 4 d↑ vascular leakage
At 4 d ↑wound-healing 
CD206+ Lyve-1+ mac-
rophages

[293]
2018

Photo-thrombotic injury C57Bl/6J mice
(8–10 wks)

1 d, 7 d, Whole mount dura and pia, 
Dura–RNA & protein

Dura mater revascularization 
by 7 d post injury

[297]
2020

Adapted CCI hit and run 
(closed head, 2 mm, 
5.2 m/s, dwell time 100 ms)

Male, Female
C57Bl/6J mice
(8–10 wks)

2 h, 1 d, 4 d, 1  w, 
2 w, 1 m, 2 m

Whole mount meninges 
& dCLN

At 2 h, 1 d, 4 d, 1 w, 2 w, 1 m 
↓ MLVs drainage to dCLN. At 
2 m drainage restored
At 1 w, 2 w↑Lyve1 coverage, 
at 1 m, 2 m ↑loops/com-
plexity

[309]
2020

Thinned skull, manual 
blade compression mTBI

Male, Female
C57Bl/6J mice
(8–12 wks)

1 d, 3 d, 4 d,5 d, 7 d Whole mount meninges At 1 d ↓endothelial vascular 
integrity. Revascularization 
at 3 d, 5 d,7 d. Inhibited 
by infection
At 1 d, 3 d, 4 d and 7 d ↑ 
CD11b+, CD206+ myeloid 
cells

[321]
2021

CCI (3 mm, 3 m/s, dwell 
time 85 ms)

Male
C57Bl/6J mice
(9–10 wks)

1 d, 7 d, 1 year Meninges,
Meningeal ILCs
(Innate lymphoid cells)

At 1,7d ↑ILC1-3. At 1y ↑ILC2/3
Metabolic dysregulation 
with ↓AMPKα1 at 1d
*CCI + IL-33 (1μg) ↑pAMPKα

[298]
2021

CHIMERA (single × 1 & 
repeat × 4)

Male, Female C57Bl/6 
mice (6–7 wks)

1 d, 7 d Whole brain MRI At 1d & 7d ↑ meningeal 
enhancement in both single 
and repeat impacts

[305]
2022

CCI (0.5 mm or 1 mm, 
5 m/s, d well undisclosed)

Male
C57Bl/6J mice
(9–10 wks)

3 dpi, 6 wks Dura mater–RNAseq,
Whole mount meninges

3dpi - ↑CD45+ myeloid (B 
cell) & CD11b+ cells
6 wks - ↑Ccl8, Il1β, Ccl2 
Ccl7 ↑immune pathways, 
including interferon gamma 
response

[316]
2022

CCI (2 mm, velocity undis-
closed)

Male
C57Bl/6 mice
(10 wks)

3 d Meningeal lymphatic 
endothelial cells (LECs)

Flow cytometry ↓ Lyve1 LECs
Microarray ↑ DEGs involved 
in FCERI signaling, antibody-
mediated complement, 
Inflammatory response

[307]
2022

Adapted CCI hit and run 
(closed head, 2 mm, 
5.2 m/s, dwell time 100 ms)

Male
C57Bl/6J mice
(8–12 wks & 20 months)

7 d, 1.5 m Whole mount meninges
Meninges for bulk & 
scRNA-seq

At 7d, ↑DEG s related 
to macrophages, fibroblasts, 
and adaptive immune cells. 
↑IFNβ, IRF5, IFNAR1
At 1.5m ↑ collagen, fibro-
blasts ↑T/B cell DEG. Aging 
amplified

[302]
2023

FPI (11°, 2.6 ± 0.16 atm) Male, Sprague–Dawley 
rats

7 d Whole mount meninges 
& dCLN

*FPI ↓MLVs drainage to dCLN
↓Lyve1, Prox1, Foxc2, VEGFR3
*FPI + VEGF-C/Ketoprofen/
RA improves Lyve1 + dCLN 
drainage

[304]
2023

CCI (1.5 mm, 3m/s, d well 
time 120 ms)

(8–10 wks) 4 d, 7 d,
14 d

Whole mount meninges 
& dCLN

*CCI ↓MLVs drainage to dCLN 
4 d, 7 d,14 d. ↑Lyve1 7 d
*CCI + VEGF-C 156S&EVs@Gel 
restores dCLN drainage

[306]
2023
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fluid percussion injury (FPI). MRI of a closed-head 
impact model of engineered rotational acceleration 
(CHIMERA) shows meningeal enhancement 7d after 
single and repeat injury, reflecting clinical observations 
[305]. Controlled cortical impact (CCI) in mice pre-
sents mixed findings: Lyve-1+ morphology is increased 
at 7 d (impact 1.5 mm) [306], with contrasting studies 
showing decreases at 3  d (impact 2  mm) [307], and 1 
month (impact undisclosed) [308], highlighting the 
nuanced and variable nature of spontaneous lymphang-
iogenic responses across varied mechanisms of impact 
and injury parameters. Regardless, if plasticity of the 
lymphatic network can be induced, it may be beneficial 
to improve outcomes (Fig. 2). Indeed, across models of 
TBI, overexpression of VEGF-C drives lymphangiogen-
esis, enhances functional drainage and improves injury 
induced neurological deficits, including those seen in 
aged animals [303, 304, 306, 308–310].

The meningeal interface influencing TBI induced 
immunological responses
TBI‑induced meningeal damage
The meninges host a diverse array of immune cells, as 
previously outlined, yet the precise details of their loca-
tions (whether in the leptomeninges or dura) and traf-
ficking patterns in TBI still remain largely unknown. 
Initial studies at the meningeal interface classified the 
nature of damage to the barrier itself, followed by the 
temporal response to direct meningeal injury. Acutely, 

closed head meningeal compression injury (achieved by 
a unique skull thinning model) is characterized by rapid 
meningeal macrophage cell death attributed to vascular 
leakage and the release of reactive oxygen species [119], 
and also causes secondary damage to the glial limitans 
and brain parenchyma within the first few hours [119, 
293]. The initial injury is followed by neutrophil swarm-
ing into the meninges (within 1 h), that is essential for 
regeneration of the initially damaged glial limitans [119]. 
Elevated proinflammatory cytokines IL1α/IL1β are seen 
in the meninges at 6 h to 1 d, as well as the chemoattract-
ants Cxcl1 (neutrophils) and Ccl2/Ccl12 (monocytes) 
[293]. Over the course of a week after injury, infiltrating 
myeloid cells (CX3CR1lo–negCCR2hi monocytes) scavenge 
dead cells at the meningeal lesion core, while wound-
healing macrophages (CX3CR1hiCCR2lo–negCD206+) 
proliferate along the lesion perimeter to promote angio-
genesis through the clearance of fibrin and production of 
MMP-2 [293]. These studies at the level of the meninges 
evidenced the importance of the previously unexplored 
barrier immunity, setting the stage to address bi-direc-
tional interactions containing both extra-axial meningeal 
cascades and intra-axial brain parenchyma responses.

Modulating meningeal lymphatics in TBI
Impairment studies shed more light on how the menin-
geal compartments influence CNS responses, with abla-
tion of mLVs exacerbating resident glial cell (GFAP+, 
IBA1+) immunoreactivity, increasing complement, 
reducing neuronal health markers and which collectively 

Table 3  (continued)

TBI model Animal/Age/Sex Interval time Tissue/Cell type Injury-induced meningeal 
signature

Refs

FPI (1.9 ± 0.2 atm) Male, Female C57Bl/6 
mice (8–10 wks)

3 d Whole mount meninges 
& dCLN

*FPI ↓MLVs drainage to dCLN 
↓Lyve1, ↓VEGFC/VEGFR3
*FPI + IL-33 (i.c.m, 20ng/μl, 
5 μl), restores dCLN drainage, 
Lyve1, VEGFC/VEGFR3

[303]
2023

CCI (2 mm, 3.5 m/s, dwell 
time 500 ms)

Male
C57Bl/6 mice (3 months)

28 d Regrown cavity leptome-
ninges (pia, arachnoid)

Brain Fibroblasts (BFB 2–5)
↑Fmod (BFB2/3), ↑Dpp4 
(BFB4), ↑Slc47a1 (BFB5) (drug 
transporter)

[184]
2023

CCI (depth,
velocity, undisclosed)

Male
C57Bl/6 mice (6–10 wks)

28 d Whole mount meninges *CCI ↓Lyve-1 area at 28d
*CCI+ pVEGFC (i.v 50µg 
@1 d, 3 d, 5 d) restores Lyve1 
(lymphangiogenesis)

[308]
2023

CCI (1.5 mm, 5.25 m/s, 
dwell time 100 ms)

Male
C57Bl/6J mice
(8–12 wks & 18–19 m)

7 d, 1 m Meningeal bulk RNA-seq At 7d ↑laminin, collagen 
and T-cell DEGs. ↑ TGFβ, IFNα.
At 1 m ↑immunoglobulin 
production and B cell DEGs. 
↑Ccr2 (young), IL-33 (aged) 
upstream regulators. ↑IFNα/β

[317]
2023

CCI: controlled cortical impact; FPI: fluid percussion injury; MLVs: meningeal lymphatic vessels; dCLN: deep cervical lymph nodes; meningeal lymphatic endothelial 
cells (LECs); CHIMERA: closed-head impact model of engineered rotational acceleration; ILCs: innate lymphoid cells



Page 14 of 22Mokbel et al. Journal of Neuroinflammation          (2024) 21:135 

influenced cognitive outcomes [309]. Furthermore, 
administration of the pro-lymphangiogenic VEGF-C to 
aged mice reduced brain gliosis and improved cognition. 
Integrating adaptive immunity, TBI induces the accumu-
lation of Granzyme B+ CD8+ cytotoxic T cells, a response 
preceded by increases in IL-17-producing CD4+ T cells 
and IFNγ-producing CD4+ T cells [311]. This sequence is 
significant, given Th17 cell responses through IL-17 and 
IL-21, can enhance the cytotoxic capability of CD8+ T 
cells [311]. In K14-VEGFR3-Ig (TG) mice that have defec-
tive growth and lack mLVs alongside sclerotic dCLNs, 
a reduction in the perilesional infiltration of T-cells is 
observed [312]. Specifically, TBI-K14-VEGFR3-Ig mice 
show reduced levels of infiltrating CD4+ T cells, suggest-
ing that trauma induced brain-derived antigens may be 
partially drained through the mLVs to the dCLNs to elicit 
Th-2 mediated responses [312]. Indeed, lymphatic vessels 
and LECs themselves play a direct chemoattractant role 
in the maturation of T cells, turning naive T cells into a 
memory-like subset of quiescent yet antigen-experienced 
CD8+ cells that can rapidly differentiate into an effector 
upon inflammatory antigenic challenge [313]. Dendritic 
antigen presenting cells can also survey the inflamma-
tory CNS milieu, traverse the mLVs in a CCR7, CCL19 
and CCL21 manner, and interact with T cells in the 
dCLNs. During trauma, DCs are elevated and influence 
post-injury immune responses [129, 259, 314, 315], yet 
this meningeal migration of DCs downstream activation 
of adaptive immune responses hasn’t been studied in the 
context of TBI.

Insights from transcriptomic approaches
In order to gain a greater understanding of the cell spe-
cific responses that occur in the meninges after TBI, we 
and others have taken a transcriptomic approach [184, 
302, 316, 317]. scRNA-seq shows increased meningeal 
macrophages, CD8+T cells, T helper cells Th2 and Th17, 
immature-mature B cells, dendritic cells, and fibroblasts 
in meningeal compartments at 1-week post injury [302]. 
Similarly, we identified time dependent alterations in the 
meningeal transcriptome. T-cells respond acutely, fol-
lowed by chronic B-cell and immunoglobulin production 
in an age dependent manner, which may be regulated 
by upstream Type-1 IFNs, Ccr2 and IL-33 interactions 
[317]. Supporting this, meningeal macrophages dis-
play strong type-1 IFN signatures (elevated IFNβ and 
IRF5) and sub cluster into “inflammatory” and “resolu-
tion” classes [302]. Resolution macrophages express of 
antigen presentation-related genes (H2-Eb1, H2-Ab1, 
H2-Aa, Cd74) and anti-inflammatory genes Stab1, Nrros, 
and Dab2 which are involved in suppression of type I 
IFN responses. Conversely, meningeal inflammatory 

macrophages are defined by their expression of Ccr2 and 
chemotaxis genes Ccr7, Ccl22, and Ccl5.

Future avenues for neuroimmune investigation
These seminal pre-clinical studies of the meningeal 
response after TBI prompt numerous inquiries for future 
investigation within the field of neurotrauma. Not only 
do the meninges harbor immune cells that contribute 
to a vast array of responses, the mLVs play a crucial role 
as the waste-removal system in draining CSF, ISF, and 
CNS-derived molecules from the brain parenchyma to 
the dCLNs. The effect of their damage caused by pri-
mary injury and how that influences removal of proteins 
such as Aβ and tau remain to be characterized. Addi-
tionally, stratification of the level of damage to the LVs, 
subsequent lymphangiogenic recovery, and the effect on 
the flow of CSF throughout the brain is still to be char-
acterized. Transcriptomic studies suggest inflammatory 
molecules may regulate meningeal derived inflamma-
tory responses, particularly chemokines. Indeed, modu-
lation of the CCR2-CCL2 signaling axis in TBI has been 
shown to be beneficial [77, 318–320]. CCL2−/− mice 
show delayed reductions in lesion size beginning at 28 
days post injury. It might be postulated that this delayed 
response may be due to deficiency in meningeal mLV 
acutely, prior to lymphangiogenic recovery, in combi-
nation with altered CCL2 chronic immune responses. 
Indeed, CCR2−/− mice show altered monocyte/mac-
rophage influx and reduced crosstalk with innate cells, 
inhibiting the generation of type-1 IFN microglial 
responses after TBI, with pharmacological blockade of 
CCR2 improving cognitive outcomes at 28-day time-
points [318, 319]. Populations of macrophages after TBI 
were Mrc1+ Lyve1+ [319] suggesting microglial cross 
communication between meningeal cells, and as of now 
investigations into TBI mediated CCR2-CCL2 axis at the 
mLV immune interface are yet to be conducted, poten-
tially warranting future investigation.

Alongside CCL2, CCL7 has been observed in the 
meninges single TBI [316]. CCR7 is expressed in a vari-
ety of peripheral immune cells including DCs and T-cells. 
Given CCR7+ immune cells migrate to the dCLNs via a 
CCL19 and CCL21 chemokine gradient (Brandum et al., 
2021), suggests the potential DCs (that have phagocy-
tosed TBI-induced antigens) and naïve T-cells migrate 
into LVs and dCLNs and present antigens to naïve CD8+ 
T-cells and CD4+ T-cells and activate them in response 
to TBI. Future studies investigating this potential using 
agonists/antagonists or conditional CCR7Ko models 
may be of interest to examine pathway influences neu-
roimmune outcomes and cognition in TBI, similar to 
that observed in 5xFAD models [239]. Most importantly, 
these questions may be influenced by factors like age, 
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sex, and injury severity. Future studies should incorpo-
rate these variables to stratify the immune response at 
the meningeal interface following traumatic brain injury 
(TBI).

Conclusions
TBI introduces a complex interplay between neuroin-
flammatory responses and immune dysregulation. We 
now understand that the meninges play a role in modu-
lating this neuroinflammatory response, serving as the 
interface between the brain and the immune system; 
however, we still do not fully understand the mecha-
nisms underlying prolonged neuroinflammation or how 
the temporal progression of damage to the meningeal 
lymphatic vessels influences cell trafficking and resolu-
tion. After TBI, immune cells (monocytes, macrophages, 
neutrophils) are available at the meningeal interface to 
immediately influence the brain, and infiltrating cells 
such as T and B cells can still be found in the brain and 
meningeal interface months following the injury. Does 
the presence of meningeal immune cells and the solu-
ble factors released in response to trauma signal to, and 
amplify, the innate microglial responses? Are these cells 
being constantly trafficked into the brain, attracted by 
continuous damage signals? Do invading immune cells 
enter the CNS to mediate damage, but are unable to exit 
due to trauma-induced mLV dysfunction? Targeting the 
ability of immune cells to enter the CNS in response to 
injury, enhancing their ability to drain from the CNS, and 
gaining a better understanding of the crosstalk between 
the brain, meninges, and dCLN will allow us to harness 
the power of the immune system to enhance recovery 
from TBI.
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