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Tregs dysfunction aggravates postoperative 
cognitive impairment in aged mice
Yile Zhou1†, Huihui Ju1†, Yan Hu1†, Tingting Li2,3, Zhouyi Chen1, Yuan Si4, Xia Sun5*, Yi Shi2,3*    and Hao Fang1,4* 

Abstract 

Objectives  Enhanced neuroinflammation is an important mechanism underlying perioperative neurocognitive dis-
orders. Regulatory T cells (Tregs) play a crucial role in regulating systemic immune responses. The present study was 
aimed to investigate the participation of Tregs in the development of postoperative cognitive dysfunction (POCD).

Methods  Surgery-associated neurocognitive disorder was induced in 18-month-old mice subjected to internal fixa-
tion of tibial fracture. Morris water maze was used to examine mice cognitive function. Splenic Tregs were collected 
for RNA sequencing and flow cytometry. Levels of inflammatory factors in the circulation and hippocampus were 
measured by enzyme-linked immunosorbent assay. Protein presences of tight junction proteins were detected by 
immunofluorescence.

Results  Surgery of internal fixation of tibial fracture induced cognitive impairment in aged mice, accompanied by 
elevated plasma levels of inflammatory factors and increased circulating Tregs. Transfusion of Tregs from young mice 
partially restored the structure of the blood–brain barrier and alleviated POCD in aged mice. Compared with young 
Tregs, differentially expressed genes in aged Tregs were enriched in tumor necrosis factor (TNF) signaling pathway 
and cytokine–cytokine receptor interaction. Flow cytometry revealed that aged Tregs had blunted functions under 
basal and stimulated conditions. Blockade of the CD25 epitope protected the blood–brain barrier structure, reduced 
TNF-α levels in the hippocampus, and improved surgery-associated cognition in aged mice.

Conclusions  Blocking peripheral regulatory T cells improves surgery-induced cognitive function in aged mice. There-
fore, aged Tregs play an essential role in the occurrence of POCD.
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Introduction
Postoperative cognitive dysfunction (POCD) is presented 
with impaired learning capacity, memory loss, confu-
sion, anxiety, and personality changes. It is reported that 
25.8% of patients exhibit some cognitive disorder in the 
1st week after surgeries, of which 9.9% of senile patients 
remain cognitive impairment longer than 3  months [1]. 
Aging is a critical risk factor for the occurrence of POCD, 
as suggested by its features of cognitive impairment 
which are comparable to those in disease conditions, 
including neurodegenerative disease [2, 3].

The blood–brain barrier (BBB) provides primary pro-
tection for the central nervous system (CNS) against 
pathological stimuli [4]. Tight junction proteins in vas-
cular endothelial cells of the BBB, including claudin1 
and claudin5, is crucial for preventing harmful solutes 
from passing to the central nervous system [5]. Reduced 
expressions of junction proteins alter the permeability of 
the blood–brain barrier, resulting in overspills of plasma 
proteins and invasion of peripheral cells as well as patho-
gens [2, 6, 7]. The presence of lymphocytes in the brains 
of Alzheimer’s patients [8] and aged mice [9] is associ-
ated with a disruption of the blood–brain barriers, lead-
ing to sterile neuroinflammation in the central nervous 
system. Of importance, elevated levels of interleukin-6 
(IL-6), C-reactive protein, and chitinase 3-like protein 
in cerebrospinal fluid of aged patients [10] are positively 
correlated with their cognitive disorders [8], suggesting 
that chronic neuroinflammation takes part in cognitive 
impairment [11–13].

Regulatory T cells (Tregs), characterized by high 
expressions of cluster of differentiation 4 (CD4), CD25 
(also known as interleukin 2 receptor alpha), and fork-
head box protein P3 (Foxp3), play an obligatory role in 
immune homeostasis by suppressing excessive immune 
responses [14]. However, the role of Tregs in the central 
nervous system is inconclusive [15, 16]. In Alzheimer’s 
mice, transient depletion of Tregs promotes β-amyloid 
plaque clearance by inducing leukocytes recruitment 
through the choroid plexus [17], but accelerates memory 
loss by limiting the recruitment of microglia toward amy-
loid plaques [18]. It is also reported that Tregs inhibit 
astrogliosis and promote neural recovery [19], but impair 
cerebral microvasculature [20] in a mouse stroke model.

Thus, the present study was designed to investigate the 
participation of Tregs in a mouse POCD model subjected 
to tibial fractures internal fixation surgery.

Materials and methods
Animals
Male C57BL/6 mice, 18-month-old and 10-week-old, 
were purchased from Shanghai Jiesijie Company (Shang-
hai, China). B6.129(Cg)-Foxp3tm4(YFP/icre)Ayr/J (Foxp3YFP) 

transgenic mice were used on the C57BL/6 background 
(Cyagen, China). Mice had free access to food and water. 
All animals were housed separately under specific path-
ogen-free conditions with 12-h light/dark cycles in the 
Laboratory Animal Unit of Zhongshan Hospital, Fudan 
University (Shanghai, China). The experimental design 
was approved by the Animal Ethics Committee of 
Zhongshan Hospital, Fudan University [SYXK (Shanghai) 
2021-#0022].

POCD model and Tregs intervention
The POCD model was built by conducting internal fixa-
tion of tibial fractures as previously described [13]. 
Briefly, mice were anesthetized with 1% sodium pento-
barbital (8  mg/kg, intraperitoneal injection). A 0.3–
0.6 cm vertical incision was made near the tibial tubercle, 
followed by a needle insertion into the tibial tubercle. 
After the surgery, butorphanol (2  mg/kg) was adminis-
tered subcutaneously to relieve the pain.

To block Tregs function, an anti-CD25 antibody 
(500  µg/mouse; 553864, BD Pharmingen, USA) and its 
isotopic antibody were administered intraperitoneally 
[21, 22] (Fig. 1A).

To increase peripheral Tregs, all-trans-retinoic acid 
(ATRA, 8  mg/kg for young mice, 4  mg/kg for aged 
mice; R2625, Sigma, Germany) was injected intra-
peritoneally every 48  h for a week. [23] Four injec-
tions of ATRA significantly increased counts of splenic 
CD4+CD25+Foxp3+ Tregs, but not CD4 or CD8 cells 
in young mice. However, ATRA had lethal effects on aged 
mice (Additional file 1: Fig. S1A–C). Therefore, transfu-
sion of Tregs was used to increase peripheral Tregs in 
the present study. Splenic Tregs from young or aged mice 
were isolated by a regulatory T cell isolation kit (130-
091-041, Miltenyi Biotec, Germany) and verified by flow 
cytometry (Additional file  1: Fig. S2). A total of 2 × 106 
Tregs were intravenously injected through the tail vein 
1 day before the surgery [24]. Aged mice were transfused 
with Tregs from young or aged mice (Fig. 1A).

Morris water maze
The hippocampus-dependent spatial learning and mem-
ory capacity were examined by the Morris water maze 
test [2, 25, 26]. In brief, mice were acclimated to the maze 
for 3  days. Spatial acquisition training was conducted 
for 5 consecutive days (D3–D7). In the Morris test (D8), 
swimming paths, counts of the target platform crossing, 
and time spent on each quadrant were documented (Jil-
iang, China) (Fig. 1A).

Flow cytometry
To obtain Tregs from spleens, spleens were carefully 
collected after mice were anesthetized. The spleens 
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were grounded and filtered through a 70  µm filter for 
single-cell suspensions. Tregs were incubated with 
surface antibodies and viability stain (565388, BD 
Pharmingen, USA) for 30 min at 4 °C. After permeabili-
zation with Foxp3/Transcription Factor Staining Buffer 
(00-5523-00, Thermo Fisher, USA), the cells were fur-
ther incubated with intracellular antibodies for 30 min 

at 4  °C (Table  1). A separate group of cells was chal-
lenged with a leukocyte activation cocktail (0.2  µl/106 
cells; 550583, BD Pharmingen, USA) containing phor-
bol 12-myristate-13-acetate (PMA), ionomycin, and 
brefeldin-A for 4 h, following the protocol of the manu-
factory. The flow cytometry assays were performed on a 
BD FAC Symphony (BD Germany).

Fig. 1  Aged mice have impaired cognitive function after surgery. A Experimental scheme of the research. B Escape latency of young and old mice 
after surgery. C Number of crossing the target platform of young and old mice after surgery. *P < 0.05 n = 6–9. D Representative tracing in the 
swimming pool on the test day. Yellow blocks in the pool indicated the target platform in the acquisition training. E, F. Number of peripheral Tregs 
in young and old mice after surgery. *P < 0.05 n = 5–7

Table 1  Antibody for flow cytometry

Panel 1 Panel 2

Antibody Product Antibody Product

Fixable viability stain BD Pharmingen-565388 Fixable Viability Stain BD Pharmingen-565388

CD4 BD Pharmingen-563106 CD4 BD Pharmingen-563106

CD25 Biolegend-102033 CD25 Biolegend-102033

FOXP3 eBioscience-25-5773-80 FOXP3 eBioscience-25-5773-80

CCR4 Biolegend-131219 5’-NT Biolegend-127205

CTLA-4 BD Pharmingen-565778 Granzyme B Biolegend-372215

IL-2 Biolegend-503829 Helios Biolegend-137204

IRF-4 BD Pharmingen-566649 IL-10 Biolegend-505031

LAG-3 BD Pharmingen-740959 Perforin-1 Biolegend-154303

LRRC32 Biolegend-142905 TNFRSF4 BD Pharmingen-740545

NTPDase 1 Biolegend-143811 TNFRSF18 BD Pharmingen-741020

PD-1 Biolegend-135213 TGF-β1 Biolegend-141409
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Enzyme‑linked immunosorbent assay (ELISA)
Mice hippocampal tissue (10  mg) or plasma (100  µl) 
were collected for ELISA. Levels of cytokines in plasma 
and hippocampal tissues were measured using Bioplex 
suspension chip reagent Bio-Plex Pro Mouse Cytokine 
23-plex (M60009RDPD, Biorad, USA) and normalized 
with protein concentration in samples.

Gene‑expression profiling assay
Gene-expression profiling assays on splenic Tregs, col-
lected from both young and aged mice, were performed 
by the Shanghai Institute of Immunology. The gene 
expression files were analyzed with R-3.4.1 software. Dif-
ferentially expressed genes (DEGs) were defined when 
an adjusted P value was less than 0.05. DEGs were calcu-
lated with the limma package [27]. Database for Anno-
tation, Visualization and Integrated Discovery (v6.8) was 
used to analyze gene function and potential pathways 
[28]. Bubble Plots were performed by the ggplot2 pack-
age [29]. Ligand–receptor interaction analysis was per-
formed using the iTALK package [30].

Immunofluorescence
To examine the blood–brain barrier permeability, 40 kDa 
dextran (20–25  mg/kg; D1829 Thermo Fisher, USA) 
was injected via the tail vein 24 h before the euthaniza-
tion. After anesthetizing with pentobarbital, the mice 
were transcardially perfused with 40  ml ice-cold PBS 
for 20  min. Brain samples were dehydrated in the 30% 
(w/v) sucrose solution and embedded in an optimum 
cutting temperature compound (OCT, 4583, Sakura, 
USA). The frozen brain tissue was prepared in 5-μm 
thickness. Brain slides were blocked with 5% goat serum 
and then incubated with primary antibodies, anti-CD31 
(24590, Abcam, UK), anti-claudin1 (15098, Abcam, 
UK), and anti-claudin5 (15106, Abcam, UK), overnight 
at 4 °C. On the 2nd day, slides were incubated with sec-
ondary antibodies for 1 h at 37  °C. Nuclei were stained 
with 4′,6-diamidino-2-phenylindole (DAPI) for 10 min 
at 37 °C. Images were taken using a fluorescence micro-
scope (Olympus BX51, Japan).

The presence of Tregs in the hippocampus was exam-
ined by immunofluorescence in two approaches. Tregs 
from Foxp3YFP mice, in which the Foxp3 protein was 
knocked in a yellow fluorescent protein, were injected 
into aged mice subjected to the surgery. The YFP sig-
nal was detected in the choroid plexus, but not the hip-
pocampi of the mice. (Fig. 1A, Additional file 1: Fig. S3). 
In addition, brain slides were also incubated with primary 
antibodies, anti-CD4 (557307, BD, USA) and anti-Foxp3 
(NB100-39002SS, Novus, USA).

Statistical analysis
Prism 9 (GraphPad, USA) software was used in the pre-
sent study. Data are presented as means ± SEM. Flow 
cytometry data were analyzed with FlowJo v10.0.8 (BD, 
USA). The statistical analysis was done by one-way 
ANOVA followed by post hoc Bonferroni comparison. 
The comparison between Tregs with or without PMA/
Ionomycin stimulation was performed by paired t test. 
P < 0.05 was considered statistically significant.

Results
Aged mice subjected to the surgery exhibit cognitive 
dysfunction
In the acquisition course, surgery significantly increased 
escape latency in aged mice, but not young mice (Fig. 1B). 
In the maze test, the surgery did not affect cognitive 
scores in young mice, but significantly reduced target 
platform crossings in aged mice compared with their age-
matched counterparts (Fig. 1C, D).

In aged mice, but not young ones, the surgery of inter-
nal fixation of tibial fractures significantly increased 
splenic Tregs, and the increase occurred since day 1 
(Fig. 1E, F).

In the maze test, aged mice transfused with young 
Tregs had more crossings on the target platform than 
those transfused with aged Tregs (Fig.  2A, B). Transfu-
sion with young Tregs, but not aged Tregs, increased 
protein presence of junction protein claudin1 and clau-
din5 in the CA3 region of the hippocampus of aged mice 
(Fig.  2C-F). Transfused Tregs were not detected in the 
hippocampi of aged mice (Additional file  1: Fig. S3). In 
addition, transfusion with young Tregs accelerated the 
swimming speed of aged mice (Additional file 1: Fig. S4).

Of note, ARTA administration, a pharmacological 
approach to increase peripheral Tregs, had lethal effects 
on aged mice (Additional file 1: Fig. S1).

Aged mice possess impaired Tregs
To explore Tregs functions in aging, splenic Tregs of 
young and aged mice were collected for RNA-sequencing 
and flow cytometry.

A total of 2910 DEGs were identified in Tregs of young 
and aged mice (Fig.  3A). Kyoto Encyclopedia of Genes 
and Genomes pathway analysis revealed that DEGs 
were enriched in cytokine–cytokine receptor interac-
tion, Chagas disease, tumor necrosis factor (TNF) sign-
aling pathway, Salmonella infection, and NF-kappa B 
signaling pathway (Fig. 3B). Ligand–receptor interaction 
analysis confirmed that TNF was paired with upregu-
lated tumor necrosis factor receptor superfamily mem-
ber (TNFRSF) 1B and downregulated TNFRSF21, while 
upregulated TNFSF13B was paired with downregulated 
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TNFRSF13C. In addition, increased expressions of trans-
forming growth factor-β1 (TGF-β1) corresponded with 
downregulated TGF-β1 receptors 1 and 2 (TFGBR1 and 
TGFBR2). Interleukin (IL)-1β, IL-12, and IL-17 were 
paired with IL-1 receptor2 (IL-1R2), IL-12 receptor B1 
(IL12B1), and IL-17 receptor (IL17RA), respectively. C–C 
motif ligand (CCL) 3 was paired with downregulated 
C–C motif chemokine receptor (CCR) 3 and CCR4, as 
well as upregulated CCR1 and CCR5. CCL4 was paired 
with downregulated CCR4 and upregulated CCR1, 
CCR5, and CCR8 (Fig. 3C).

Flow cytometry revealed that aged mice had higher 
counts of CD4+CD25+Foxp3+ Tregs and CD4+CD25-
Foxp3+ cells than their young counterparts. Under the 
basal condition, compared with young mice, aged mice 
had increased protein expressions of 5′-nucleotidase (5′-
NT), CCR4, IL-10, ectonucleoside triphosphate diphos-
phohydrolase 1 (NTPDase 1), programmed cell death 
protein 1 (PD-1), and TNFRSF18, reduced expressions 
of interferon regulatory factor-4 (IRF-4) and leucine-
rich repeat-containing 32 (LRRC32), and unchanged 

expressions of cytotoxic T-lymphocyte protein 4 (CTLA-
4), IL-2, zinc finger protein Helios, lymphocyte activa-
tion gene 3 protein (LAG-3), and TNFRSF4. Combined 
stimulation of PMA and ionomycin induced compara-
ble expressions of CCR4, CTLA-4, Granzyme B, IRF-
4, LRRC32, and TNFRSF18 in Tregs of both young 
and old mice. The stimulation did not increase 5′-NT, 
NTPDase 1, IL-10, Perforin-1, TGF-β1, or TNFRSF4 
protein expressions in the aged Tregs. The simulation 
significantly increased IL-2 expression in aged, but not in 
young, ones (Fig. 4, Additional file 1: Fig. S5).

Blocking the CD25 molecule improves cognitive function 
in aged mice subjected to surgery
Taken together with data on Tregs dysfunction in aged 
mice and their impaired cognitive performance, it is plau-
sible that Tregs play a role in the occurrence of POCD in 
aged mice. To further study the participation of Tregs in 
POCD, the anti-CD25 antibody was applied in aged mice 
[31, 32]. Blockade of CD25 did not affect the body weight 

Fig. 2  Tregs transfusion changes mice cognitive function and structure of the blood–brain barrier. A Escape latency of old mice with Tregs 
transfusion. B Counts of crossing the target platform of old mice with Tregs transfusion. *P < 0.05 n = 6. Quantification of claudin1 (C) and claudin5 
(D) in the CA3 region of the hippocampus. Representative immunofluorescence signals of claudin1 (E) and claudin5 (F). DAPI labeled the nuclei 
(blue), CD31 labeled endothelial cells (red), and claudin1 or claudin5 stained green. Magnification, ×200, *P < 0.05 n = 6
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or general condition in aged mice (Additional file 1: Fig. 
S6).

Blocking CD25 reduced the escape latency in aged 
mice compared with those administered with the iso-
topic antibody (Fig. 5A). In the Morris test, administra-
tion with the anti-CD25 antibody significantly increased 

crossing counts in the target platform than those with the 
isotopic antibody (Fig. 5B, C).

The surgery transiently increased plasma levels of 
IL-1β, IL-6, IL-10, TNF-α, granulocyte–macrophage 
colony-stimulating factor (GM-CSF), interferon-γ (IFN-
γ), CCL2 and C–X–C motif chemokine 1 (CXCL1) 

Fig. 3  Aging changes Tregs function. A Heatmap of top 100 DEGs in splenic Tregs. B Top 20 pathways of DEGs in KEGG analysis. C Cytokine–
cytokine receptor interactions prediction network with DEGs. Upregulated genes in red and downregulated genes in blue. Arrow links ligand and 
its pertinent receptors
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expression on day 1. Blockade of the CD25 epitope 
increased plasma TNF-α level when compared with the 
isotopic antibody, but did not affect plasma levels of 
other inflammatory factors (Fig. 5D, E. Additional file 1: 
Fig. S7).

In mouse hippocampus, the surgery significantly and 
consistently increased IL-3, IL-4, IL-5, IL-6, IL-10, IL-12, 
IL-17, TNF-α, GM-CSF, IFN-γ, CCL2, CCL3 and CXCL1 
levels. Blockade of the CD25 epitope partially reduced 
IL-3, TNF-α, and CXCL1 levels in the hippocampus of 

aged mice but did not affect levels of other inflammatory 
factors (Fig. 5D, E, Additional file 1: Fig. S7).

Fluorescent signals of Tregs, CD4, CD25, or Foxp3, 
were not detected in the brain in young or aged mice sub-
jected to the surgery (Additional file 1: Fig. S3).

BBB permeability was evaluated by fluorescent signals 
of low-molecule dextran in hippocampi. The signal of 
low-molecular dextran was observed in the hippocam-
pus of aged mice subjected to the surgery. Compared 
with isotopic antibody administration, CD25 blockade 

Fig. 4  Changes of candidate proteins in Tregs under basal and stimulated conditions. A Tregs and CD25-Foxp3 cells proportion in CD4+ cells. 
Changes of candidate proteins B 5-NT, C CCR4, D CTLA-4, E GranzymeB, F IL-2, G IL-10, H IRF-4, I LRRC32, J NTPDase, K PD-1, L Perforin-1, M TGF-β, N 
TNFRSF4, and O TNFRSF18 in Tregs under basal and stimulated conditions. *P < 0.05 n = 6
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significantly reduced the fluorescent signals (Fig.  6A). 
The junction protein, claudin1 and claudin5, were co-
localized with CD31+ endothelial cells in the CA3 region 
of the hippocampus. The surgery significantly reduced 
the protein presence of junction proteins in mice admin-
istrated with the isotype antibody. Compared to the 
isotope antibody group, CD25 blockade significantly 
increased the protein presence of claudin1 and claudin5 
(Fig. 6B, C).

Discussion
The present study reports that aging deteriorates Tregs 
function and impacts mice cognition when subjected 
to the surgery of internal fixation of tibial fractures. The 
surgery-associated cognitive impairment in aged mice 
contributes to the disruption of the blood–brain barrier 
and enhanced sterile inflammation in the central nerv-
ous system. Blocking the CD25 epitope protects the 

blood–brain barrier, downregulates inflammation in the 
hippocampus, and restores cognitive function.

Taken into consideration that aged mice had worse 
cognition than young mice [2, 25], the present study 
reported that surgery further deteriorates cognitive func-
tion in aged mice, supporting the notion that surgery, 
as an exogenous stimulus, is a potential risk of cogni-
tive dysfunction in the geriatric population [33, 34]. The 
involvement of Tregs in the development of cognitive 
impairment was first reported in 2006 [35]. Tregs func-
tion was modified by aging, as shown by the abundant 
differently expressed genes which have extensive involve-
ment in biological processes and the altered responses 
to stimuli in flow cytometry examination. Together with 
increased counts of peripheral Tregs upon the surgery, 
the findings imply that aged Tregs participate in the 
development of cognitive dysfunction [36, 37]. Indeed, 
transfusion with young Tregs partially restores cognition 
in aged mice. Noted, blocking the CD25 epitope [38], the 

Fig. 5  Tregs ablation restores POCD in aged mice. A Escape latency in mice. B Number of crossing the target platform. C Representative tracing in 
the swimming pool on the test day (D8). D Protein expression of TNF-α of mice plasma and hippocampi after the surgery. E Protein expression of 
CXCL1 of mice plasma and hippocampi after the surgery *P < 0.05 vs. D0, #P < 0.05 vs. Surgery + IgG on the same day. n = 5–11
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Fig. 6  Tregs ablation restores the structure of the blood–brain barrier in aged mice. A Fluorescence signals and quantification of 40 kDa 
dextran in the mouse hippocampus. DAPI labeled the nuclei (blue), CD31 labeled endothelial cells (green), and dextran stained red (Texas red). 
Immunofluorescence signals and quantification of claudin1 (B) and claudin5 (C) in the CA3 region of the hippocampus. DAPI labeled the nuclei 
(blue), CD31 labeled endothelial cells (red), claudin1 or claudin5 stained green. Magnification, ×200, *P < 0.05 n = 6
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characteristic marker of Tregs, improved cognitive func-
tion in aged mice. Thus, the present study provides sub-
stantial evidence that aged Tregs are critical to cognitive 
dysfunction.

Based on the DEGs of aged Tregs and the associated 
dysfunction from FACS study, aged Tregs are detrimen-
tal, especially challenged under pathological conditions. 
Tregs-mediated immune suppression includes cytolysis, 
metabolic disruption, and secretion of anti-inflammatory 
cytokines [39]. Both NTPDase 1 and 5′-NT are cell-sur-
face proteins, in which NTPDase 1 hydrolyzes extracellu-
lar ATP and ADP to AMP [40], and 5′-NT converts AMP 
to anti-inflammatory adenosine [41]. Although aged 
Tregs had compensatory higher expressions of NTPDase 
1 and 5′-NT under the basal condition, the nonrespon-
siveness of these two molecules in the stimulated state 
reinforces the incompetence of aged Tregs [41–43].

Tregs participate in cytolysis through Granzyme B 
and Perforin-1. In the present study, aged Tregs did not 
increase Perforin-1 expression in response to the stimuli, 
although Granzyme B expressions were comparable to 
that of young Tregs, suggesting that the cytotoxic effects 
of aged Tregs are also blunted [39].

Aged Tregs did not produce stimulated TGF-β1 [44], 
despite its key regulator LRRC32 was upregulated [45]. 
Together with the unresponsiveness of IL-10 in aged 
mice, the present results confirmed the impairment of 
Tregs in aged mice [46].

Both CTLA-4 and PD-1 are immune checkpoint pro-
teins. Loss of CTLA-4 results in massive lymphocyte pro-
liferation [47]. Increased PD-1 expression exhausts T-cell 
function [48, 49]. Aged Tregs had increased expression of 
PD-1 under both basal and stimulated conditions, imply-
ing the detrimental role of aged Tregs.

In addition, IL-2 production was higher in stimulated 
aged Tregs, suggesting that aged Tregs possess pro-
inflammatory features. In line, aged Tregs had reduced 
basal expressions of IRF-4 and increased stimulated 
CCR4 expression in flow cytometry examination. CCR4 
is a critical receptor for chemokines, and IRF-4 is associ-
ated with enhanced immunosuppression and differentia-
tion of effector Tregs [50] via regulating IL-17, IL-21 [51], 
and IL-4 [52] production.

The strategy of CD25 blockade has been used to 
investigate the role of Treg in renal ischemia–reperfu-
sion injury [53], pancreatic intraepithelial neoplasms 
[38], and mesothelioma model [54]. In the present 
study, blocking CD25 increased the plasma TNF-α 
level in aged mice subjected to the surgery, con-
firming the immunosuppressive role of Tregs in the 
circulating immune system. Three TNF receptor super-
family members were identified in the RNA sequenc-
ing analyses, including TNFRSF1B, TNFRSF21, and 

TNFRSF13C. TNFRSF1B, also known as TNFR2, is 
strictly expressed in neurons, oligodendrocytes, mye-
loid-derived suppressor cells, Tregs, and monocytes 
[55–59]. TNFRSF1B mediates Tregs proliferation and 
function [60, 61]. Thus, the upregulated expression of 
TNFRSF1B exacerbates inflammatory responses [62–
64]. TNFRSF21 is involved in regulating T helper cells, 
while TNFRSF13C regulates B cells. Furthermore, the 
increased basal expression of TNFRSF18 and nonre-
sponsiveness of TNFRSF4 in aged Tregs in flow cytom-
etry study indicate that the immunosuppressive effects 
of Tregs on inflammatory responses are compromised, 
since TNFRSF18 [65] and TNFRSF4 [66] are responsi-
ble for the Tregs suppression and differentiation [67].

Indeed, the surgery transiently increased plasma lev-
els of inflammatory factors, supporting that the surgery 
per se is an inflammatory stimulus for patients. How-
ever, hippocampal levels of TNF-α, CXCL1, IL-1, IL-3, 
IL-4, IL-5, IL-6, IL-10, IL-12, and IL-17 were maintained 
at higher levels, indicating that the immune status in 
the CNS is not synchronized. The increased levels of 
cytokines in the hippocampus confirmed that enhanced 
inflammation is a crucial player in POCD. More impor-
tant, the protracted inflammatory responses in the hip-
pocampus partially explain the prolonged cognitive 
impairment in senile patients subjected to surgeries. The 
presence of Tregs in the central nervous system has been 
reported in mice after ischemic stroke [19] and in mice 
with experimental autoimmune encephalomyelitis [68]. 
Nevertheless, Tregs were not detected in the hippocam-
pus in the present study. Therefore, the divergent changes 
of cytokines in the present study are probably attributed 
to the anatomic structure of the blood–brain barrier.

The blood–brain barrier provides primary protection 
by limiting the solutes in the circulating blood to the 
extracellular fluid of the central nervous system. In the 
present study, the increased signals of low-molecule 
dextran and reduced presence of tight junction pro-
teins in aged mice following the surgery confirm the 
blood–brain barrier disruption. Treatment of the CD25 
antibody restored the protein presence of junction pro-
teins, leading to reduced TNF-α and CXCL1 levels in 
the hippocampus. The reduced levels of inflammatory 
factors in mice hippocampi, especially TNF-α, reinforce 
the crucial role of TNF-α and its pertinent receptors in 
aged Tregs in POCD [69, 70]. It further demonstrates 
that Tregs blockade results in cognition-protective 
effects through modulating TNF-α levels and BBB 
structures in the hippocampus in aged mice challenged 
with surgery. Thus, screening for protective substances 
produced by the blockade of the CD25 molecule and 
dissecting the mechanisms underlying the upregulation 
of endothelial junction proteins would enhance our 
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understanding of the connection between immune sta-
tus in circulating blood and the central nervous system.

In addition, CD4+CD25-Foxp3+ cells, another 
suppressive group of lymphocytes [71], were also 
accumulated in aged mice. The involvement of 
CD4+CD25-Foxp3+ cells in surgery-associated cogni-
tive dysfunction has not been reported and deserves 
further investigation.

In the present study, transfusion with young Tregs 
improved swimming velocity in aged mice. The het-
erochronic parabiosis of young cells in aged mice has 
been extensively studied [72, 73]. In a mouse model 
of human Duchenne muscular dystrophy, muscle 
injury and inflammation is mitigated by Tregs expan-
sion, but exacerbated by Treg depletion [74]. The graft 
Tregs-exerted protection is probably attributed to tis-
sue repair by acting on parenchymal cells directly [73, 
75–77].

In conclusion, surgery-associated cognitive decline in 
aged mice is attributed to Tregs dysfunction. Blocking 
the CD25 molecule protects the blood–brain barrier, 
downregulates inflammation in the hippocampus, and 
restores cognitive function in aged mice. The results 
of the present study provide a therapeutic strategy for 
postoperative cognitive dysfunction in the geriatric 
population.
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