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Abstract

Background: The trend towards large-scale studies including population imaging poses new challenges in terms
of quality control (QC). This is a particular issue when automatic processing tools such as image segmentation
methods are employed to derive quantitative measures or biomarkers for further analyses. Manual inspection and
visual QC of each segmentation result is not feasible at large scale. However, it is important to be able to automatically
detect when a segmentation method fails in order to avoid inclusion of wrong measurements into subsequent
analyses which could otherwise lead to incorrect conclusions.

Methods: To overcome this challenge, we explore an approach for predicting segmentation quality based on
Reverse Classification Accuracy, which enables us to discriminate between successful and failed segmentations on a
per-cases basis. We validate this approach on a new, large-scale manually-annotated set of 4800 cardiovascular
magnetic resonance (CMR) scans. We then apply our method to a large cohort of 7250 CMR on which we have
performed manual QC.

Results: We report results used for predicting segmentation quality metrics including Dice Similarity Coefficient
(DSC) and surface-distance measures. As initial validation, we present data for 400 scans demonstrating 99% accuracy
for classifying low and high quality segmentations using the predicted DSC scores. As further validation we show high
correlation between real and predicted scores and 95% classification accuracy on 4800 scans for which manual
segmentations were available. We mimic real-world application of the method on 7250 CMR where we show good
agreement between predicted quality metrics and manual visual QC scores.

Conclusions: We show that Reverse classification accuracy has the potential for accurate and fully automatic
segmentation QC on a per-case basis in the context of large-scale population imaging as in the UK Biobank Imaging
Study.
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Background
Biomedical image data are increasingly processed with
automated image analysis pipelines which employ a vari-
ety of tools to extract clinically useful information. It is
important to understand the limitations of such pipelines
and assess the quality of the results being reported. This is
a particular issue when we consider large-scale population
imaging databases comprising thousands of images such
as the UK Biobank (UKBB) Imaging Study [1]. There are
often many modules in automated pipelines [2] where
each may contribute to inaccuracies in the final out-
put and reduce the overall quality of the analysis, e.g.
intensity normalisation, segmentation, registration and
feature extraction. On a large scale, it is infeasible to per-
form a manual, visual inspection of all outputs, and even
more difficult to perform quality control (QC) within the
pipeline itself. We break down this challenge and focus on
the automated QC of image segmentation.
Image segmentation is the process of partitioning an

image into several parts where each of these parts is a
collection of pixels (or voxels) corresponding to a partic-
ular structure. The purpose of segmentation is to derive
quantitative measures of these structures, e.g. calculating
ventricular volume or vessel thickness. Automated seg-
mentation is desired to reduce workload for this tedious,
time-consuming and error prone task. A number of these
methods have been developed, ranging from basic region-
growing techniques and graph cuts to more advanced
algorithms involving machine learning [3] and, more
recently, Deep Learning in the form of Convolutional
Neural Networks (CNNs) [4].
Segmentation performance is traditionally evaluated on

a labelled validation dataset, which is a subset of the
dataset that is the algorithm does not see during training.
This evaluation is done using a series of metrics to com-
pare the predicted segmentation and a reference ‘ground
truth’ (GT). Popular metrics include volumetric overlap
[5], surface distances or other statistical measures [6]. Due
to the lack of actual GT, manual expert annotations are
used as reference, despite inter- and intra-rater variabil-
ity. Once a segmentation method is deployed in clinical
practice no such quantitative evaluation can be carried out
routinely.
Evaluating the average performance of an algorithm on

validation data is arguably less important than being able
to assess the quality on a per-case basis, and it is crucial
to identify cases where the segmentation has failed. We
show that we can effectively predict the per-case quality
of automated segmentations of 3D cardiovascular mag-
netic resonance (CMR) from the UKBB which enables
fully automated QC in large-scale population studies and
clinical practice.
In this article we will first present related work that

attempts to address the problem of automated QC at

large-scale. Our method and datasets are then described
in detail before we present our results and discuss their
implications.

Related work
Despite its practical importance, there is relatively little
work on automatically predicting performance of image
analysis methods. Much of the prior work on automated
quality control has focused on the quality of images them-
selves. This focus on image quality assessment (IQA) is
also true in the medical-imaging community [7, 8]. In
the context of image segmentation, there exist only a few
methods outlined here.
Algorithms often rely on ‘labels’ to support their train-

ing. In our case, each label would indicate the quality of
each segmentation, either by categorical label, e.g. 0 for
‘poor’ and 1 for ‘good’, or by continuous value such as
a Dice Similarity Coefficient (DSC). In cases where such
labelled data is scarce, Reverse Validation [9] and Reverse
Testing [10] use labels generated by one model, trained on
a subset of available data, to train another model which is
evaluated on the remaining data. This is effectively cross-
validation where the amount of labelled data is limited. In
Reverse Testing, ‘some rules’ are created to assess the per-
formance of and rank the different models. In our context,
this would involve creating a segmentation quality model
from a subset of CMR scans, and their corresponding seg-
mentations, which can then be tested on the remaining
images. Different models would be created and tested in
order to choose the best model. The difficulty in these
methods is that we require all of the scans to be accu-
rately segmented in order to train, and to evaluate, a good
model. That is, we need a large, fully-annotated training
dataset which is often not available in our field. Addi-
tionally, Reverse Validation and Reverse Testing do not
allow us to identify individual cases where a segmentation
may have failed; instead they focus upon the segmentation
method as a whole.
In a method proposed by Kohlberger et al., the qual-

ity of segmentations is assessed on a per-case basis using
machine learning. The group used 42 different hand-
crafted statistics about the intensity and appearance of
multi-organ computed-tomography (CT) scans to inform
their model. Whilst this method achieved good perfor-
mance metrics and an accuracy of around 85%, it requires
a lot of training data with both good and bad segmenta-
tions which is non-trivial to obtain.
In this work, we adopt the recently-proposed approach

of Reverse Classification Accuracy (RCA) [11]. Unlike
Reverse Validation and Reverse Testing, RCA can accu-
rately predict the quality of a segmentation on a case-by-
case basis only requiring a relatively small set of accurately
segmented reference images. In RCA, the predicted seg-
mentation being assessed is used to create a small model
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to re-segment the reference images for which segmenta-
tions are available. If at least one image in the reference set
is re-segmented well, the predicted segmentation, that we
wish to assess, must have been of good quality. We employ
RCA to perform segmentation quality analysis on a per-
case basis while only requiring a small set of reference
images and segmentations.

Methods and data
Our purpose is to have a system that is able to predict the
per-case quality of a segmentation produced by any algo-
rithm deployed in clinical practice. We want our method
to not only give us a prediction of the quality of the seg-
mentation, but to be able to identify if that segmentation
has failed. To this end, we employ RCA which will give a
prediction about the quality of individual segmentations.

Reverse classification accuracy
In RCA the idea is to build a model, also known as an
‘RCA classifier’, solely using one test image and its pre-
dicted segmentation which acts as pseudo ground truth.
This classifier is then evaluated on a reference dataset for
which segmentations are available. There are two possible
outcomes to this procedure:

• Case 1: assuming that the predicted segmentation is
of good quality, the created model should be able to
segment at least one of the reference images with
high accuracy. This is likely to be a reference image
which is similar to the test image.

• Case 2: if none of the reference images are
segmented successfully, then the predicted
segmentation is likely to be of poor quality.

These assumptions are valid if the reference dataset is rep-
resentative of the test data. This is usually the case in
the context of machine learning where the reference data
could have been used in the first place to train the auto-
mated method for which we want to predict test perfor-
mance. If the test data were very different, the automated
method would in any case not perform well, and RCA
scores would reflect this. It is a great advantage that the
same reference dataset can be used to train an automated
segmentation method, and also afterwards serves as the
reference database enabling prediction of performance
after deployment of the segmentation method.
The performance of the RCA classifier on the reference

set is measured with any chosen quality metric, e.g., the
DSC. The highest score among all reference images deter-
mines the quality estimate for the predicted segmentation
obtained for a test image.
The original work on RCA [11] explored a variety of

possible classifiers that could be trained on a single test-
image and its segmentation including Atlas Forests (AF)

[12] and CNNs. In this context, and throughout this paper,
an ‘atlas’ refers to an image-segmentation pair whose seg-
mentation has been verified by a manual annotator. In
Valindria’s paper, a simple single-atlas registration clas-
sifier outperformed both the AF and CNN approaches
in predicting segmentation accuracy. For this reason, we
chose to use this simple approach for the model in our
work. Registration is the process of aligning two or more
images based upon similar content within them, e.g. struc-
tures or intensities. Rigid registration restricts the images
to move only by linear translations and rotations. More
complex non-rigid registration methods exists that allow
for differences in scale between the images and for more
complex distortions. The single-atlas registration classi-
fier in RCA works by performing non-rigid registration of
the test-image to a set of individual reference-images. The
resulting transformations are then used to warp the test-
segmentation. This yields a set of warped segmentations
which are quantitatively compared to the reference seg-
mentations. The overlap between the pairs is calculated
as the DSC whilst boundary agreement is computed using
surface-distance metrics. The best metric values among
the reference set are taken to be the prediction for the
quality of the test-segmentation.
We chose to modify the single-atlas registration clas-

sifier from that used in Valindria et al.’s proposal of the
RCA method [11]. Processing and modifying the test-
segmentation is not usually desirable as this may intro-
duce discretization artefacts adding false-positives into
the binary labelmap. We choose to perform the single-
atlas registration in reverse: we register the reference-
images to the test-image and use this transformation to
warp the reference segmentations. This results in a set of
warped segmentations in the test-image space which are
then compared to the test-segmentation. Figure 1 gives an
overview of RCA as applied in our study. We now set out
our framework more formally.
For the RCA reference images, we use a set Ri ={
r1i , · · · , rNi

}
of N cardiac atlases with reference segmen-

tations Rs = {
r1s , · · · , rNs

}
. We have a test set Ti ={

t1i , · · · , tMi
}
of M images with automatically generated

predicted segmentations Ts = {
t1s , · · · , tMs

}
whose qual-

ity we would like to assess. If the GT segmentations
Tgt =

{
t1gt, · · · , tMgt

}
for Ti exist, one can evaluate the

accuracy of these quality assessments. Using RCA we esti-
mate the quality of those predicted segmentations and
compare the estimates to the real quality with respect
to the GT.
In the case where m = k, we take the kth test image tki

and its predicted segmentation tks . To apply RCA, all ref-
erence images Ri are first registered to tki by performing
a rigid registration in the form of a centre of mass (CoM)
alignment. Initial versions of our work [13] used landmark
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Fig. 1 Reverse Classification Accuracy - Single-atlas Registration Classifier. Reverse Classification Accuracy (RCA), with single-atlas registration
classifier, as applied in our study. A set of reference images are first registered to the test-image before the resulting transformations are used to
warp the corresponding reference segmentations. Dice Similarity Coefficient (DSC) is calculated between the warped segmentations and the
test-segmentation with the maximum DSC taken as a proxy for the accuracy of the test-segmentation. Note that in practice, the ground truth
test-segmentation is absent. Images and segmentation annotated as referred to in the text

registration [14] at this stage, but we now opt for CoM
alignment to reduce computational cost.We then perform
non-linear registration of each aligned reference image in
Ri to the test image to get warped reference images Rk

iW.
The same transformations are used to warp the GT refer-
ence segmentationsRs to get the setRk

sW. For each warped
segmentation in Rk

sW we compare against the predicted
segmentation tks by evaluating a set of metrics detailed
below. The best value for each metric over all warped
reference segmentations is taken to be the prediction of
segmentation accuracy for tks . In our validation studies, we
can compute the real metrics by comparing the predicted
segmentation tks with its GT tkgt.

Evaluation of predicted accuracy
The segmentation quality metrics predicited with RCA
include the DSC, mean surface distance (MSD), root-
mean-square surface distance (RMSD) and Hausdorff
distance (HD). For two segmentations, A and B,
DSC is a measure of overlap given by DSC =
2 |A ∩ B| / (|A| + |B|). The surface distance between a
point a on the surface ofA and the surface of B is given by
the minimum of the euclidean norm minb∈B ||a − b||2 for
all points b in the surface of B. The total surface distance
is the sum of the surface distances for all points in A. We
don’t assume symmetry in these calculations, so the sur-
face distance is also calculated from B to A. By taking the
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mean over all points we get the MSD. RMSD is calculated
by taking the square of surface distances, averaging and
taking the square root. Finally, the HD is taken to be the
maximum surface distance.
For each test image, we report the evaluation met-

rics for each class label: left ventricular (LV) cavity, LV
myocardium (LVM) and right ventricular (RV) cavity
(RVC). We incorporate the voxels of the papillary muscles
into the LV cavity class. The RVmyocardium is difficult to
segment because it is thin, therefore it is seldom seen in
short-axis (SAX) CMR segmentations and not considered
in this paper. For each evaluation metric (DSC and surface
distances), we could report two difference average values:
either a whole-heart average by combining all class labels
into a single ‘whole-heart’ (WH) class or, second, by taking
the mean across the individual class scores. TheWH-class
average is usually higher because a voxel attributed to an
incorrect class will reduce the mean calculated across the
classes, but will actually be considered correct in the single
WH-class case.

Experimental setup
We perform three investigations in this work which are
summarised in Table 1: A) an initial small-scale validation
study on 400 test contours of 80 images from an internal
cardiac atlas dataset; B) a large-scale validation study on
another 4805UKBB images withmanual ground truth and
C) a real-world application to a large set of 7250 UKBB 3D
CMR segmentations.

Reference dataset, N = 100
The reference image set is the same in all of our stud-
ies. We use 100 2D-stack SAX end-diastolic (ED) CMR
scans that were automatically segmented and validated by
expert clinicians at Hammersmith Hospital, London. Note
that the reference set is distinct from all other datasets
used. Compared with data from the UKBB, the refer-
ence set are of higher in-plane resolution at 1.25 × 1.25
mm and have a smaller slice thickness of 2 mm. These
images are not used for any purpose other than for this
reference set. When choosing a reference set, one should
ensure that it is representative of the dataset on which it

Table 1 A summary of the experiments performed in this study

Experiment Dataset Size GT Seg. Method

A Hammersmith 100 Yes RF

B UKBB-2964 4805 Yes RF and CNN

C UKBB-18545 7250 No Multi-Atlas

Experiment A uses data from an internal dataset which is segmented with a
multi-atlas segmentation approach and manually validated by experts at
Hammersmith Hospital, London. These manual validations are counted as ‘ground
truth’ (GT) and 100 of them are taken for the reference set used in all experiments.
UKBB datasets are shown with their application numbers. In experiment C we
segment with both random forests (RF) and a convolutional neural network (CNN).
In C the CNN from Bai [4] is used

is being used i.e. it should be of the same domain (SAX
CMR in this case) and large enough to capture some vari-
ability across the dataset. A reference set that is too small
may underestimate the RCA prediction. Though we argue
that this may be better than overestimating the quality of
a segmentation. Conversely, too large a reference set will
cause a significant lengthening of RCA execution time.We
have explored the effect of the RCA reference set size on
the prediction accuracy as part of our evlauation which we
present in our Discussion.

Experiment A: Initial validation study, N = 400
Data: We validate RCA on predicting cardiac image seg-
mentation quality using 100 manually verified image-
segmentation pairs (different from the reference dataset).
Each atlas contains a SAX ED 3D (2D-stack) CMR and its
manual segmentation. The images have a pixel-resolution
of 1.25 × 1.25 × 2.0 mm and span 256 × 256 × 56 vox-
els. Each manual segmentation identifies voxels belonging
to the LV cavity, LVmyocardium and RV cavity separating
the heart from the background class.
For validation, we generate automatic segmentations

of our atlases with varying quality. We employ Random
Forests with T = 500 trees and a maximum depth of
D = 40 trained on the same set of 100 cardiac atlases
used for testing RCA in this experiment. Random Forests
allow us to produce a variety of test segmentations with
intentionally degraded segmentation quality by limiting
the depth of the trees during test time. We obtain 4 sets
of 100 segmentations by using depths of 5, 20, 30 and 40.
Thus, a total of 400 segmentations are used in our initial
validation study.
Evaluation:We perform RCA on all 400 segmentations

to yield predictions of segmentation quality. The man-
ual segmentations allow us to evaluate the real metrics
for each automated segmentation. We compare these to
the quality predicted by RCA. To identify individual cases
where segmentation has failed, we implement a simple
classification strategy similar to that in Valindria’s work
[11]. We consider a 2-group binary classification where
DSC scores in the range [0.0 0.7) are considered ‘poor’
and in the range [0.7 1.0] are ‘good’. These boundaries are
somewhat arbitrary and would be adjusted for a particular
use-case. Other strategies could be employed on a task-
specific basis, e.g. formulation as outlier detection with
further statistical measures. The thresholding approach
allows us to calculate true (TPR) and false (FPR) positive
rates for our method as well as an overall accuracy from
the confusion matrix.

Experiment B: Large-scale validation on
manually-segmented UKBB Data, N = 4805
In this experiment we demonstrate that RCA is robust for
employment in large-scale studies, and indeed produces
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accurate predictions of segmentation quality on an indi-
vidual basis. As part of our collaboration under UK
Biobank Application 2964 we have access to 4805 CMR
images with manually drawn contours.
Data: In the context of UKBB data, 3D means a stack of

2D acquisitions with slice-thickness of 8.0 mm and slice-
gap of 2mm [15]. The CMR scans have in-plane resolution
of 1.83 × 1.83 mm and span around 192 × 208 pixels per
slice. The number of slices per scan varies between 4-14
with the majority (89%) having 9-12 slices.
Petersen and colleagues [16, 17] manually segmented

all slices of each 3D CMR scan available under the data
access application. Several annotators were employed fol-
lowing a standard operating procedure to generate almost
5000 high-quality segmentations. With these manual seg-
mentations acting as GT we directly compare predicted
segmentation scores with real scores at large scale.
We use the same Random Forests trained in Experi-

ment A to perform automated segmentations at various
tree depths chosen randomly across the 4805 scans yield-
ing segmentations of varying quality. In addition to our
Random Forests segmentations, we evaluate RCA with
900 segmentations generated with a recent deep learn-
ing based approach. As part of the UKBB Application
2964, Bai et al. [4] have trained a CNN on 3900 man-
ually segmented images. The remaining 900 were then
automatically segmented using the trained network. The
results of Bai et al.’s CNN approach reflect the state-
of-the-art in automated 3D CMR segmentation with an
accuracy matching the performance human experts [4].
Evaluation: We perform RCA on all 4805 Random

Forests segmentations to yield predictions of segmenta-
tion quality. We also perform RCA separately on the 900
CNN segmentations produced by a state-of-the-art deep
learning approach.With the availability of GTmanual seg-
mentations, we can evaluate this experiment in the same
way as Experiment A.

Experiment C: Automatic quality control in the UKBB imaging
study, N = 7250
Having evaluated RCA in the previous two experiments,
this experiment mimics how our approach would behave
in a real-world application where the GT is unavailable.
We apply RCA to segmentations of CMR images from the
UKBB.
Data: In total, 7250 CMR images were available to

us through the UKBB resource. Each image has been
automatically segmented using amulti-atlas segmentation
approach [18]. As part of a genome-wide association study
(GWAS), each automatic segmentation has been checked
manually to confirm segmentation quality. As there is no
GT segmentation, we rely on manual QC scores for these
segmentations assessed by a clinical expert. The manual
QC is based only on visual inspection of the basal, mid

and apical layers. For each layer a score between 0 and 2 is
assigned based on the quality of only the LV myocardium
segmentation. The total QC score is thus between 0 and
6, where a 6 would be considered as a highly accurate seg-
mentation. Scores for individual layers were not recorded.
Where the UKBB images had a poor field-of-view (FOV),
the segmentations were immediately discarded for use in
the GWAS study: we have given these images a score of -1.
For the GWAS study, poor FOVmeant any image in which
the entire heart was not visible. We expect that despite the
poor FOV of these images, the segmentations themselves
may still be of good quality as the algorithms can still see
most of the heart. Out of the 7250 segmented images, 152
have a bad FOV (QC = −1) and 42 have an obviously poor
segmentation (QC = 0). There are 2, 14, 44, 300, 2866
and 3830 images having QC scores 1 to 6 respectively.
This investigation explored how well RCA-based quality
predictions correlate with those manual QC scores.
Evaluation: We perform RCA on all 7250 segmen-

tations to yield predictions of segmentation quality for
the LVM. With the absence of GT segmentations, we
are unable to perform the same evaluation as in Exper-
iments A and B. In this case, we determine the cor-
relation between the predicted scores from RCA (for
LV myocardium) and the manual QC scores. A visual
inspection of individual cases is also performed at quality
categories.

Results
Here we present results from our three investigations: (A)
the initial small-scale validation study; (B) application to a
large set of UKBB CMR with visual QC scores; and (C) a
further large-scale validation study on UKBB with manual
expert segmentations.
Quantitative results for the experiments are presented

in each section. Figure 2 demonstrates additional qualita-
tive inspection that is performed on a per-case basis dur-
ing RCA. The top row of Fig. 2 shows the mid-ventricular
slice of an ED CMR scan and a Random Forest-generated
segmentation which is under test. An overlay of the two
are also shown alongside the manual reference segmenta-
tion which is not available in practice. Below this, an array
of further panels is shown. Each of these panels presents
one of the 100 reference images used, its correspond-
ing reference segmentation and the result of warping
the segmentation-under-test (top-panel, second image) to
this reference image. The calculated DSC between the
reference image’s GT and the warped segmentation is
displayed above each panel. The array shows the refer-
ence image with the highest (top-left) and the lowest
(bottom-right) calculated DSC with the remaining pan-
els showing DSCs that are uniformly spaced amongst the
remaining 98 reference images. We can see in this exam-
ple that there is a large range of predicted DSC values, but
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Fig. 2 Example Results from RCA. Examples of RCA results on one proposed segmentation. The panels in the top row show (left to right) the MRI
scan, the predicted segmentation, an overlay and the manual annotation. The array below shows a subset of the 100 reference images ordered by
Dice similarity coefficient (DSC) and equally spaced from highest to lowest DSC. The array shows (left) the reference image, (middle) its ground truth
segmentation and (right) the test-segmentation from the upper row which has been warped to the reference image. The real DSC between each
reference image and warped segmentation is shown for each pair. RCA-predicted and real GT-calculated DSCs are shown for the whole-heart binary
classification case at the top alongside the metrics for each individual class in the segmentation

only the maximum prediction, selected in red, is used as
the prediction of segmentation quality. For the example
in Fig. 2 we show a ‘good’ quality segmentation-under-
test for which we are predicting a DSC of 0.904 using
RCA. The real DSC between the segmentation-under-test
and the GT manual segmentation is 0.944. Note that in
this case these values are calculated for the ‘whole-heart’
Table 2 Initial reverse classification accuracy validation on 400
random forest segmentations

Class Acc. TPR FPR

MAE

DSC MSD RMS HD

mm mm mm

LVC 0.973 0.977 0.036
0.020 4.104 5.593 14.15

0.980 0.975 0.019

LVM 0.815 0.947 0.215
0.044 3.756 4.741 13.08

0.990 0.987 0.008

RVC 0.985 0.923 0.012
0.030 4.104 5.022 16.63

0.943 0.914 0.047

Av. 0.924 0.949 0.089
0.031 3.988 5.119 14.62

0.971 0.959 0.025

WH 0.988 0.979 0.000
0.029 4.445 5.504 15.11

0.948 0.886 0.047

Classes are LV Cavity (LVC), LV Myocardium (LVM), RV Cavity (RVC), An average over
the classes (Av.) and a binary segmentation of the whole heart (WH). First row for
each class shows the binary classification accuracy for ‘poor’ and ‘good’
segmentations in the Dice Similarity Coefficient (DSC) ranges [0.0 0.7) and [0.7 1.0]
respectively. Second row for each class shows the binary classification accuracy for
‘poor’ and ‘good’ segmentations in the Mean Surface Distance (MSD) ranges
[> 2.0mm] and [0.0mm 2.0mm] respectively. True-positive and false-positive rates
are also shown. We report mean absolute errors (MAE) on the predictions of DSC
and additional surface-distance metrics: root-mean-squared surface distance (RMS)
and Hausdorff distance (HD)

where individual class labels are merged into one. These
values are shown above the top panel along with the DSC
calculated on a per-class basis.
For considerations of space, we do not showmore visual

examples but note that a visualisation as in Fig. 2 could be
produced on a per-case basis in a deployed system aiding
interpretability and visual means for manual validation by
human experts.

(A) Initial validation study
A summary of the results is shown in Table 2. We observe
low mean absolute error (MAE) across all evaluation
metrics and all class labels. The scatter plots in Fig. 3 on
real and predicted scores illustrate the very good perfor-
mance of RCA in predicting segmentation quality scores.
We also find that from the 400 test segmentations, RCA
is able to classify ‘good’ (DSC ∈ [0.7 1.0]) and ‘poor’
(DSC ∈[ 0.1 0.7)) segmentations with an accuracy of 99%.
From 171 poor segmentations at this threshold, 166 could
be correctly identified by RCA, i.e. 97.1%. 100% of good-
quality segmentations were correctly labelled. Addition-
ally, we find binary classification accuracy of 95% when
applying a threshold of 2.0 mm on the MSD. From 365
poor segmentations at this threshold, 348 could be cor-
rectly identified by RCA, i.e. 95.3%. Similarly, 31 from
35 (88.6%) good-quality segmentations were correctly
labelled. For all evaluation metrics, there is a strong, pos-
itive linear relationship between predicted and real values
with r ∈ [0.95 0.99] and p < 0.0001. Further analysis of
our data shows increasing absolute error in each metric as
the real score gets worse, e.g. the error for MSD increases
with increasing surface distance. This correlates larger
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Fig. 3 RCA Validation on 400 cardiac MRI. 400 cardiac MRI segmentations were generated with a Random Forest classifier. 500 trees and depths in
the range [ 5, 40] were used to simulate various degrees of segmentation quality. RCA with single-atlas classifier was used to predict the Dice
Similarity Coefficient (DSC), mean surface distance (MSD), root mean-squared surface distance (RMS) and Hausdorff distance (HD). Ground truth for
the scans is known so real metrics are also calculated. All calculations on the whole-heart binary classification task. We report low mean absolute
error (MAE) for all metrics and 99% binary classification accuracy (TPR = 0.98, FPR = 0.00) with a DSC threshold of 0.70. High accuracy for individual
segmentation classes. Absolute error for each image is shown for each metric. We note increasing error with decreasing quality of segmentation
based on the real metric score

MAE with lower segmentation quality. In addition, when
we consider only those segmentations where the real met-
ric is 30 or less, the MAE drop significantly to 0.65, 1.71
and 6.78 mm for MSD, RMS and HD respectively. We are
not concerned with greater errors for poor segmentations
as they are still likely to be identified by RCA as having
failed.

Table 3 Analysis of 4800 Random Forest segmentations with
available ground truth

Class Acc. TPR FPR

MAE

DSC MSD RMS HD

mm mm mm

LVC 0.968 0.997 0.330
0.042 0.906 2.514 11.09

0.975 0.962 0.011

LVM 0.454 0.956 0.571
0.125 0.963 2.141 11.83

0.972 0.962 0.012

RVC 0.868 0.957 0.352
0.057 1.140 2.790 15.23

0.969 0.977 0.040

Av. 0.763 0.970 0.418
0.075 1.003 2.482 12.72

0.972 0.967 0.032

WH 0.954 0.966 0.148
0.035 1.156 2.762 12.52

0.978 0.984 0.027

4800 RF segmentation at various depths [ 5 40] and 500 trees. Manual contours
were available through Biobank Application 2964. Classes are LV Cavity (LVC), LV
Myocardium (LVM), RV Cavity (RVC), an average over the classes (Av.) and a binary
segmentation of the whole heart (WH). First row for each class shows the binary
classification accuracy for ‘poor’ and ‘good’ segmentations in the Dice Similarity
Coefficient (DSC) ranges [0.0 0.7) and [0.7 1.0] respectively. Second row for each
class shows the binary classification accuracy for ‘poor’ and ‘good’ segmentations in
the Mean Surface Distance (MSD) ranges [> 2.0mm] and [0.0mm 2.0mm]
respectively. True-positive and false-positive rates are also shown. We report mean
absolute errors (MAE) on the predictions of DSC and additional surface-distance
metrics: root-mean-squared surface distance (RMS) and Hausdorff distance (HD)

(B) Large-scale validation with manual GT on UKBB
Results for the Random Forest segmentations are shown
in Table 3. We report 95% binary classification accuracy
with a DSC threshold of 0.7 and low MAE on the DSC.
From 589 poor segmentations at this threshold, 443 could
be correctly identified by RCA, i.e. 75.2%. Similarly, 4139
from 4216 (98.2%) good-quality segmentations were cor-
rectly labelled. Additionally, we find binary classification
accuracy of 98% when applying a threshold of 2.0 mm
on the MSD. From 2497 poor segmentations at this
threshold, 2429 could be correctly identified by RCA, i.e.
97.3%. Similarly, 2270 from 2308 (98.3%) good-quality
segmentations were correctly labelled. The TPR are high
across the classes, this shows RCA is able to correctly and
consistently identify ‘good’ quality segmentations. MSD-
based FPR are shown to be lower than those based on
DSC, this would indicate that MSD is more discriminative
for ‘poor’ quality segmentations and does not misclassify
them so much as DSC. We identify only two instances
where RCA predictions do not conform to the overall
trend and predict much higher than the real DSC. On
inspection, we find that the GT of these segmentations
were missing mid-slices causing the real DSC to drop.
These points can be seen in the upper-left-hand quad-
rant on Fig. 4. The figure also shows that, over all metrics,
there is high correlation between predicted and real qual-
ity metrics. This is very much comparable to the results
from our initial validation study (A) in Fig. 3. The strong
relationship between the predicted quality metrics from
RCA and the equivalent scores calculated with respect to
the manual segmentations demonstrates concretely that
RCA is capable of correctly identifying, on a case-by-case
basis, segmentations of poor quality in large-scale imaging
studies.
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Fig. 4 Validation on 4805 Random Forest segmentations of UKBB Imaging Study with Ground Truth. 4,805 cardiac MRI were segmented with a
Random Forest classifier. 500 trees and depths in the range [ 5 40] were used to simulate various degrees of segmentation quality. Manual contours
were available through Biobank Application 2964. RCA with single-atlas classifier was used to predict the Dice Similarity Coefficient (DSC), mean
surface distance (MSD), root mean-squared surface distance (RMS) and Hausdorff distance (HD). All calculations on the whole-heart binary
classification task. We report low mean absolute error (MAE) for all metrics and 95% binary classification accuracy (TPR = 0.97 and FPR = 0.15) with a
DSC threshold of 0.70. High accuracy for individual segmentation classes

On the CNN segmentations, we report 99.8% accu-
racy in binary classification for the whole-heart class.
With a DSC threshold set at 0.7, RCA correctly iden-
tified 898 from 900 good-quality segmentations with 2
false-negatives. A visualization of this can be seen in
the top panel of Fig. 5 where the predicted and real
DSC can be seen clustered in the high-quality corner of
each metric’s plot (upper-right for DSC and lower-left
for surface-distance metrics). This reflects the high qual-
ity segmentations of the deep learning approach which

have been correctly identified as such using RCA. Table 4
shows the detailed statistics for this experiment.
We note that the individual class accuracy for the LV

myocardium is lower in the CNN case when DSC is used
at the quality metric. We show the results for this class in
the bottom panel of Fig. 5. Segmentors can have difficulty
with this class due to its more complex shape. From the
plotted points we see all cases fall into a similar cluster to
the average WH case, but the RCA score under-predicts
the real DSC. This exemplifies a task-specific setting for

Fig. 5 Extensive Reverse Classification Accuracy Validation on 900 UKBB Segmentations. Convolutional neural network (CNN) segmentation as in Bai
et al. [4]. Manual contours were available through Biobank Application 2964. RCA with single-atlas classifier was used to predict the Dice Similarity
Coefficient (DSC), mean surface distance (MSD), root mean-squared surface distance (RMS) and Hausdorff distance (HD). All calculations for the
binary quality classification task on (top) ’Whole Heart’ average and (bottom) Left Ventricular Myocardium. We report low mean absolute error (MAE)
for all metrics and 99.8% binary classification accuracy (TPR = 1.00 and FPR = 0.00) with a DSC threshold of 0.70
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Table 4 Analysis of 900 CNN segmentations with available
ground truth

Class Acc. TPR FPR

MAE

DSC MSD RMS HD

mm mm mm

LVC 0.998 1.000 0.000
0.082 0.386 0.442 1.344

1.000 1.000 0.000

LVM 0.051 1.000 0.001
0.268 0.510 0.547 2.127

1.000 1.000 0.000

RVC 0.901 1.000 0.033
0.146 0.588 0.656 2.086

0.997 0.997 0.000

Av. 0.650 1.000 0.011
0.165 0.495 0.548 1.852

0.999 0.999 0.000

WH 0.998 1.000 0.000
0.089 0.460 0.509 1.698

1.000 1.000 0.000

CNN segmentations as in Bai et al. [4]. Manual contours were available through
Biobank Application 2964. Classes are LV Cavity (LVC), LV Myocardium (LVM), RV
Cavity (RVC), an average over the classes (Av.) and a binary segmentation of the
whole heart (WH). First row for each class shows the binary classification accuracy
for ‘poor’ and ‘good’ segmentations in the Dice Similarity Coefficient (DSC) ranges
[0.0 0.7) and [0.7 1.0] respectively. Second row for each class shows the binary
classification accuracy for ‘poor’ and ‘good’ segmentations in the Mean Surface
Distance (MSD) ranges [> 2.0mm] and [0.0mm 2.0mm] respectively. True-positive
and false-positive rates are also shown. We report mean absolute errors (MAE) on
the predictions of DSC and additional surface-distance metrics: root-mean-squared
surface distance (RMS) and Hausdorff distance (HD)

how RCA would be used in practice. In this case one
cannot rely only on DSC to predict the quality of the
segmentation, so MSD could provide a more appropriate
quality prediction.

(C) Quality control on 7250 UK Biobank images
Figure 6 shows the relationship between manual QC
scores and the predicted DSC, MSD, RMS and HD
obtained from RCA. Note, these predictions are for the
LV myocardium and not the overall segmentation as this
class was the focus of the manual QC procedure. Manual
QC was not performed for the other classes.
Figure 6 also shows a sample of segmentations with

manual QC scores of 0, 1, 5 and 6 for the LV myocardium.
With a score of 0, ‘A’ must have a ‘poor’ quality segmenta-
tion of LV myocardium at the basal, apical and mid slices.
Example ‘B’ shows relatively low surface-distance metrics
and a low DSC, we see this visually as the boundary of
the myocardium is in the expected region, but is incom-
plete in all slices. This segmentation has been given a score
of 1 because the mid-slice is well segmented while the
rest is not; which is correctly identified by RCA. In exam-
ple ‘C’, the segmentation of the LV myocardium is clearly
not good with respect to the image, yet it has been given
a manual QC score of 5. Again, RCA is able to pick up
such outliers by predicting a lower DSC. The final exam-
ple ‘D’ displays an agreement between the high predicted

DSC from RCA and the high manual QC score. These
examples demonstrate RCA’s ability to correctly identify
both good and poor quality segmentations when per-
forming assessments over an entire 3D segmentation. It
also demonstrates the limitations of manual QC and the
success of RCA in identifying segmentation failure on a
per-case basis.
Creating a set of manual QC scores for over 7200 images

is a laborious task but it has provided worthwhile evi-
dence for the utility of RCA on large-scale studies. It is
clear, however, that the 3-layer inspection approach with
a single-rater has limitations. First, inspecting all layers
would be preferable, but it highly time-consuming and,
second, with multiple raters, averaging or majority voting
could be employed to reduce human error.
We should note that RCA is unlikely to mimic the exact

visual manual QC process, and it should not, as it naturally
provides a different, more comprehensive, assessment of
segmentation quality. The manual QC is a rather crude
assessment of segmentation quality, as such, we did not
perform a direct, quantitative comparison using the visual
QC categories but rather wanted to demonstrate that
there is a general correlation between manual QC and the
predicted RCA score.

Discussion
We have shown that it is possible to assess the quality of
individual CMR segmentations at large-scale and in the
absence of ground truth. Previous approaches have pri-
marily focused on evaluating overall, average performance
of segmentation methods or required large sets of pre-
annotated data of good and bad quality segmentations for
training a classifier. Our method is well suited for use in
image-analysis pipelines and clinical workflows where the
quality of segmentations should be assessed on a per-case
basis. We have also shown that RCA can provide predic-
tions on a per-class basis. Note that our manually labelled
dataset did not include the RV myocardium as a label and
therefore has been omitted from our study.
The RCA validation process was carried out on 8-core

Intel i7 3.6 GHz machines. The whole process for a sin-
gle test segmentation - including 100 reference image
registrations, warping 100 reference segmentations and
metric evaluations - took on average 11 min, making it
suitable for background processing in large-scale stud-
ies and clinical practice. However, this is a limitation as
the runtime per case currently does not allow immediate
feedback and prohibits applications with real-time con-
straints. For example, one could envision a process where
CMR scans are immediately segmented after acquisition,
and feedback on the quality would be required while the
patient is still in the scanner. For this, the computation
time of RCA would need to be reduced possibly through
an automatic selection of a subset of reference images.
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Fig. 6 RCA Application on 7250 Cardiac MRI segmentations of UKBB Imaging Study. 7,250 cardiac MRI segmentations generated with a multi-atlas
segmentation approach [18]. Manual QC scores given in the range [ 0 6] (i.e. [ 0 2] for each of basal, mid and apical slices). RCA with single-atlas
classifier was used to predict the Dice Similarity Coefficient (DSC), mean surface distance (MSD), root mean-squared surface distance (RMS) and
Hausdorff distance (HD). All calculations on the LV Myocardium binary classification task. We show correlation in all metrics. Examples show: a) and
b) agreement between low predicted DSC and low manual QC score, c) successful automated identification of poor segmentation with low
predicted DSC despite high manual QC score and d) agreement between high predicted DSC and high manual QC score. Inserts in top row display
extended range of y-axis

We report preliminary results for using a deep learning
approach to speed up the process in [19]. With a real-time
RCA framework, the method could be used to identify
challenging cases for CNN-based segmentors where the
RCA feedback could be used to improve the segmentation
algorithm.
As noted earlier, using a subset of the reference set

could help to optimize the run-time of RCA predic-
tions. To better understand the effect of reference set size
on prediction accuracy, we have performed an empirical
evaluation using the data from Experiment B. We took
the 4805 automated segmentations and their manual GT
and performed RCA using randomly selected subsets of
the 100 image-segmentation pairs from the full reference
set. Five different randomly selected sets of sizes 10, 15,
25, 35, 50, 65 and 75 were created and used for obtain-
ing RCA predictions on the 4805 images. Figure 7 shows
the mean accuracy computed across the 5 runs for each

reference set size. Error bars indicate the highest and low-
est accuracy achieved across the five runs. Accuracy is
computed using the same DSC threshold of 0.7 as used in
Experiment B. The figure shows that the mean accuracy
increases with increasing number of reference images.
The error bars in Fig. 7 show a decrease in size with
increasing size of the reference set. As the reference set
grows in size, a greater variability in the images is captured
that allows the RCA process to become more accurate.
Noteworthy, even with small reference sets of about 20
images high accuracy of more then 90% is obtained.
Although RCA can give a good indication of the real

DSC score for an individual segmentation, an accurate
one-to-one mapping between the predicted and real DSC
has not been achieved. However, we have shown that the
method will confidently differentiate between ‘good’ and
‘poor’ quality segmentations based on an application spe-
cific threshold. The threshold could be chosen depending
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Fig. 7 Investigating the Effect of Reference Set Size on Prediction Accuracy. 4,805 automated segmentations from Experiment B were processed
with Reverse Classification Accuracy (RCA) using differing numbers of reference images. Random subsets of 10, 15, 35, 50, 65 and 75 reference
images were taken from the full set of 100 available reference images. Five random runs were performed to obtain error bars for each setting.
Average prediction accuracy increases with increasing number of reference images and the variance between runs also decreases

on the application’s requirements for what qualifies as a
‘good’ segmentation. Failed segmentations could be re-
segmented with different parameters, regenerated with
alternative methods, discarded from further analyses or,
more likely, sent to a user for manual inspection. Addi-
tionally, whilst RCA has been shown to be robust to
cardiovascular topology it would need to be re-evaluated
for use in other anatomical regions.

Conclusion
RCA had previously been shown to effectively predict
the quality of whole-body multi-organ segmentations. We
have successfully validated the RCA framework on 3D
CMR, demonstrating the robustness of the methodology
to different anatomy. RCA has been successful in identify-
ing poor-quality image segmentations withmeasurements
of DSC, MSD, RMS and HD and has shown excellent
MAE against all metrics. RCA has also been successful
in producing a comparable outcome to a manual qual-
ity control procedure on a large database of 7250 images
from the UKBB. We have shown further success in accu-
rately predicting quality metrics on 4805 segmentations
from Petersen et al., for whichmanual segmentations were
available for evaluation. Predicting segmentation accuracy
in the absence of ground truth is a step towards fully
automated QC in image analysis pipelines.

Our contributions to the field are three-fold: 1) a thor-
ough validation of RCA for the application of CMR seg-
mentation QC. Our results indicate highly accurate pre-
dictions of segmentation quality across various metrics;
2) a feasibility study of using RCA for automatic QC in
large-scale studies. RCA predictions correlate with a set of
manual QC scores and enable outlier detection in a large
set of 7250 CMR cases, and 3) a large-scale validation on
4800 CMR images from the UKBB. Furthermore, we have
done this without the need for a large, labelled dataset and
we can predict segmentation quality on a per-case basis.
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