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Background
Stem cell biology and regenerative medicine are new 
branches of sciences. For this reason, there has been 
a great interest in stem cells in the past decades due to 
their therapeutic application in regenerative medicine 
[1–3] Fathi, Farahzadi, et al.,. Although cardiac progeni-
tor cells have been described to insist within the myo-
cardium, the myocardium has no intrinsic regenerative 
capacity because of a lack of postnatal mitosis. For this 
reason, many studies have been investigated on all types 
of stem cells and even extracellular vesicles derived them 
[4].

Takahashi and Yamanaka started the project that would 
eventually become iPSC in 2006. By introducing the 
four transcriptional factors OCT3/4, c-MYC, SOX2, and 
KLF4 into mouse fibroblasts, they created mouse iPSCs 
[5]. iPSCs are somatic cells that have been genetically 
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Abstract
A novel approach to treating heart failures was developed with the introduction of iPSC technology. Knowledge in 
regenerative medicine, developmental biology, and the identification of illnesses at the cellular level has exploded 
since the discovery of iPSCs. One of the most frequent causes of mortality associated with cardiovascular disease 
is the loss of cardiomyocytes (CMs), followed by heart failure. A possible treatment for heart failure involves 
restoring cardiac function and replacing damaged tissue with healthy, regenerated CMs. Significant strides in stem 
cell biology during the last ten years have transformed the in vitro study of human illness and enhanced our 
knowledge of the molecular pathways underlying human disease, regenerative medicine, and drug development. 
We seek to examine iPSC advancements in disease modeling, drug discovery, iPSC-Based cell treatments, and 
purification methods in this article.
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modified to resemble embryonic stem cells (ESCs) by 
expressing certain transcription factors [6]. There are 
various ways to induce pluripotency in cells, including 
nuclear transfer, exposure to factors expressed in plu-
ripotent cells, and overexpression of certain transcrip-
tion factors [7]. Human induced pluripotent stem cells 
(hiPSCs) and their derivatives provide a suitable supply 
of human cells and have been used in a number of scien-
tific domains, including the modeling of illness and the 
identification of new drugs [8]. Worldwide, cardiovas-
cular disease caused 17,921,000 fatalities in 2017. Some 
cardiac conditions, including long QT syndrome (LQTS), 
are linked to innate factors, such as mutations in the gene 
encoding a sodium ion channel, which lead to arrhyth-
mias. Another condition called myocardial infarction 
(MI) causes the oxygen level in the cardiac muscles to fall, 
and instead of the CMs regenerating, the human heart 
forms an extensive scar that reduces blood flow and con-
tractility [9]. Stem cells are one of the recommendations 
for treating the post-infarction heart since adult mam-
malian hearts do not have a large ability for regeneration 
in various injuries. Only cardiac progenitor cells seem to 
have the capacity to develop into highly functioning CMs 
and it is exceedingly difficult to acquire enough cardiac 
progenitor cells from a patient’s biopsy [10, 11]. Cellu-
lar metabolism plays a significant role in the maturation 
of iPSC-derived cardiac tissue models and the forma-
tion of CMs, and alterations in cellular metabolism lead 
to cardiac pathogenesis. iPSC-derived CMs (iPSC-CMs) 
vary from mature human CMs in several ways, includ-
ing contractile function, electrophysiology, metabolism, 
and structure. iPSC-CMs resemble fetal CMs in several 
respects, such as the absence of pathways relevant to the 
adult phenotype and particular gene expression. In iPSC-
CMs, aerobic glycolysis is the primary source of ATP 
generation, with limited assistance from oxidative phos-
phorylation. The use of iPSCs in clinic may be limited 
by these various metabolic characteristics. Due to these 
problems, researchers have created a number of methods 
for maturing iPSC-CMs, such as 3D culture, electrical 
pacing, extended culture, or adding hormones and fatty 
acids to the media used to grow cells. These methods 
improve the functional and structural maturity of iPSC-
CMs [12]. According to studies, utilizing the aforemen-
tioned maturation techniques may boost the expression 
of genes in iPSC-CMs that control cardiac metabolism, 
including CD36, ACAT1, PDK4, ATP5, LPL, PPARA, 
and DGAT1. Additionally, fatty acid supplementation 
and extended culture were used to enhance the expres-
sion levels of the genes ESRRA and PPARGC1A, which 
are related to mitochondrial biogenesis, and ACADVL, 
PPARD, and SCD, which are related to fatty acid oxida-
tion. PGK1, ALDOA, LDHA, HK1 and HK2 are among 
the glycolysis-related genes whose expression levels may 

be decreased by extended culture and fatty acid supple-
mentation [13, 14].

Differentiation of iPSCs into cardiomyocytes
Differentiating CMs from hiPSCs is a crucial step in 
producing artificial cardiac muscle cells and tissues. 
Engineering efforts to purify the hiPSC-CMs and vari-
ous techniques to stimulate hiPSC-CM development 
are investigated. In reality, ESCs and iPSCs develop in 
a similar manner and may become any kind of special-
ized human cell [15, 16]. Although there may be pheno-
typic differences between CMs produced from ESCs and 
iPSCs due to variations in gene expression. Based on in 
vivo heart development, researchers have created a vari-
ety of techniques to differentiate PSCs into CMs during 
the past two decades [17, 18]. Human ESCs (hESCs) may 
generate CMs on their own or with the aid of growth 
factor-directed methods. It is possible to enhance the 
production of CMs by treating hESCs with a variety of 
growth factors, including Vascular endothelial growth 
factor (VEGF), bone morphogenetic protein 4 (BMP-
4), activin A, basic fibroblast growth factor (bFGF) and 
the peptide Wnt inhibitor dickkopf homolog 1 (DKK-
1). Due to their resemblance to hESCs, the majority of 
these growth factors aid in the differentiation of iPSCs 
[19]. However, due to the fact that cardiac differentiation 
effectiveness often depends on cell line, these methods’ 
effectiveness in human ES cell lines varies. Additionally, 
using several growth factors is expensive. Due to their 
accessibility, potency, and capacity to penetrate cells, 
small molecules may be used to control the signaling 
pathways involved in the self-renewal and lineage differ-
entiation of stem cells.

Signaling pathways involved in differentiation
BMP-4 and Wnt/β-catenin signaling pathways were 
shown by Ren et al. to be able to trigger cardiac differ-
entiation in hiPSCs. They found that pre-treatment with 
BMP-4 of hESCs and iPSCs, followed by post-treatment 
with a small molecule Wnt inhibitor, significantly boosts 
the formation of CMs with normal electrophysiological 
function and pharmacological responsiveness [20]. Wnt 
proteins have a role in embryonic development and con-
trol a variety of cellular functions in the adult organism, 
including cell division and proliferation, gene transcrip-
tion, polarity, and migration. Wnt proteins also have a 
role in the development and differentiation of the heart. 
These proteins have the ability to activate both canoni-
cal (β-catenin dependent) and non-canonical (β-catenin 
independent) Wnt signaling, which are intracellular sig-
naling pathways. Mesoderm development depends on 
canonical Wnt/ β-catenin signaling, which is weak dur-
ing cardiac specification. Additionally, the proliferation 
of CMs depends on Wnt/β-catenin signaling [21–23]. 
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Mazzotta et al. performed a research by using small-mol-
ecule inhibitors to analyze functions of canonical/non-
canonical Wnt signaling in hESCs and they suggested 
that canonical signaling regulate mesoderm induction 
and non-canonical signaling modulate cardiovascu-
lar development [24]. Wnt family consists of 19 various 
members in mammals. Activation of Wnt/β-catenin sig-
naling initiates with interaction between Wnt ligands and 
Frizzled receptor which is seven-pass transmembrane 
receptor and its co-receptor, LRP5/6 (low-density lipo-
protein receptor-related protein). Destruction complex 
consists of 2 kinases, glycogen synthase kinase 3 (GSK3β) 
and casein kinase 1 (CK1), AXIN protein and the tumor 
suppressor gene product adenomatous polyposis coli 
(APC) [25, 26]. Activation of Wnt/ β-catenin signaling 
is depicted in Fig. 1 [25]. There are some other signaling 
pathways that adjust cardiac maturation. Activation of 
serine/threonine-protein kinase Akt, results in growth, 
differentiation and metabolism. In addition, PI3K/Akt 
signaling pathway is essential and is activated during CM 

differentiation. Inhibition of PI3K may lead to downregu-
lation of Nkx-2.5 and GATA-4 which are cardiac marker 
genes. It also has been indicated that inhibition of the 
PI3K/Akt signaling pathway in the early cardiomyogen-
esis cause the suppression of Wnt/β-catenin signaling 
(Fathi, Valipour, et al., [27]). Yang et al. could differentiate 
CM cells from hESC embryoid bodies. They added dif-
ferent factors (activin A, BMP4, bFGF, VEGF, and DKK1) 
to serum-free media of hESC and genetare KDRlow/C-
KITneg populations that have cardiac, endothelial, and 
vascular smooth muscle potential. By plating in mono-
layer culture, these KDRlow/C-KITneg cells differentiate 
and generate populations consisting of greater than 50% 
contracting CMs. These populations derived from the 
KDRlow/C-KITneg give rise to colonies that contain three 
lineages (CMs, endothelial cells and vascular smooth 
muscle cells) when plated in methyl cellulose cultures 
[28].

As was previously indicated, early embryonic differ-
entiation requiring Wnt for mesodermal specification; 

Fig. 1  The graphical representation of Wnt/β-Catenin-dependent signaling. (A) When Wnt ligand is absent (off state), β catenin is phosphorylated by 
kinases (GSK3 and CK1) of the Destruction complex. Then, phosphorylated β-catenin ubiquitinate to be targeted for degradation in the proteasome. 
(B) Binding of Wnt ligand to Frizzled receptor and LRP5/6 (on state), allows the Destruction complex to decompose which induce the stabilization of 
β-catenin. β-catenin accumulates in cytoplasm and then is transferred to the nucleus and starts gene transcription. This figure adapted from Fig. 1 of 
reference number 25 [25]
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however, later Wnt signaling prevents cardiac specifica-
tion, hence suppression of Wnt signaling may be required 
for the development of CMs [29]. This model is shown in 
Fig. 2 [30]. Using extrinsic stimuli like BMP4 and CHIR, 
WNT inhibition with XAV939 or IWR1, and enrichment 
of CMs by providing lactate as an energy source within 
15 days, Kadari et al. were able to produce CMs from a 
variety of hiPSC lines. During the first two days of the 
induction phase, basal media containing insulin were 
administered. They demonstrate how the cells seem to 
be under a lot of stress when utilizing basal media with-
out insulin right away. In order to reduce cell death and 
its detrimental effects on cardiac specification, they thus 
opted to maintain insulin for the first two days and stop 
using it during the specification phase [31]. According to 
research by Aguado et al., cells with high expression of 
the shelterin complex protein TRF1 and relatively long 
telomeres develop into CMs more quickly and effectively 
than cells with low expression. The differentiation of 
CMs produced from iPSCs with long telomeres was also 
enhanced by the use of ascorbic acid, but the differentia-
tion of CMs produced from iPSCs with short telomeres 
was unaffected [32]. Ascorbic acid, growth hormones 
including BMP4 and FGF2, and small compounds that 
target the canonical Wnt signaling were shown to work 
well together to improve the differentiation efficiency and 
maturity of iPSC-CMs in a separate study by Yassa et al. 
[32].

In addition to mentioned signaling pathways, TGFβ 
family signaling is another one that involves in cardiac 
regeneration. TGFβ family have crucial roles in differenti-
ation, apoptosis and proliferation. In addition, TGFβ has 
a role in various diseases such as cardiac hypertrophy and 
cardiac abnormality. This family include BMPs, TGFβ 
isoforms, inhibins/activins and growth and differentia-
tion factors. As Dronkers et al. stated in their review arti-
cle, TGFβ family can be split into two clusters of TGFβ 
and BMP. BMPs bind to receptor and cause to phos-
phorylation of SMAD1/5/8, while TGFβ isoforms func-
tion with activins toward phosphorylation of SMAD2/3. 
SMAD4 binds to this phosphorylated SMADS, creating 
a complex and then enters the nucleus which turn on 

TGFβ target genes. TGFβ family complex has 3 types of 
receptors include ALK 1–7 (activin-like kinase or type I 
receptors), ActR2A, ActR2B, TGFBRII and BMPRII (type 
II) and TGFβR3 (type III receptors). TGFβ can also send 
signals through other pathways so called “SMAD-inde-
pendent pathways” such as Rho, PI3K/Akt and MAPK 
[33, 34]. TGFβ family signaling is shown in Fig. 3 [33].

Drug discovery and disease modeling
In medication research, disease modeling, and even 
patient-specific cellular disease models, hiPSCs have 
become a popular platform. By enabling the generation of 
an endless supply of patient-specific human cells, iPSCs 
may revolutionize cardiology. Any human body cell type 
may be differentiated from somatic cells via iPSC repro-
gramming [35, 36]. From 2009 to 2018, it cost around 
USD 985 million to develop a new drug and release it into 
the market. Even though rigorous testing was conducted 
throughout the research period, 90% of medications fail 
to pass clinical trials. This is mostly due to the employ-
ment of unrelated cell culture techniques or inaccurate 
animal models that do not accurately mimic the human 
system. Because they offer human cell resources that are 
suited for research objectives, hiPSCs and their deriva-
tives have been exploited in a broad range of scientific 
domains [8, 37, 38]. The iPSC can be developed into CMs 
while maintaining its genetic information and shares a 
genetic background with the initial reprogrammed cells 
[17]. The modeling of patient-specific iPSCs, a powerful 
tool for investigating illnesses and finding new drugs, as 
shown in Fig. 4 recently [39, 40]. The official and neces-
sary procedure for releasing a new medicine into the 
market is overseen by the European Medicines Agency 
(EMA) in Europe and the Food and medicine Adminis-
tration (FDA) in the USA, as Ovics et al. explained in a 
review study. Chemical and biological research, pre-clin-
ical development, clinical trials, and one post-marketing 
phase are the three pre-marketing stages that make up 
drug development [41]. A wide range of cardiovascular 
models, such as LQTS, dilated cardiomyopathy, hyper-
trophic cardiomyopathy and arrhythmogenic right 

Fig. 2  The roles of Wnt/β-catenin signaling in development of cardiomyocytes. Activation of this pathway is essential for mesodermal specification and 
suppression of this pathway is required during cardiomyocytes differentiation. This figure adapted from Fig. 2 of reference number 30 [30]
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ventricular cardiomyopathy, were derived from patients’ 
iPSCs [8].

Long QT syndromes
A dysfunctional ion channel is a genetic condition known 
as LQTS. LQTS is often defined by a lengthening of the 
QT interval on the ECG, which may result in cardiac 
arrest and is typically brought on by mental or emotional 
strain [42–44]. It has been discovered that diseases are 
brought on by mutations in the genes encoding for car-
diac ion channels, ion channel subunits, or proteins that 
impact how an ion channel functions. 17 genes have been 
linked to congenital LQTS, according to research. Less 
than 5% of clinically confirmed instances of congeni-
tal LQTS have been linked to mutations in genes other 

than KCNQ1, KCHN2, and SCN5A, which account for 
more than 75% of cases [45]. Because of the underlying 
chromosomal abnormality, the LQTS subtype has been 
divided into many subgroups. LQTS type 1, type 2, and 
type 3 have distinct connections between genotypes and 
phenotypes that have been documented.

The potassium channel gene KCNQ1 on chromosome 
11 is the basis for LQT1, while the KCNH2 gene on chro-
mosome 7 is the basis for LQT2. Gain-of-function muta-
tions in SCN5A on chromosome 3 are the basis for LQTS 
type 3. The action potential is prolonged as a result of an 
increase in the myocardial sodium current (INa), which 
occurs during the plateau period [46–48].

Fig. 3  This figure depicts two clusters of TGFβ family signaling, BMP signaling and TGFβ signaling. BMPs (on the right site) bind to BMP type receptor or 
activin IIA or IIB which send signals via ALK1 or ALK 2, 3 ,6. As a result, SMAD 1, 5, 8 are phosphorylated and by joining SMAD4, this new made complex 
translocates to the nucleus. On left site, binding of TGFβ 1, 2, 3 to TGFβ receptor II and binding of Nodal, activing and inhibin to activing receptor IIA, 
respectively activate signaling through ALK5 and ALK4. This signaling leads to phosphorylation of SMAD 2, 3 and then SMAD4 binds to phosphorylated 
SMAD 2, 3. This complex enters the nucleus and cause gene transcription. This figure adapted from Fig. 1 of reference number 33 [33]
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Role of iPSC research
The first LQTS iPSC-CM model was released by Moretti 
et al. and a number have since been published. From the 
dermal fibroblasts of two patients with LQT1 who had 
the R190Q mutation in the KCNQ1 gene, they created 
iPSC-CMs. Individual cells were identified as having a 
“ventricular,” “atrial,” or “nodal” phenotype based on the 
expression of cell-type-specific markers and recordings 
of action potentials in single cells. The “ventricular” and 
“atrial” action potential length was considerably extended 
in the mutant cells. Additionally, the IKs current was 
reduced by 70 to 80% in cells with the R190Q-KCNQ1 
mutation, and the activation and deactivation charac-
teristics of the channel were altered. Additionally, they 
demonstrated that beta-blockade decreased the pheno-
typic of mutant cells having an enhanced vulnerability to 
catecholamine-induced tachyarrhythmia [49]. Wang et 
al. used genetic modification techniques to overexpress 
the dominant negative gene mutation of KCNQ1 in order 
to create an iPSC-based model for the LQTS1 disease. 
They have shown that as compared to unedited control 
cells, editing iPSCs generated from cardiomyocytes dis-
play LQTS features and a lengthened action potential 
time. They demonstrated that the addition of nifedipine 
or pinacidil decreased the iPSC cardiomyocytes’ action 

potential length, strengthening the safety and effective-
ness of isogenic iPSC lines in drug development [50]. In 
a different work, Garg et al. generated LQT2 iPSC-CM 
from T983I-KCNH2 variant peripheral blood mononu-
clear cells. In mutant cells, patch-clamp tests showed that 
action potential duration lengthening decreased the rap-
idly activating delayed rectifier K + current (IKr). In order 
to do this, they utilized a strong IKr activator called ICA-
105,574, which improved IKr density and standardized 
action potential length in mutant cells [51]. This raised 
the possibility of medication for people with LQT2-spe-
cific disorders. Mesquita et al. developed iPSC- LQTS2 
from two patients with c.1600 C > T in KCNH2, p.R534C 
in hERG mutation and inserted the same mutation in a 
control iPSC line, and then differentiated into CMs. Elec-
trophysiology tests revealed that the mutant iPSC line’s 
action potential duration was much longer than that of 
the control cell line. Action potential lengthening was 
seen in the control cell line after treatment with E4031, 
an IKr inhibitor, whereas IKr was reduced in LQT2-iPSC 
[52]. In order to create a collection of isogenic iPSC lines 
with different KCNH2 mutations that produce LQT2, 
Brandao et al. (2020) genetically altered an iPSC line using 
CRISPR/Cas9 gene editing. They indicated that geneti-
cally modified hiPSC-CMs can have electrophysiological 

Fig. 4  Various applications of iPSC-derived cardiomyocytes
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differences related to the KCNH2 mutation. Thus, it can 
be helpful in improving the diagnosis, prognosis and 
the classification of patients with congenital LQTS [53]. 
Wang et al. designed iPSC line of LQT patient harbor-
ing two mutations: a heterozygous KCNQ1 c.656G > A 
and a heterozygous TRPM4 c.479 C > T. They found that 
the QT interval in LQT patients was reduced by lido-
caine, a sodium channel blocker, and verapamil, a cal-
cium channel blocker. Verapamil dramatically decreased 
the number of ICD discharges. The relative decrease in 
QT interval after verapamil administration was similarly 
shown to be greater for LQT cardiomyocytes when com-
pared to lidocaine [54].

Arrhythmogenic right ventricular cardiomyopathy
Inherent heart muscle disease called arrhythmogenic 
right ventricular cardiomyopathy (ARVC) increases the 
risk of ventricular arrhythmias and sudden cardiac death, 
especially in young people and athletes, as fatty fibrous 
tissue replaces the right ventricular myocardium as well 
as that of the left ventricle. It affects at least 1 in 1000 
persons under the age of 35, and it may account for up 
to 10% of fatalities from undetected cardiac disease in 
this age range [55–57, 110]. ARVC is familial and fre-
quently autosomal dominant in roughly 50% of cases. 
Changes in five desmosomal protein-encoding genes, 
including DSG2, DSC2, PKP2, and DSP, which may 
result in cell death and fragmentation, have been linked 
to ARVC. Desmosomal protein deficiency may alter 
electrocardiographic parameters, cardiomyocyte gap 
junction structure, and sodium channel function. These 
mutations, which cause the premature termination of 
related proteins, are categorized as insertions, deletions, 
or nonsense mutations [58–61]. Desmosomal proteins 
have a role in the Wnt/ β-catenin signaling pathway and 
are crucial for cardiac myogenesis. Desmosome protein 
alterations block Wnt/ β-catenin, which helps to gener-
ate mesoderm precursor adipose [62–64]. TGF-3 and 
TMEM43 are two non-desmosomal genes that have been 
found in ARVC. The first is for transmembrane protein 
43, and the second is for transforming growth factor 3 
[65, 66]. Desmosome gene mutations are present in more 
than 50% of the afflicted people, most often in the PKP2 
gene, which codes for plakophilin-2. Reduced β- catenin 
activity and aberrant plakoglobin nuclear translocation 
are caused by PKP2 mutation in iPSC-CMs [62, 67].

Role of iPSC research
Ma et al. developed the first ARVC in vitro model with 
PKP2 gene mutation using patient iPSC-CMs [68]. From 
the fibroblasts of two ARVC patients with PKP2 muta-
tions, Kim et al. created iPSC lines. By producing an 
adult-like metabolic energetics from an embryonic condi-
tion and activating the peroxisome proliferator-activated 

receptor-gamma, or PPARγ, they were able to produce 
an ARVC in-vitro model. In mutant PKP2 iPSC-CM, 
this model showed enhanced lipogenesis, apoptosis, 
and deficiencies in calcium handling [69]. By knocking 
down PKP2, Matthes et al. evaluated the role of the des-
mosomal protein PKP2 in epicardial and epicardium-
derived cells, which led to increased lipid indicators, cell 
migration, and proliferation. Their study suggested that 
epicardium cells may be important for understanding 
the pathogenesis of ARVC [70]. In especially for ARVC, 
Capsi et al. (2013) emphasize the special potential of 
hiPSC technology to represent congenital cardiac dis-
eases. They develop two ARVC patients with PKP2 muta-
tions into hiPSC-derived CMs. In the ARVC model, there 
was a decrease in PKP2 and connexin-43 protein expres-
sion [71].The second most common ARVC variation is 
called desmoglein-2 (DSG2) [72]. An ARVC iPSC-CM 
model was created by Hawthorne et al. from a patient 
who had the DSG2 c.2358delA mutation. Less DSG2 
mRNA, altered DSG2 protein distribution, atypical cal-
cium regulation, and shorter action potentials were all 
seen in mutant cells. Additionally, elevated levels of pro-
inflammatory cytokines have been seen, which may be 
connected to both conventional and non-canonical NF-B 
activation [73].

Dilated cardiomyopathy
The term “dilated cardiomyopathy” (or “DCM”) refers to 
a set of non-ischemic diseases of the heart muscle that 
are characterized by dilated left ventricles and dysfunc-
tional contraction [74–76]. There are two types of the 
illness: familial/hereditary and non-familial. Familial fac-
tors account for 30–50% of DCM. Over 40 distinct genes, 
including TTN, TNNT2, PLN, MYH7, LMNA, and DES, 
have been identified as having genetic alterations [41, 77]. 
The TTN mutation, which is a frequent cause of dilated 
cardiomyopathy and occurs in around 25% of familial 
instances, is one such factor. The biggest known protein 
in humans, titin is a sarcomere protein encoded by the 
TTN gene [78, 79].

iPSC models
Hinson et al. demonstrated that sarcomere insuffi-
ciency, inconsistent cell signaling activation, and lim-
ited cell development were present in iPSC generations 
from DCM patients with TTN mutations. These cells 
responded to β-adrenergic stress with reduced effects 
[80]. Huang et al. used CRISPR-Cas9 technology to 
mimic hiPSC-CMs of DCM with A-band TTN muta-
tions. This model showed aberrant sodium channel activ-
ity, sarcomere abnormalities, and contraction failure. 
With A-band TTN variations that improve contractility 
and lessen DCM symptoms, they also demonstrated the 
therapeutic potential of sarcomere modulators in DCM 
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[81]. Patients with TTN mutations’ skin fibroblasts were 
used by Schick et al. to create iPSC-CMs. Mutated iPSC-
CM showed defects in sarcomeric structure, diminished 
sensitivity to isoproterenol that mimicked β-adrenergic 
stimulation, and increased angiotensin-II levels [82]. Jeon 
et al. were able to create the hiPSC line YCMi007-A from 
a patient who had p. TNNT2 gene mutation causing Arg-
205Trp. These cells might be useful for the DCM model 
since they could develop into three germ layers and had 
a normal karyotype [83]. Perea-Gil et al. [101] used the 
CRISPR technique of gene editing to produce iPSC-CMs 
from a patient with the TNNT2- p.R183W mutation 
for an in vitro DCM model. They showed that the con-
comitant administration of the two kinase inhibitors Gö 
6976 and SB 203,580 may boost the gene expression of 
the serine and glycine-encoding genes and restore con-
tractile failure in cells with different mutations, includ-
ing TNNT2, LMNA, and TTN. They also showed that 
DCM symptoms may be reduced by activating transcrip-
tion factor 4 and downstream elements like a crucial 
enzyme in the serine biosynthesis pathway [84]. Accord-
ing to research by Dai et al., troponin connections with 
tropomyosin are dysfunctional in iPSC-CMs made from 
DCM patients with the TNNT2-R173W mutation using 
the CRISPR/Cas9 technique. This limits the binding of 
PKA to other proteins. This results in a deficiency in the 
MYH7-mediated and AMPK-dependent connections 
between sarcomeres and cytoskeleton filaments. They 
demonstrated that TNNT2-R173W mutant cells’ poor 
contractility could be repaired and sarcomere protein 
interactions improved by activating AMPK by A-769,662 
[85]. Lamin A and lamin C are two major LMNA gene 
products that are expressed in the majority of differenti-
ated somatic cells [86, 87]. Siu et al. produced two lines 
of DCM-derived iPSC-CMs from two patients. The 
LMNA exon 4 of one patient contained an R225X muta-
tion, while the exon 4 of the second patient had a frame-
shift mutation. They demonstrated that pharmacological 
blockade of the ERK2 pathway with MEK1/2 inhibitors, 
U0126 and selumetinib significantly reduced the apop-
totic effects of electrical stimulation for mutant LMNA 
iPSCs [88]. Lee et al. modeled DCM with LMNA muta-
tion using iPSC-CMs. Platelet-derived growth factor 
(PDGF) signaling pathway was activated in mutant cells 
and aberrant calcium transients were seen in mutant 
iPSC lines. Sunitinib and crenolanib are used to inhibit 
platelet-derived growth factor receptor- β (PDGFRB) 
expression in K117fs iPSC-CMs, which reduces the 
unique calcium transient and decreases CAMK2D levels. 
LMNA in DCM is brought on by the pathogenic muta-
tion K117fs [89]. Three DCM patients’ peripheral blood 
mononuclear cells were transformed to produce three 
hiPSC lines by Lee et al. The c.1129 C > T LMNA muta-
tion was present in all cases. All lines of iPSC have been 

shown to have normal morphology and high levels of 
pluripotent markers, making them suitable as an in vitro 
model for LMNA mutations in DCM [90].

Hypertrophic cardiomyopathy
The most prevalent congenital cardiomyopathy, hyper-
trophic cardiomyopathy (HCM), is characterized by left 
ventricular hypertrophy without a clear hemodynamic 
cause, such as severe hypertension or aortic stenosis. 
Adults are thought to have a prevalence of HCM that 
falls between 0.02 and 0.23% [91–93]. Most often, sarco-
mere mutations are the genetic basis of HCM. Heart fail-
ure, arrhythmias, and sudden cardiac death are all linked 
to HCM [94]. Myosin binding protein C (MYBPC3) and 
-myosin heavy chain (MYH7) mutations are the most 
common, followed by TNNI3 and TNNT2 mutations. 
However, 20 sarcomeric and myofilament-related pro-
teins contain 450 mutations that have been linked to 
HCM [95–97]. Myosin heavy chain beta (MHC-β), which 
is produced in skeletal and heart muscles and is a crucial 
protein in the thick filament of the human heart and con-
tributes to contraction, is encoded by MYH7 [41, 98, 99].

iPSC models
Han et al. produced iPSCs from an HCM patient with 
an Arginine442Glycine missense mutation in the MYH7 
gene in more recent years. In HCM iPSC-CMs compared 
to control iPSC-CMs, electrophysiological abnormali-
ties, disordered sarcomeres, and a substantial increase 
in genes important for cell proliferation were seen. 
They discovered that using verapamil plus the histone 
deacetylase inhibitor trichostatin A (TSA) abolished 
irregular heartbeats and reduced calcium irregularity in 
HCM CMs [100]. Ten family members with HCM, half 
of whom had the Arg663His missense mutation in the 
MYH7 gene, were used to create iPSC-CMs by Lan et al. 
The cellular expansion, calcium cycling dysregulation, 
contractile arrhythmia, and intracellular calcium increase 
were all characteristics of mutant cells. Verapamil, mexi-
letine, lidocaine, and ranolazine have all been shown via 
drug testing to restore unfavorable alterations in mutant 
cells [101]. Using CRISPR/Cas9 technology, Cohn et al. 
created four isogenic iPSC-CM models of the MYH7 and 
MYBPC3 mutations. Due to delayed relaxation kinetics, 
mutated cell line generated hypercontractility. They dem-
onstrated that myofilament calcium delivery, variation 
location, and extracellular calcium level are not related 
to hypercontractility. Studies using RNA sequencing 
revealed p53 activation, oxidative stress, and cytotoxicity, 
all of which may be reversed by genetically altering p53. 
As a direct myosin inhibitor, verapamil and blebbistatin 
were also put to the test. Verapamil decreased twitch ten-
sion in R403Q+/- cardiomyocytes by 31.7% and blebbi-
statin decreased twitch force by 35.3% [102]. Escribá et al. 
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created iPSC-CMs using CRISPR/Cas9 genome editing 
from two siblings who had HCM including the MYBPC3 
mutation. Their research demonstrated that the MYBPC3 
variation leads to mitochondrial bioenergetic dysfunc-
tion, which forces mitochondria to operate at greater 
efficiency in order to meet the escalating energy require-
ments of mutant cells. A seriously damaged person also 
showed abnormal excitation-contraction coupling [103]. 
Table  1 displays the stated models for disease modeling 
[49, 104–106].

Purification methods
Regenerative cell treatments need large amounts of pure 
PSCs. Animal models have shown several positive ben-
efits of cardiac replacement treatment employing CMs 
derived from PSCs, including ESCs and iPSCs, to injured 
hearts. Thus, for the clinical application of PSC-CMs, 
1 × 107–1 × 109 purified PSC-CMs are needed. Addition-
ally, cell contamination should be avoided since it may 
result in unexpected events [107, 108]. There are several 
ways to clean up iPSCs. Here, we quickly go through two 
of the most popular techniques.

Antibody-based cell purification
The most effective approach for cell purification to date 
is antibody-based cell enrichment. Antibodies against 
cell type-specific surface proteins may tag the target 
cells and separate them using FACS or magnetic-acti-
vated cell sorting (MACS). The fundamental benefit of 
these approaches is their specificity and sensitivity. For 
PSC-CMs, researchers have created a few purification 
techniques. For instance, identifying CORIN, Signal-Reg-
ulatory Protein Alpha (SIRPA), and Vascular Cell Adhe-
sion Molecule 1 (VCAM1) as cardiac-specific cell surface 
proteins. However, no research revealed surface markers 
that are exclusive to CMs. Because the MACS approach 
need specialized antibodies to the cellular surface pro-
teins, it is challenging to utilize with cell types like CMs 
that lack certain cell surface proteins [109–111]. Rossler 
et al. compared the purification of hiPSC-CM cultures 
using lactate or MACS and their research revealed no 
considerable difference between these methods. They 
stated that purified cells via lactate or MACS had com-
parable features in structure, proteome, function and 
can be utilized in 3D cell cultures [112]. KDR (Flk-1) was 

previously employed in investigations to identify cardiac 
progenitor cells; however, since this receptor is expressed 
on a variety of mesoderm populations, it was unable to 
enrich solely hPSC-CMs [113, 114]. In addition, although 
markers like SIRPA and VCAM1 are expressed in other 
cell types, cell sorting utilizing antibodies should first 
allow enrichment of cardiomyocytes. Therefore, con-
tamination from non-CMs or non-specific cells might 
reduce the effectiveness of the transplant [115]. Liew et 
al. performed a research and introduced a novel surface 
marker, JAK2, to purify and sort live cells of ventricu-
lar CMs. They isolated CMs which were SIRPA positive 
with expressed MLC2A and MLC2V proteins and their 
research demonstrated that isolating ventricular SIRPA+/
JAK2 + cells can lead to higher purity [116].

miRNA-based methods
There are further purification techniques that rely on 
spotting miRNA (microRNA) activity in live target cells 
[115]. Non-coding RNA molecules called miRNAs are 
involved in the control of gene expression. RNA poly-
merase II and III carry out the transcription of miR-
NAs, producing precursors that go through a sequence 
of cleavage events to create mature miRNA. In other 
words, the majority of miRNAs are transcribed from 
DNA sequences as primary miRNAs and processed 
into precursor miRNAs and mature miRNAs [117, 
118]. MiRNAs are typically 21–23 nucleotides in length 
and can bind to the 3′ untranslated regions (3’UTR) of 
messenger RNAs (mRNAs) to downregulate their tar-
get genes [119]. To quickly and effectively purify large 
numbers of PSC-derived cells, Tsujisaka et al. devised 
a technique that combines miRNA-responsive mRNA 
switch (miR-switch) with MACS (miR-switch-MACS). 
The miR-switch is a two-part synthetic mRNA. One is a 
protein-coding region, and the other is a complementary 
sequence to the target miRNA called a miRNA target site. 
Because of the contact between the target miRNA and 
the miR-switch, translation from the miR-switch is sup-
pressed if the cell expresses the target miRNA. In con-
trast, the miR-switch is translated if the target miRNA 
is not expressed by the cell. To specifically suppress CD4 
expression in iPSC-CMs, they created a miR-208a-re-
sponsive CD4-coding mRNA (miR-208a-CD4 switch) 
that encodes the CD4 cell surface protein. Because 
they could successfully filter iPSC-CMs among trans-
fected cells (> 95% purity) and maintain more than 50% 
of iPSC-CMs based on the computation of the number 
of CMs before and after MACS, they employed 300 ng 
miR-208a-CD4 switch to harvest significant amounts of 
iPSC-CMs [108]. A powerful technique for cell purifica-
tion based on endogenous miRNA activity was disclosed 
by Miki et al. (2015) They discovered numerous miRNA 
that were co-expressed on differentiation days 8 and 20 

Table 1  This table briefly indicates mentioned disease models in 
regenerative medicine
Diseases Mutated genes Features
LQT KCNQ1, KCNH2, SCN5A Prolonged AP duration
ARVC PKP2, DSG2, DSC2, DSP Right ventricular dilation
DCM TTN, TTN2, LMNA Systolic dysfunction and 

left ventricular dilation
HCM MYH7, MYBPC3 Left ventricular hypertrophy
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in hPSC-CMs, thus they created artificial mRNAs known 
as miRNA switches that can detect these miRNAs. 
They created artificial mRNAs called miRNA switches 
that code for fluorescent proteins that are marked with 
sequences that are targets of miRNAs produced by the 
cells of interest. CMs may be isolated and sorted from 
diverse cell types using synthetic miRNA switches. 
Because the fluorescent protein expression differential 
between CMs and non-CMs was greatest utilizing the 
miR-208a switch, they decided to employ miR-208a as a 
marker for CM-specific miRNA [120].

Stem cell-based therapy
Any treatment for diseases employing various types of 
viable human stem cells, such as adult stem cells, iPSCs, 
and ESCs, is referred to as stem cell-based therapy. Two 
methods for iPSC-based cell treatment are autologous 
and allogeneic cell transplantation. In allogeneic trans-
plantation, iPSCs donate from someone other than the 
patient, employing human leukocyte antigen (HLA) that 
match donor in order to prevent immunological rejection 
by the host. In autologous transplantation, the patient’s 
own iPSCs develop into target cells. The immune system 
in humans is significantly regulated by HLA [8, 121]. In 
2014, the first transplantation of autologous iPSC-derived 
cells was performed on a Japanese woman in her seven-
ties suffering from age-related macular degeneration. A 
degeneration of the retinal epithelium, a layer of cells that 
supports photoreceptors necessary for vision, is the cause 
of age-related macular degeneration. Following surgery, 
the patient did not encounter any severe complications. 
During the first year, there was no evidence of immuno-
logical rejection of the transplanted iPSC-derived retinal 
pigment epithelium cells, and the patient’s visual acu-
ity did not increase or decrease without further treat-
ment [122, 123]. There are several obstacles that make 
the autologous approach difficult to use. For instance, 
safety testing for selecting the finest iPSC line from 30 
distinct lines is estimated to cost US$500,000, and the 
total cost per patient is approximately $1,000,000. In 
addition, autologous transplantation is a lengthy pro-
cedure. There are more obstacles for autologous stem 
cell therapies than for allogeneic transplantation. Dur-
ing allogeneic therapy, the cell product may be exten-
sively characterized and examined over a lengthy period 
of preclinical evaluation before being administered to a 
variety of patients. But in the autologous approach, the 
available time for this evaluation is much shorter [124]. 
In a rat model of MI, Guan et al. evaluated how well 
hiPSC-CM transplantation improved myocardial func-
tion. They discovered that animals had reduced mortal-
ity than the control group four weeks after receiving an 
iPSC-CM transplant. When iPSC-CMs were put into 
the control group instead of cell-free fluid, this model of 

left ventricular dysfunction was attenuated. Their study 
showed that hiPSC-CM grafts survived in infarcted rat 
hearts for 4 weeks and restored myocardial function 
[125]. Li et al. investigated the effects of secreted exo-
somes from hiPSC-derived endothelial cells on survival 
of CMs after MI and they suggested that these exosomes 
could reduce the injury of glucose and oxygen depriva-
tion, improve the Ca2+ homeostasis and restore heart 
function [126]. Ye et al. injected three types of hiPSC-
derived cells (CMs, endothelial cells and smooth muscle 
cells) into injured hearts of a porcine model with MI and 
indicated engraftment of all three lineages cells at the site 
of injury after almost 4th week of injection. Their study 
showed enhancements in contractile performance, myo-
cardial wall stress, metabolism and no development of 
arrhythmias [127]. The immaturity and heterogeneity of 
heart cells are two challenges for iPSC-based treatment. 
Regarding these problems, better methods to deal with 
the variability of the iPSC-CMs have been established, 
along with separation strategies based on particular car-
diac markers, such as VCAM1. The population of cardiac 
cells in the CM consists of nodal-like, atrial, pacemaker, 
ventricular, and functional cells [76]. In a study, Funa-
koshi et al. [39] examined the engraftment efficiency 
of CMs at various stages of development in numerous 
days of mouse mesodermal cells and found that day 20 
had the highest engraftment ratio. They administered 
day 20  cm to immune-deficient animals with infarcted 
hearts, and they saw a significant improvement in func-
tion and echocardiogram of the heart, demonstrating 
the therapeutic potential of these cells [128]. One of the 
issues with iPSC transplants is arrhythmias that has been 
observed in non-human primates [129]. Marchiano et al. 
distinguished ion channel genes that are expressed after 
hPSC-CM transplantation which lead to automaticity 
and arrhythmias. They utilized CRISPR/Cas9 technol-
ogy to overexpress gene KCNJ2, knock out CACNA1H, 
HCN4, SLC8A1 genes and created adult like CMs that 
have decreased automaticity and contracted in response 
to exterior stimulations. These cells were transplanted 
in vivo and engrafted into host CMs which indicate no 
arrhythmias. They manifested that automaticity and risk 
of arrhythmias can be reduced by inducing the expres-
sion of adult like ion genes in PSC-CMs [130].

Challenges and future perspectives of iPSCs in 
vitro models
The creation of iPSC lines was a significant development 
in the area of regenerative medicine. These cells may 
develop into a variety of cell types, including vascular 
endothelial cells, smooth muscle cells, and CMs, mak-
ing them an innovative and trustworthy model system for 
studying the molecular and genetic causes of human dis-
orders [76]. iPSC-CMs are a viable alternative to primary 
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cells and animal models since they express a number of 
cardiac-specific genes, have a human genome, and pos-
sess key characteristics of human CMs. Although iPSC-
CMs provide opportunities for drug development and 
testing of therapeutic approaches, these models have 
several limitations. Imperfect replication of adult disease 
phenotype and intricate intercellular communication of 
disease, is the primary limitation of iPSC-CMs which is 
because of their embryonic structure and lack of inter-
cellular interactions between various cell types. Among 
the embryonic structures of iPSC-CMs are short sarco-
meres, variable calcium ion concentration, and less mito-
chondria. Moreover, the complexity of certain diseases 
involving multiple genes, heterogeneous diseases, and 
individuals carrying distinct gene mutations are obstacles 
for iPSC technology. Consequently, it may be impos-
sible to produce a single compound for a spectrum of 
diseases using a single patient-derived cell line. In addi-
tion, it is challenging to simulate the physiological state 
of the heart and the intercellular interactions of differ-
ent cell types using a 2D iPSC-CMs culture. As a result, 
efforts are being made to develop 3D culture systems 
[8, 131]. Standard 2D cell culture is unable to replicate 
the complex physical and environmental interactions 
that occur in vivo. Therefore, they are unable to develop 
some cardiac disease phenotypes. ECM scaffolds, cellu-
lar components, and fluidic microenvironments may all 
be obtained from 3D culture models. Hydrogel scaffold-
based models with biowires, engineered cardiac/heart 
tissues, HoC, and designed human myocardium are 
examples of 3D cardiac models. Scaffold-free 3D mod-
els include cardioids, cardiac spheroids, and cell sheets 
as another category. Researchers have taken a variety of 
steps to undertake morphological and functional matura-
tion of iPSC-CM, to enhance CMs models, and to learn 
the underlying processes in addition to developing dis-
ease-treating therapies. Although 3D models may repli-
cate disease-specific models that haven’t been replicated 
in 2D models, it is essential to reach a full CM matura-
tion in the development of novel medications, therefore 
perhaps patient-specific iPSC models couldn’t totally 
replace animal models or conventional cell line assays. 
[132]. Maturation is a difficult process. A variety of ele-
ments, including as mechanical cues, electric signals, 
biochemical adhesion, and cell to cell contacts, influence 
the growth of CMs in vivo. It is impossible to produce 
a significant number of CMs for regenerative medicine 
quickly and at high capacity. As a result, it is anticipated 
that additional techniques will be introduced to supple-
ment the ones now in use, resulting in improved iPSC-
CM maturation induction and cell transplantation [133]. 
Overall based on the review article written by Gill et al. 
hurdles and challenges for the clinical translation of stem 
cell therapy can be summarized in heterogeneity of stem 

cells, uncontrolled differentiation, migration, survival of 
transplanted stem cells and immunogenicity of these cells 
after transplantation [134] and for more detailed infor-
mation it is suggested to read the mentioned article.

Conclusion
These days, iPSC technology has developed into an inter-
esting tool for scientists to model diseases, offering new 
prospects in the area of modeling cardiac disease that 
make it feasible to research complicated cardiac arrhyth-
mia syndromes and to reproduce patient phenotypic 
in vitro models. The development of iPSC technology 
seems to be useful for making notable advancements in 
understanding the fundamental principles of cardiomyo-
genesis, and it may aid in future biomedical research by 
facilitating the testing of novel medications and poten-
tially significant therapeutic applications. One of the 
most significant advancements for iPSC technology is 
specifically giving a new source for individualized cardiac 
myocytes in the future and effective methods for cell dif-
ferentiation towards chosen somatic cell types.
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