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of a complex issue, paving the way for future betterment 
of clinical practice.

As discussed in the first third of this work, fibrosis is 
a pathological process characterized by abnormal depo-
sition of connective tissue and improper tissue repair in 
response to sustained injury [1]. It can impact any organ, 
leading to severe structural and functional dysfunction 
and even failure [2, 3]. Data suggests fibrosis may account 
for the insurgence of up to 20% of all cancers and for up 
to 45% of deaths in industrialized nations, thus empha-
sizing the relevance and importance of pursuing a more 
thorough understanding of wound healing, chronic 
inflammation, and fibrosis [2, 4].

The physiological wound healing process involves the 
processes of hemostasis, inflammation, proliferation, 
and remodeling [5, 7–14]. Aberrant tissue repair, instead, 

Background
This is the third instalment of a three-part series regard-
ing the radiology of fibrosis across organs. This install-
ment concerns genitourinary organs, in particular, the 
kidneys, the bladder, and the prostate. The prior parts of 
this series are titled “Radiology of Fibrosis Part I: Tho-
racic Organs” and “Radiology of Fibrosis Part II: Abdomi-
nal Organs”. By structuring our work in this manner, we 
hope to have provided the readership with a clear image 

Journal of Translational 
Medicine

*Correspondence:
Sofia Maria Tarchi
sofiamaria.tarchi@st.hunimed.eu
1Department of Biomedical Sciences, Humanitas University, Milan, Italy
2Department of Radiology, Columbia University Irving Medical Center, 
630 W 168th Street, New York, NY 10032, USA

Abstract
Fibrosis is a pathological process involving the abnormal deposition of connective tissue, resulting from improper 
tissue repair in response to sustained injury caused by hypoxia, infection, or physical damage. It can impact any 
organ, leading to their dysfunction and eventual failure. Additionally, tissue fibrosis plays an important role in 
carcinogenesis and the progression of cancer.

Early and accurate diagnosis of organ fibrosis, coupled with regular surveillance, is essential for timely disease-
modifying interventions, ultimately reducing mortality and enhancing quality of life. While extensive research 
has already been carried out on the topics of aberrant wound healing and fibrogenesis, we lack a thorough 
understanding of how their relationship reveals itself through modern imaging techniques.

This paper focuses on fibrosis of the genito-urinary system, detailing relevant imaging technologies used for its 
detection and exploring future directions.
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determines the development of chronic inflammation, 
excessive fibroblast proliferation, heightened collagen 
deposition, and, ultimately, an imbalanced alternation of 
scar formation and remodeling [3, 5].

While extensive research has already been carried out 
on the topics of aberrant wound healing and fibrogenesis, 
we lack a thorough understanding of how their relation-
ship reveals itself through modern imaging techniques. 
Considering the profound implications that advance-
ments in this field may carry, and with the objective of 
exploring and expanding upon our current understand-
ing, this study seeks to study fibrosis across various 
organs of the genitourinary system and catalog the fore-
most imaging technologies utilized for its identification.

Renal fibrosis
Mechanism of injury
Renal fibrosis is an unfortunate sequel of extensive, ongo-
ing tissue damage and is the final phase common to most 
pathological kidney repair processes [15, 16]. It is char-
acterized by deposition of extracellular matrix (ECM) 
which can affect all compartments of the renal paren-
chyma leading to organ failure [15]. Resident fibroblasts 
are of vital importance for the induction and advance-
ment of fibrotic disease [17]. In response to injury, they 
differentiate into myofibroblasts acquiring the capacity 
to produce large amounts of ECM and displaying a more 
pro-inflammatory phenotype [17]. Soon after initial insult 
to the kidney parenchyma, resident fibroblasts activate 
the nuclear factor κB (NF-κB) signaling pathway leading 
to the production of pro-inflammatory cytokines which 
advance inflammation [17]. This stage of the wound heal-
ing process has been found to be potentially reversible 
through the administration of anti-inflammatory agents 
[17]. The same nuclear factor, NF-κB, has been linked to 
an increase in the activity of sodium hydrogen exchanger 

3, a major proximal tubule transporter responsible for 
sodium reabsorption and albumin endocytosis [17, 18]. 
Increased plasma albumin, increases oncotic pressure 
and reduces albumin gradient producing increased filtra-
tion of intravascular fluid into the interstitium, leading to 
inflammation and edema [19].

US
Conventional renal US is often used in the initial evalu-
ation because it is safe, easy and inexpensive to perform 
[20]. Renal US features, such as increased parenchymal 
echogenicity and decreased renal size and parenchy-
mal thickness can be easily assessed [20] (Fig.  1). For 
this reason, parenchymal echogenicity is a commonly 
used marker for nephropathy [20]. However, this marker 
is subjective, not quantitative and often fails to detect 
renal abnormality [20]. Thus, conventional renal US is 
generally uninformative in evaluating the progression 
of chronic kidney disease (CKD) [20]. For this reason, a 
superior alternative to this imaging modality has been 
offered in the form of ultrasound elastography (USE) 
[20, 21]. USE is a low-cost and non-invasive US imaging 
technique for the assessment of tissue stiffness based on 
the pathological and physiological principle that fibrotic 
tissues have different elasticities compared to normal tis-
sues [20, 22, 23]. The same working principle applied in 
magnetic resonace elastography (MRE) [21]. Two main 
USE subtypes are employed today: strain elastography 
(SE) and shear wave elastography (SWE). Thus far, most 
research has been based on SWE [23]. In SWE, real-time 
rapid tissue deformation induced by an external com-
pression device generates a shear wave that propagates 
perpendicularly to the main US beam [20, 23, 24]. The 
US scanner can monitor the tissue displacement, mea-
suring the time-to-peak displacement and the recovery 
time in order to quantify physical strain within the tissue 
[20, 24]. Preliminary results are promising, showing renal 
elasticity to be consistently associated with renal deterio-
ration in patients with CKD [23, 24]. This technology has 
the potential to help assess early alterations in renal func-
tion and pathological alterations, thus calling for further 
investigation into the in vivo utility of USE [21, 23]. How-
ever, previous studies that investigated the relationship 
between the SWE and renal function and fibrosis are not 
consistent with each other finding both significant posi-
tive and negative correlations [20, 21, 23]. To explain this 
discrepancy, we must consider the fact that kidney stiff-
ness is not only related to fibrosis, indeed there are sev-
eral additional influencing factors [22, 23]. For example, 
the heterogeneity of patient cohorts, patient age, varia-
tions in renal blood flow, the presence of atherosclerosis, 
coronary artery disease, hypertension, hydronephro-
sis, degree of bladder distension, and the wide array of 
underlying cause (diabetic nephropathy, nephrosclerosis, 

Fig. 1 Ultrasound showing diffuse cortical thinning and mildly echogenic 
renal parenchyma
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glomerulonephritis, etc.) [20, 22, 23]. The lack of consen-
sus on the elastic changes in CKD means the results of 
USE should be interpreted carefully and studies should 
be furthered [20, 23]. An example of renal US showing 
mildly echogenic renal parenchyma is provided in Fig. 1. 
Finally, non-US technologies dedicated to the detection 
of renal fibrosis are MRI, DWI MRI, MRE, ASL fMRI, 
BOLD MRI, and PET [21]. Contrast enhanced CT is not 
often prescribed in nephrological patients due to the high 
risk of contrast induced acute kidney injury (AKI) [26, 
27].

MRI
The gold standard non-invasive renal fibrosis diagnostic 
technique is represented by MRI (Fig.  2). In particular, 
diffusion weighted magnetic resonance imaging (DWI) 
(Fig. 3) and magnetic resonance elastography (MRE) [25]. 
Other newer MR-based technologies are arterial spin 
labeling functional MRI (ASL fMRI), functional MRI, and 
blood oxygenation-level-dependent (BOLD) MRI [21].

DWI, widely recognized as a powerful tool for imag-
ing renal microstructure and function, is a non-invasive 
imaging technique that utilizes in vivo water molecule 
diffusion mapping to generate contrast in MR images [21, 
25]. Water motion in biological tissues is restricted by 
tissue components such as fibers, macromolecules, and 
cell membranes [21]. Thus, the deposition and accumula-
tion of ECM in fibrotic kidneys as well as tubular atrophy 
influences water diffusion patterns [21]. The commonly 

used parameter to quantify diffusion differences from 
the physical diffusion coefficient is called the apparent 
diffusion coefficient (ADC) value which has been found 
to be considerably and consistently lower in patients 
with CKD than in healthy controls [21, 25]. The acquired 
images have low spatial resolution and are subject to dis-
tortions caused by respiratory motion and water protons 
present at the bowel-tissue interface [21, 25]. Recently, a 
new technique termed Readout Segmentation Of Long 
Variable Echo-trains (RESOLVE) has been developed 
to reduce DWIs susceptibility to these artifacts [21, 25]. 
Further technical developments are needed to validate 
its in vivo applicability [21, 25]. An example of DWI-
MRI is provided in Fig. 3 and shows mild homogeneous 
T2 hypointensity, no fluid in the renal collective systems, 
and diffuse cortical restricted diffusion.

The accumulation of ECM during development of renal 
fibrosis typically augments tissue stiffness, which may, 
thus, serve as a good biomarker of renal fibrosis [21, 28]. 
MRE is a novel MRI-based technique that directly and 
noninvasively measures tissue stiffness by studying the 
propagation of vibrational acoustic shear waves in the 
tissue [21, 25, 28, 29]. This technology promises early 
detection, staging, and prevention of renal disease while 
reducing the need for bioptic procedures and eliminat-
ing inherent sampling errors [28, 30]. While initial results 
are encouraging, further studies are needed to validate 
the in vivo utility of MRE [25, 28, 30]. Heterogeneous tis-
sue texture and changes in renal perfusion pressure have 

Fig. 3 Axial T2 DWI-MRI with mild homogeneous T2 hypointensity (red arrow), no fluid in the renal collective systems (white arrows), and diffuse cortical 
restricted diffusion (blue arrows)

 

Fig. 2 Renal MRI. Pre and post T1 show homogenous, symmetric renal cortical thinning (red arrows)
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been found to modulate the measurement of parenchy-
mal stiffness, often masking the presence of fibrosis [21, 
28, 29, 31]. Patients with CKD and renal edema have 
been found to present with frequently reduced renal 
blood flow (RBF), an early marker of renal damage, and 
consequently decreased tissue turgor [31–34]. In turn, 
decreased tissue turgor has been found to determine a 
counterintuitive decrease in fibrotic kidney MRE mea-
surements [32].

Based on this knowledge, a pilot study lead by Brown et 
al. paired MRE technology to arterial spin labeling (ASL), 
a noninvasive fMRI technique through which RBF can be 
reliably quantified and which promises early-stage detec-
tion of CKD [32–34]. In ASL, water in arterial blood is 
used as an endogenous tracer to map of regional perfu-
sion [35, 36]. Two image types are captured: a contrast-
free control image and a labeled image in which an 
electromagnetic pulse magnetizes arterial blood [36]. 
The magnetized image is subtracted from the control 
image to generate a map of RBF in which signal inten-
sity is proportional to perfusion [36]. Wherever renal 
perfusion values are found to be significantly lower or 
lacking, edema and/or fibrosis can be suspected [31, 32, 
34]. Renal perfusion by ASL has been validated against 
reference methods and has good reproducibility [36]. Its 
short acquisition time enabled combination with other 
MRI techniques like MRE [33, 36]. Furthermore, no ion-
izing radiation or nephrotoxic contrast agents such as 
gadolinium, are required [35, 36]. Instead, a key challenge 
for ASL fMRI is the inherently limited signal-to-noise 

ratio necessitating repeated measurements to allow data 
averaging, thus, even though feasibility has been dem-
onstrated in the kidneys, its clinical utility is still under 
investigation [31, 33]. In Brown et al.’s study, the com-
bination of ASL and MRE provided a useful tool and 
yielded promising results [32].

The degree of inflammation and edema at the level of 
single renal compartments is appreciable via fMRI with 
voxel-wise mapping of longitudinal (T1) and transverse 
(T2) relaxation times [37, 38]. This method of tissue 
characterization is based on timing the process of spin-
ning protons’ alignment and loss of alignment with the 
external magnetic field following an electromagnetic 
pulse. On T2 weighted images, the molecular imag-
ing probe superparamagnetic iron oxide (SPIO) appears 
darkened indicating reduced relaxation time [39]. SPIO 
is ingested by macrophages and is thereby accumulated 
in inflamed tissues [34]. The resulting images can there-
fore serve as proxy for the detection of macrophage 
infiltration, revealing the extent of inflammation. In the 
absence of SPIO, wherever T2 relaxation time is found 
to increase, an increase in tissue water content is to be 
expected allowing for edema detection [21, 38]. Despite 
these promising findings, the sensitivity and specificity 
of T1 and T2 mapping are low and their ability to detect 
renal fibrosis in vivo remains to be investigated [21].

Under healthy conditions, blood and tissue oxygen-
ation are at equilibrium [21]. Instead, in fibrotic kidneys, 
glomerular injury promotes microvascular obliteration, 
limiting the access of deoxyhemoglobin to the tissue, 

Table 1 Renal fibrosis imaging – pros/cons with respects to the gold standard
Breast Fibro-
sis Imaging

US PROs Non-invasive, Easy, Low-cost, Readily available, Well tolerated, No ionizing radiation
CONs Operator dependent, Not quantitative, Generally uninformative in evaluating CKD progression, Depen-

dent on patient habitus
USE-SE/SWE PROs Low-cost, Non-invasive, Early diagnosis, Readily available, Well tolerated, Quantitative, No ionizing radiation

CONs Operator dependent, Stiffness depends not only on fibrosis but also on patient age, variations in renal 
blood flow, the presence of atherosclerosis, coronary artery disease, hypertension, hydronephrosis, degree 
of bladder distension, and the wide array of underlying cause, Dependent on patient habitus

DWI MRI1 PROs Non-invasive, No contrast agent, No ionizing radiation
CONs Low spatial resolution, Sensitive to patient movement/respiration, High cost

MRE PROs Non-invasive, Direct measurements, early detection, reduces the need for biopsies and their inherent 
sampling error, No ionizing radiation

CONs Stiffness depends not only on fibrosis but also on patient age, variations in renal blood flow, the presence 
of atherosclerosis, coronary artery disease, hypertension, hydronephrosis, degree of bladder distension, 
and the wide array of underlying cause, High cost

ASL fMRI2 PROs Non-invasive, Quantitative, Early detection, No contrast agent, Good reproducibility, Low acquisition time, 
No ionizing radiation

CONs Low signal-to-noise ratio, High cost
fMRI PROs Non-invasive, No ionizing radiation

CONs Requires contrast medium, Low sensitivity/specificity, High cost
BOLD MRI PROs Non-invasive, No contrast agents, No ionizing radiation

CONs Indirect, High cost
PET-CT PROs Quantitative

CONs Use of contrast agent, Use of ionizing radiation, High acquisition time, Low availability, High cost
1Gold standard, 2Promising future techniques
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and leading to hypoperfusion and chronic hypoxia, rec-
ognized as the final common pathway to end-stage renal 
failure [21, 40, 41]. BOLD MRI offers an indirect and 
noninvasive method with which to detect the presence 
of intravascular deoxyhemoglobin in kidney interstitium, 
without the need for contrast agents [21, 40–42]. This 
technology exploits the fact that magnetic properties of 
hemoglobin depend on its oxygenated state: the higher 
local deoxyhemoglobin, the higher tissue’s T2* relaxation 
time, and the lower local tissue oxygen content [21, 41]. 
In so doing, regional renal oxygenation may be taken as 
an endogenous marker of renal fibrosis [21, 40].

Nuclear medicine
It is possible to single out regions of kidney inflamma-
tion with PET imaging technology as well. PET provides 
a quantitative measure of inflammatory markers such as 
chemokine receptor 4 (CXCR4), a transmembrane recep-
tor involved in the transit of white blood cells to wound 
site during inflammation can be labelled and imaged 
with 68Ga-pentixafor [34, 43–45]. CXCR4 targeted PET 
enables dependable and precise detection of leukocyte 
infiltration into renal tissue thus allowing for the detec-
tion of inflammation [34, 43, 46].

Future directions
Benefits and drawbacks of each imaging technique dis-
cussed above are summarized in Table  1. Among the 
proposed alternatives, the authors of this review feel 
ASL adjunct MRE to be the most promising. The com-
bination of these noninvasive MRI-based imaging tech-
niques allows for the quantification of renal fibrosis 
while accounting for reduced RBF’s masking effect [21, 
25, 28, 29, 32–34]. MRE is a novel MRI-based technique 
that directly and noninvasively measures tissue stiff-
ness by studying the propagation of vibrational acoustic 
shear waves in the tissue [21, 25, 28, 29]. This technol-
ogy promises early detection, staging, and prevention of 
renal disease while reducing the need for bioptic proce-
dures and eliminating inherent sampling errors [28, 30]. 
Even so, changes in renal perfusion pressure have been 
found to modulate the measurement of parenchymal 
stiffness, often masking the presence of fibrosis [21, 28, 
29, 31]. Patients with CKD have been found to present 
with frequently reduced RBF, an early marker of renal 
damage, and consequently decreased tissue turgor which 
determines a counterintuitive decrease in fibrotic kid-
ney MRE measurements [31–34]. Thus, ASL, a noninva-
sive fMRI technique, has been implemented to reliably 
quantify RBF, promising to improve early-stage detec-
tion of CKD [32–34]. This technology uses water in arte-
rial blood as an endogenous tracer with which to map 
regional perfusion [35, 36]. ASL RBF measurements have 
been validated against reference methods and have good 

reproducibility [36]. Its short acquisition time enables 
combination with other MRI techniques like MRE [33, 
36]. Furthermore, no ionizing radiation nor nephrotoxic 
contrast agents are required [35, 36].

Bladder fibrosis
Mechanism of injury
Interstitial cystitis (IC) is a severe inflammation of the 
urinary bladder with mucous membrane destruction 
which can provoke bladder fibrosis [47, 48]. Bladder pain 
syndrome (BPS) is caused by chronic inflammation asso-
ciated with debilitating bladder storage symptoms such 
as urgency, frequency, and nocturia [47, 48]. Biopsy of 
affected bladder walls reveals the presence of chronic 
inflammation in the form of high T and B cell expression, 
high mast cell density, immune cell aggregation, and IL-6, 
IL-10, and IL-17  A overexpression [47]. IC corresponds 
to the inflammatory phase of bladder disease, having the 
potential for the development of bladder fibrosis with 
upregulation of collagen and fibronectin production, 
excessive deposition of ECM within the lamina propria, 
synthesis of myofibroblasts, and decrease in capillary 
density [47]. The condition’s inflammatory nature means 
treatment with anti-inflammatory medication has been 
found to limit IC/BPS signs and symptoms while restor-
ing physiological anatomy and functionality of the uri-
nary bladder [49].

Cystoscopy
In clinical settings, suspected ICs should be mandatorily 
investigated via cystoscopy, a planar imaging technique 
which allows for direct, real-time imaging of the blad-
der wall [47, 50, 51]. The gold standard diagnostic prac-
tice consists of symptom evaluation, cystoscopic findings 
(Hunner’s lesions and bleeding), and exclusion of alter-
native disorders, such as bladder carcinoma, endome-
triosis, infection, and bladder stones [48, 50, 51]. During 
cystoscopy the bladder is distended to full capacity and 
then drained [50]. Continuous (pre/intra/post dilation) 
inspection of the luminal surface of the bladder wall is 
carried out with the aim of identifying Hunner’s ulcers, 
erythematous mucosal patches with small vessels radiat-
ing toward a central scar [47, 50, 51]. Rigid cystoscopes 
are equipped with large forceps to facilitate the sampling 
of bladder biopsies at roughly half full bladder capacity 
[50]. While IC presents with no pathognomonic histol-
ogy, bioptic procedures may reveal typical findings, such 
as a denuded epithelium, ulceration, chronic inflamma-
tion, and raised mast cell count [48]. Even so, the tech-
nique’s small field of view (FOV) only allows for gross 
morphological discrimination, limiting its sampling to 
small tissue volumes, allowing for difficultly distinguish-
able bladder wall changes like fibrosis to go unnoticed 
[47].
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CT
A widely accredited indicator of pathological develop-
ments in bladder disease is bladder wall thickness (BWT) 
as it has been found to increase under inflammatory con-
ditions [52]. In a large cohort prospective study, Jhang 
et al. found both focal and diffuse BWT – detected via 
Multiphasic CT urography – to be linked to the clinical 
manifestation of IC/BPS as well as to the histopathologi-
cal findings consistent with ongoing inflammation: infil-
tration of pro-inflammatory cells, loss of uroepithelial 
cell lining, and synthesis of granulation tissue [53, 54]. 
CT mediated detection of BWT with its high sensitiv-
ity (95%) and specificity (92%) could, therefore, serve as 
proxy for detection of chronic bladder wall inflammation 
and fibrosis, therefore improving upon current diagnos-
tic practices based on physicians’ personal judgement 
and on the adoption of radiological evidence solely to 
rule out alternative diagnoses [47, 53, 54].

US/MRI
Magnetic resonance urography and US are alternative 
imaging options for patients with contraindications to 
CT urography, such as pregnancy, contrast allergy, or 
renal insufficiency [53, 54]. MRI affords high contrast 
and spatial resolution of BWT, making it one of the pre-
ferred methods to produce three-dimensional images of 
the organ [47, 55]. Conventional MRI imaging is T1 and 
T2 weighted, relying on the differences in longitudinal 
and transverse relaxation times between neighboring 
tissues [55]. To increase image resolution and minimize 
artifacts, Tyagi et al. studied novel contrast mixtures 
(NCM) of gadolinium-based contrast agents and feru-
moxytol [55]. NCM allowed for more accurate character-
ization of bladder wall boundaries with a 4-fold increase 
in contrast-to-noise ratio, a measure of image quality, 
thus holding promise for the future of noninvasive diag-
noses of IC/BPS patients [55]. An example of T1 and T2 
weighted MRI is provided in Fig. 4. It shows circumfer-
ential bladder wall thickening and trabeculation second-
ary to chronic outlet obstruction from concurrent benign 
prostatic hyperplasia. Finally, US may be considered in 
addition to CT urography, however, its use is not recom-
mended on its own because its low sensitivity (50%)54.

Future directions
Benefits and drawbacks of each imaging technique dis-
cussed above are summarized in Table 2. Among the pro-
posed alternatives, the authors of this review feel T1/T2 
weighted MRI to be the most promising (Fig. 4). Indeed, 
MRI affords high contrast and spatial resolution imaging 
of BWT (a widely accredited indicator of pathological 
developments in bladder disease), making it one of the 
preferred methods to produce three-dimensional images 
of the organ [47, 55]. Furthermore, it is ionizing radia-
tion free, thus serving as a valid alternative for patients 
with contraindications to these [53, 54]. Finally, to further 
increase image resolution, minimize artifacts, and more 
accurately characterize bladder wall boundaries with a 
4-fold increase in contrast-to-noise ratio, a novel contrast 
mixture consisting of gadolinium-based contrast agents 
and ferumoxytol can be employed [55].

Table 2 Bladder Fibrosis Imaging – Pros/Cons with respects to 
the gold standard
Lung 
Fibrosis 
Imaging

Cytoscopy1 PROs Direct, Allows for biopsy, Real 
time, No ionizing radiation

CONs Operator dependent, Invasive, 
Small field of view, Only gross 
morphological discrimination

Multiphasic CT 
Urography

PROs Findings found to be linked 
to clinical manifestations and 
histopathology of IC/BPS, High 
sensitivity/specificity, Low ac-
quisition time, Readily available

CONs Use of ionizing radiation
MRI2 PROs High contrast, High spatial 

resolution, Non-invasive, No 
ionizing radiation, Readily 
available

CONs Use of contrast agents, High 
cost

US PROs Low-cost, Readily available, Well 
tolerated, No ionizing radiation

CONs Low sensitivity unless paired 
with CT, Operator dependent, 
Dependent on patient habitus

1Gold standard, 2Promising future techniques

Fig. 4 T1/T2 weighted MRI (axial, sagittal, and coronal T2 images) showing circumferential bladder wall thickening (red arrows) and trabeculation second-
ary to chronic outlet obstruction from benign prostatic hyperplasia (blue arrows)
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Prostate fibrosis
Mechanism of injury
Benign prostatic hyperplasia (BPH) can be defined as the 
progressive enlargement of the prostate gland following 
the proliferation of cells constituting the periurethral tis-
sue [56]. It is the most common benign neoplasm affect-
ing millions of American males over the age of 30 and 
increases in prevalence with age [56–58]. BPH is detect-
able in nearly 40% of males during their 4th decade of life 
and then in nearly 90% of males in their 9th decade of life 
[56, 58–60]. BPH, however, is a purely histological defini-
tion and must be distinguished from the symptoms that 
may be secondary to it and which are referred to as lower 
urinary tract symptoms (LUTS) which include storage, 
voiding, and post-void symptoms [59–63]. Ultimately, if 
left untreated, these may progress to bladder dysfunction, 
urinary retention, and renal failure, severely impacting 
the patient’s quality of life [62–64]. To date, the cellular 
and molecular processes underlying the development of 
BPH and leading to LUTS are incompletely understood 
[59–61, 64]. Steroid hormones which are essential to 
normal prostate physiology have been found to play a 
key role in the disorder’s progression [57, 58, 60, 61, 64]. 
Androgen receptors are expressed in BPH tissue where 
potent dihydrotestosterone androgens activate them [60]. 
Hormonal factors alone do not exhaustively explain BPH 
development [64]. Accumulating evidence suggests the 
presence of additional and alternative etiologies includ-
ing the effects of the sympathetic nervous system, vary-
ing levels of Insulin-like Growth Factor (IGF), genetic 
predispositions, physiological aging processes, infective 
processes, and, most importantly, systemic inflamma-
tion [58, 60, 61, 65]. BPH may be viewed as a form of 
chronic inflammatory prostatitis, whose pathogenesis 
may be triggered by a multitude of factors and pathways 
[61]. Tissue damage resulting from the above cited patho-
genic pathways triggers the release of proinflammatory 
cytokines, chemokines, and growth factors, leading to 
local inflammation and prostate enlargement by means 
of epithelial and stromal cell proliferation [60, 61, 64]. 
This response is perpetuated by the release of prostatic 
self-antigens which sensitize the immune system and give 
rise to an autoimmune response [60, 61]. Following this 
chronic inflammation, periurethral prostate tissue under-
goes the aberrant wound healing process of fibrosis with 
consequent prostate tissue stiffening [63, 65]. The gland’s 
ability to bend and expand to accommodate for urinary 
flow may be altered and could manifest as LUTS [63]. 
Gharaee-Kermani et al. have demonstrated the presence 
of a strong association between fibrotic changes in peri-
urethral prostate tissue and the severity of LUTS in males 
[62].

Prostatic fibrosis appears dark on T2 weighted pelvic 
MRI [66]. It shows enhancement post-contrast and tends 

to be well defined with a rounded encapsulated appear-
ance [67]. Prostatic pathologies can masquerade as pros-
tate cancer; ADC, a measure of water diffusion within the 
tissue, is commonly calculated using DWI with the aim 
of differentiating the two types of prostatic lesion [67]. 
Finally, when MRI is not available, transabdominal and 
transrectal US (TRUS) offer an accessible and affordable 
alternative which is widely adopted [66].

US
TRUS guided biopsy has been the gold standard pros-
tate cancer diagnostic tool for decades, due to familiar-
ity among physicians, ease of use, widespread availability, 
and affordability [66, 68, 69]. Although TRUS by itself has 
been found to be unreliable in the detection of cancer-
ous lesions, with sensitivity and specificity ranging from 
40 to 50%, it is superior to the highly subjective results of 
the digital rectal examination and has been found to be 
an effective tool for the measurement of prostate volume 
and the assessment of prostate anatoma [69–71]. Even 
so, the true advantage offered by TRUS in the realm of 
prostate density detection is in conjunction with biop-
tic technology. Indeed, by placing a small, lubricated US 
probe into the rectum, physicians can help themselves 
in properly orienting the biopsy needle’s trajectory with 
the aim of safely and effectively sampling the peripheral 
zone, where most cancers arise [69, 72]. Traditionally, 
TRUS guided biopsies obtain two cores per prostate sex-
tant [72]. In so doing, it is possible that small, peripheral 
tumors, as well as transitional, central, or fibromuscular 
cancers may be missed despite their concerning potential 
for being aggressive and clinically significant (high false 
negative results varying from 17 to 21%)68,70–72. Simi-
larly, non-significant peripheral tumors may be detected, 
resulting in over-diagnosis and over-treatment of low-
grade indolent cancers estimated from 27 to 56%68,70–72. 
For all these reasons, while the use of TRUS in prostatic 
disease will most likely not dissipate anytime soon, other 
techniques, capable of curtailing these shortcomings 
should be further investigated [69].

An additional method for prostate examination is pro-
vided by USE [70, 71]. USE considers variations in soft 
tissue stiffness resulting from pathophysiological pro-
cesses such as fibrosis and cancerous proliferation to 
single out affected tissue: the lower the estimated strain 
rate, the stiffer the tissue [70, 71]. This technology pro-
vides greater sensitivity for detecting prostate cancer and 
exhibits a high negative predictive value, ensuring that 
fewer cancers are missed in the peripheral zone of the 
prostate and reducing the number of necessary biopsies 
[70, 71]. It does so while remaining an inexpensive, versa-
tile, and widely available bedside imaging modality [70]. 
Two USE subvariants have been developed: SE and SWE 
[71]. SE of the prostate is based on the analysis of tissue 
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deformation subsequent to manually induced dynamic 
mechanical stress of the prostate tissue via the transrec-
tal transducer probe itself [70, 71]. Tissue stiffness is thus 
estimated by visualizing the differences in strain between 
adjacent regions: hypoechoic hard lesions are highly sus-
picious for malignancy [71]. It is, however, unlikely that 
physicians be able to reliably maintain uniform compres-
sion over the entire prostate gland, introducing an intrin-
sic risk for operator dependent variability into tissue 
stiffness measurements [70]. To curtail this limitation, 
a water-filled balloon may be interposed between the 
probe and the rectal wall to improve the homogeneity of 
the deformation [71]. SWE, instead, requires no operator 
dependent compression of the rectal wall [71]. Indeed, 
while being maintained in a steady-state position, the 
endorectal transducer is capable of remotely inducing a 
US shear wave whose propagation velocity through the 
tissue is measured and related to prostate stiffness [71]. 
This technique provides quantitative measurement of 
elasticity values for each region of interest (ROI), result-
ing in the real-time realization of an elastogram: a color 
map of soft tissues elastic properties [70, 71].

MRI
An alternative tool for the diagnosis and characterization 
of prostate fibrosis is provided by multi-parametric MRI 
(mpMRI) [68]. Screening strategies involving the use of 
mpMRI rather than TRUS biopsies have shown higher 
sensitivity and specificity for both detection and local-
ization of prostate cancer and fibrosis avoiding unneces-
sary repeated biopsies and reducing overtreatment [68, 
72]. mpMRI makes use of three sequence modalities: one 
morphological sequence - T2 weighted imaging (T2W) - 
fused with two functional sequences - DWI and dynamic 

contrast-enhanced (DCE) images [68, 69, 72, 73]. Axial, 
coronal, and sagittal high-resolution T2W anatomical 
images assess the presence of structural abnormalities in 
the prostate and surrounding organs [68, 72, 73]. Some 
tumors, however, may appear isointense to the physiolog-
ical prostate tissue, thus limiting diagnostic accuracy of 
isolated T2W imaging, leading to the need for DWI and 
DCE conjunction [68] (Fig. 5). DWI assesses cell density 
and subsequent variations in water diffusion rate within 
the prostatic interstitial space through the estimation of 
the ADC [67–69]. A decrease in DWI may be taken as 
a proxy for increased stromal density (i.e., BPH or neo-
plastic growth) [68]. Figure 5 provides an example of an 
axial DWI MRI showing heterogenous nodular restricted 
diffusion throughout the transition zone as well as a low 
grade mass in the right peripheral zone. Instead, DCE 
assesses variations in microvascular properties, angio-
genesis and resulting perfusion rate, characteristic of 
histological variations, by way of gadolinium contrast 
agent [68, 69]. Through all these MRI modes of obser-
vation, prostatic fibrosis appears as wedge-shaped or 
band-shaped areas of dark hypo-intensity compared to 
the high signal intensity characterizing normal prostatic 
tissue [66, 68]. mpMRI imaging is standardized using the 
Prostate Imaging-Reporting and Data System (PI-RADS), 
which provides assessment criteria to rate the likeli-
hood of PC being present on a scale from 1 to 569. Fig-
ures 6 and 7, and 8 provide examples of mpMRI. The first 
shows multinodular enlargement of the transition zone 
with diffuse heterogenous T2 hypointensity in the con-
current presence of BPH and symmetric diffuse enlarge-
ment and T2 hypointense scarring of the peripheral zone 
corresponding to sequelae of chronic prostatitis. The 
second shows axial T1 pre-contrast arterial and delayed 

Fig. 5 mpMRI of the prostate (Axial T2). Multinodular enlargement of the transition zone with diffuse heterogenous T2 hypointensity in the presence of 
BPH (red arrows). Symmetric diffuse enlargement and T2 hypointense scarring of the peripheral zone corresponding with sequela of chronic prostatitis 
(blue arrows)

 



Page 9 of 13Tarchi et al. Journal of Translational Medicine          (2024) 22:616 

phase mpMRIs with diffuse nodular enlargement. The 
third shows multinodular enlargement of the transition 
zone with diffuse heterogeneous T2 hypointensity corre-
sponding with BPH. Notice the striated T2 hypointense 
scarring of the peripheral zone.

Nuclear medicine
The use of PET/CT, combining functional and mor-
phologic information, for prostatic fibrosis and pros-
tatic cancer (PC) imaging has been increasing within 
the last decade leading to fervent debate over the best 
contrast agents for the job [74]. Despite its widespread 
use in oncologic imaging, 18  F-FDG radiotracer does 

Fig. 8 Axial DWI (A) & ADC (B) showing heterogenous nodular restricted diffusion throughout transition zone as well as low grade mass in right periph-
eral zone (blue arrow). DWI: Diffusion-weighted imaging. ADC: Apparent Diffusion Coefficient

 

Fig. 7 mpMRI of the prostate (Axial T2). Multinodular enlargement of the transition zone (red arrows) with diffuse heterogeneous T2 hypointensity cor-
responding with BPH. Notice the striated T2 hypointense scarring of the peripheral zone (blue arrows). BPH: benign prostatic hypeorplasia

 

Fig. 6 mpMRI of the prostate. Axial T1 pre-contrast arterial and delayed phase showing diffuse nodular enlargement
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not play as important a role in the PET/CT imaging of 
PC because only highly aggressive, poorly differenti-
ated, or undifferentiated PC has been shown to have a 
high glycolytic rate, thus limiting its sensitivity for local-
ized and early metastatic disease [74, 75]. Among the 
most used PET/CT tracers for PC imaging in Europe are 
radiolabeled choline derivatives (18  F-fluorocholine or 
11 C-choline) whose function is based on the increased 
uptake and turnover of phosphatidylcholin, an essential 
part of the phospholipids in the cellular membrane, seen 

in cancer cells [74, 75]. Diagnosis and primary staging of 
PC through such radiotracers are limited by their non-
specific uptake into benign intraprostatic tissues lead-
ing to relatively low sensitivity [74, 75]. For this reason, 
18 F-fluorocholine or 11 C-choline have found most fre-
quent application in restaging in the setting of biochemi-
cal recurrence, made evident through a rise in PSA levels 
following primary therapy of prostate cancer [74–76]. 
Recently, however, their application in this context has 
been replaced by that of prostate-specific membrane 
antigen (PSMA) which has shown higher diagnostic effi-
cacy [65, 74–76]. Being highly overexpressed in PC cells 
while contemporaneously presenting low concentration 
in the bloodstream, PSMA, a type II transmembrane 
glycoprotein, sees an increase in its expression as tumor 
stage and grade heightens, rendering it an ideal target for 
high quality imaging and treatment [74–76]. Currently, 
the most widely used PSMA tracer is Gallium Ga 68 
PSMA-11 (68Ga-PSMA-11) [75]. Compared to PSMA-
PET/CT, standard-of-care imaging (CT, MRI, etc.) was 
found to have lower sensitivity (38% vs. 85%), specificity 
(91% vs. 98%), and precision (59–74% vs. 91–95%). For all 
these reasons, PSMA ligand PET/CT has quickly become 
a clinically accepted technique for recurrent PC imaging 
worldwide [74, 75].

68Ga-PSMA-11 radiotracer has found valid applica-
tion also in PET/MRI for primary PC detection [75]. 
Indeed, when compared to PSMA enriched PET/CT, 
this technology presents with improved lesion detection, 
higher soft tissue contrast, and lower radiation dose to 
the patient [75]. The overall discrepancy in positive find-
ings between PET/CT and PET/MRI has been found to 
be very low, with agreement ranging from 71 to 95%77. 
Instead, when compared to mpMRI, integrated PSMA 
PET/MRI has shown clear superiority in both staging and 
restaging. Indeed, it has proven to be of greater diagnos-
tic value for the detection of cancers that are commonly 
missed on mpMRI having increased lesion contrast, 
excellent consistency in lesion detection, and higher 
sensitivity in the identification of primary tumors in the 
peripheral zone of prostate gland (74% vs. 50%; P, 0.001) 
[75, 77].

Future directions
Benefits and drawbacks of each imaging technique dis-
cussed above are summarized in Table 3. Among the pro-
posed alternatives, the authors of this review feel mpMRI 
to be the most promising. mpMRI has shown higher 
sensitivity and specificity for both detection and localiza-
tion of prostate cancer and fibrosis avoiding unnecessary 
repeated biopsies and reducing overtreatment in low-risk 
cancers [68, 72]. mpMRI makes use of three sequence 
modalities, both morphological (T2W) and functional 
(DWI and DCE) [68, 69, 72, 73]. High-resolution T2W 

Table 3 Prostate fibrosis imaging– Pros/Cons with respects to 
the gold standard
Lung 
Fibrosis 
Imaging

TRUS Guided 
Biopsy1

PROs Easy to use, Widespread avail-
ability, Low-cost, No ionizing 
radiation

CONs Low sensitivity/specificity, Inva-
sive, High false negative rate due 
to sampling error, Over-diagnosis/
treatment of benign peripheral 
tumours, Operator dependent, 
Dependent on patient habitus

USE-SE/SWE PROs High sensitivity, High negative 
predictive value, Low-cost, avail-
ability, Quantitative, Real time, 
Readily available, Well tolerated, 
No ionizing radiation

CONs Operator dependant, Dependent 
on patient habitus

mpMRI2 PROs High sensitivity/specificity, Stan-
dardized reporting via PI-RADS, 
No ionizing radiation

CONs Low diagnostic accuracy, High 
cost

18 F-FDG-PET-CT PROs Low sensitivity
CONs Use of contrast agent, Use of ion-

izing radiation, High acquisition 
time, Low availability, High cost

PSMA-PET-CT PROs High sensitivity/specificity/
precision

CONs Use of contrast agent, Use of ion-
izing radiation, High acquisition 
time, Low availability, High cost

PSMA-PET-MRI PROs High soft tissue contrast, Low 
radiation dose, High sensitivity, 
No ionizing radiation

CONs Use of contrast agent, High 
acquisition time, High cost

1Gold standard, 2Promising future techniques

Table 4 Authors’ opinion about the most promising radiology 
techniques to diagnose fibrosis in each organ
Suspected affected organ Promising radiol-

ogy techniques 
for diagnosis

Kidneys ASL MRE
Bladder T1/T2 weighted 

MRI
Prostate mpMRI
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anatomical images assess the presence of structural 
abnormalities [68, 69, 72]. DWI images estimate ADC to 
assess cell density and subsequent variations in water dif-
fusion rate [67–69]. Instead, DCE makes use of gadolin-
ium contrast to assess variations in the microvasculature 
and the resulting perfusion rate [68, 69].

Conclusions
Fibrosis is a pathological process characterized by abnor-
mal deposition of connective tissue and improper tissue 
repair in response to sustained injury [1]. It can impact 
any organ, leading to severe structural and functional 
dysfunction and even failure [2, 3]. Aberrant tissue repair 
determines the development of chronic inflammation, 
excessive fibroblast proliferation, heightened collagen 
deposition, and, ultimately, an imbalanced alternation 
of scar formation and remodeling [3, 5]. While exten-
sive research has already been carried out on the topics 
of aberrant wound healing and fibrogenesis, we lack a 
thorough understanding of how their relationship reveals 
itself through modern imaging techniques. Consider-
ing the profound implications that advancements in this 
field may carry, and with the objective of exploring and 
expanding upon our current understanding, this study 
sought to study fibrosis across various organs of the 
genitourinary system and catalog the foremost imaging 
technologies utilized for its identification. A compre-
hensive literature review has identified US, CT, MR, and 
PET as the most widely utilized imaging technologies for 
detecting fibrosis in organs of the genito-urinary system. 
Indeed, these are generally considered standard of care 
techniques, topped only by tissue specific approaches 
like cystoscopy for bladder fibrosis and elastography, an 
emerging technology, only recently gaining traction in 
routine clinical practice. Among the proposed alterna-
tives, the authors of this review find MRI to be the most 
promising due to its superior soft tissue contrast, absence 
of ionizing radiation, and compatibility with elastogra-
phy, DWI, and nuclear spin technology, among others. 
Additionally, MRI is widely available, permits full-body 
scanning, and has been reported to cause fewer allergic 
reactions compared to other contrast-exploiting tech-
niques like X-ray and CT.
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