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Abstract 

The study of microbial communities has undergone significant advancements, starting from the initial use of 16S 
rRNA sequencing to the adoption of shotgun metagenomics. However, a new era has emerged with the advent 
of long-read sequencing (LRS), which offers substantial improvements over its predecessor, short-read sequencing 
(SRS). LRS produces reads that are several kilobases long, enabling researchers to obtain more complete and contigu-
ous genomic information, characterize structural variations, and study epigenetic modifications. The current leaders 
in LRS technologies are Pacific Biotechnologies (PacBio) and Oxford Nanopore Technologies (ONT), each offering a dis-
tinct set of advantages. This review covers the workflow of long-read metagenomics sequencing, including sample 
preparation (sample collection, sample extraction, and library preparation), sequencing, processing (quality control, 
assembly, and binning), and analysis (taxonomic annotation and functional annotation). Each section provides a con-
cise outline of the key concept of the methodology, presenting the original concept as well as how it is challenged 
or modified in the context of LRS. Additionally, the section introduces a range of tools that are compatible with LRS 
and can be utilized to execute the LRS process. This review aims to present the workflow of metagenomics, highlight 
the transformative impact of LRS, and provide researchers with a selection of tools suitable for this task.
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Introduction
The massive development in technology through the 
decades has allowed scientists to peer into the world of 
microbiome. In the human body, there are an estimated 
10–100 trillion microbes that form a balance with the 
system [1]. Dysbiosis or an imbalance in the microbial 
population has been shown to be associated with dis-
orders such as obesity, type I and II diabetes, autoim-
mune diseases, neurological conditions, and cancers [2]. 
The impact of microbes on human health has led to the 
development of metagenomics. Metagenomics is a sci-
entific field focused on analyzing the genetic material of 
microorganisms within their natural habitats to acquire 
taxonomic and physiological insights [3]. This approach 
enables various applications such as assessing relative 
abundance, conducting taxonomic profiling, evaluating 
community richness, performing functional profiling, 
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conducting pathway analysis, examining phylogeny, 
and detecting pathogens [4]. A proper understanding of 
human health and microbiome helps develop targeted 
therapeutic strategies. For example, metagenomic analy-
sis can detect shifts in microbial abundance in response 
to interventions in inflammatory bowel disease, identify 
specific microbial signatures for potential intervention 
targets for type 2 diabetes mellitus, and better under-
stand microbiome’s influence on immune function and 
the gut-brain axis to develop treatment for autoimmune 
diseases and neurological disorders [5, 6]. In summary, 
metagenomic analyses shed light on the importance of 
microbiome balance and inspire innovative strategies to 
combat health concerns.

Metagenomics process can be divided into four major 
steps: (1) sample preparation (sample collection, sample 
extraction, and library preparation), (2) sequencing, (3) 
processing (quality control, assembly, and binning), and 
(4) bioinformatics analysis (taxonomic annotation and 
functional annotation) (Fig.  1). Two major methods of 
metagenomic sequencing are 16S rRNA sequencing and 
shotgun metagenomic sequencing. Additionally, alterna-
tive markers such as the 18S rRNA gene or other protein-
coding genes like gyrB are available options [7, 8].

Long‑read sequencing (LRS)
LRS is classified as third generation sequencing, being 
led by Pacific Bioscience (Pacbio) and Oxford Nano-
pore Technology (ONT) [9]. The length of the  LRS can 
vary depending on the specific platform and technology 
used. The PacBio Sequel II system could produce reads 
with an average length of around 10–20 kilobases (kb), 
with some reads extending beyond 100 kb. On the other 
hand, ONT MinION and GridION platforms could gen-
erate reads with average lengths ranging from a few kilo-
bases to over 100 kilobases, with maximum reads up to 
2.273 metabases (Mb) in length [10]. LRS offers several 

advantages over SRS methods. Firstly, the longer reads 
result in fewer fragments, reducing the complexity of 
genome assembly and minimizing errors. Short-reads are 
often challenged when it comes to accurately assembling 
genomes, particularly in highly repetitive regions [11]. In 
contrast, the long-read length of over 10 kb in LRS ena-
bles the generation of fewer fragments with wider cov-
erage, facilitating more efficient genome assembly. This 
advantage also enhances the detection of various types 
of variants, including large indels, complex rearrange-
ments, structural variations, high GC content regions, 
and repetitive regions. In addition, epigenetics informa-
tion such as 5-methylcytosine (5MC) is readily obtain-
able. Although LRS has previously faced criticism due to 
its relatively lower accuracy, recent advancements have 
significantly improved the accuracy rates. Advancements 
in nanopore sequencing encompass various aspects, with 
flow cells playing a crucial role. These cells house essen-
tial components for nanopore sequencing, including 
nanopore sensors, motor proteins, and other associated 
chemicals. Flow cells have undergone several iterations, 
with the latest being the R10.4 flow cell. This iteration 
represents a significant improvement in sequencing 
accuracy, speed, and the ability to handle larger sets of 
reads [12]. Traditionally, the major downside of LRS 
has been its high error rate when compared to SRS. The 
error rate in ONT arises from the challenge of control-
ling the speed of DNA molecules passing through the 
nanopore, while PacBio contends with random errors 
[13]. Despite these challenges, there have been improve-
ments in accuracy. PacBio implemented circular consen-
sus sequencing, elevating their accuracy to 99.8%, while 
ONT introduced new flow cells, achieving an improved 
accuracy of 99.5% [14]. Additionally, the integration of 
phi29 DNA polymerase has played a role in slowing DNA 
translocation and further reducing the error rate in ONT 
[15]. Although these accuracies still fall slightly short 

Fig. 1  Pipeline of metagenomics analysis with long-read sequencing. The figure illustrates the step-by-step pipeline for metagenomics analysis 
beginning with sample collection, followed by sequencing, data processing, and analysis
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compared to SRS, PacBio’s latest LRS technology itera-
tion, Revio, has reached an impressive accuracy level of 
99.9%, placing it on par with SRS [16].

The improved accuracy rates of LRS have enhanced its 
utility in various genomic analyses. However, LRS does 
have a notable drawback when compared to SRS due to 
its relatively higher sequencing cost. Despite the ongoing 
reductions in sequencing costs for both methods, LRS 
continues to be the more expensive option. The longer 
read lengths and more intricate sequencing technologies 
utilized in LRS contribute to its higher cost compared to 
SRS. While advancements and economies of scale may 
lead to future cost reductions in LRS, it currently remains 
a factor that researchers must consider when choosing 
between sequencing methods, considering their specific 
requirements and budget limitations.

Sample preparation
Sample collection
According to the  National Institute of Health (NIH), 
metagenomics is “the study of the structure and function 
of entire nucleotide sequences isolated and analyzed from 
all the organisms (typically microbes) in a bulk sample.” 
Naturally, metagenomics allows researchers to study the 
community of microorganisms taken directly from natu-
ral habitats. Common samples of metagenomics include 
soil, water, feces, and saliva. Biological samples are usually 
frozen at −80C to prevent alteration in the microbial land-
scape, while environmental samples are frozen at different 
temperatures (− 20C to − 80C).

Sample extraction
The development of LRS platforms has shifted the limita-
tion from technology to the quality and length of DNA 
input. With LRS, the extraction must be pure and of high 
molecular weight. For metagenomics, any damage to the 
DNA or contamination can result in poor performance, 
lower read lengths, and even affect the library prepara-
tion step.

There are several factors that ensure the read length 
and quality of the sample: the genetic material within 
the microbial sample (1) is double stranded (except 
when dealing with viruses), (2) has not undergone mul-
tiple freeze thaw cycles, (3) has not been exposed to high 
temperature or extreme pH, (4) has no RNA contamina-
tion, (5) has no exposure to intercalating fluorescent dyes 
or UV radiation, and (6) does not contain denaturants, 
detergents, or chelating agents [17–19]. The extraction 
can be done manually or using commercial kits, depend-
ing on laboratories, types of sample, and experimental 
designs. When using a DNA extraction kit, it is impor-
tant that the kit does not shear the DNA to below 50 kb, 
which is unsuitable for LRS. Some of the recommended 

kits are Circulomics Nanobind Big extraction kit 
(PacBio), QIAGEN Genomic-tip kit, QIAGEN Gentra 
Puregene kit, and QIAGEN MagAttract HMW DNA kit. 
The resulting DNA extraction should reflect the micro-
bial community within the sample and contain adequate 
nucleic acids for library preparation and sequencing [19].

Library preparation
Library preparation is a process where the nucleic acids 
are isolated, fragmented, end repaired, and linked to 
adapters via either tagmentation or ligation method. 
The DNA sample that is sheared too short during library 
preparation can be unsuitable for LRS [20]. There are 
specific library preparation kits available, such as ONT 
DNA by ligation, ONT Rapid library prep, and ONT 16S 
library prep. Library preparation for LRS requires rea-
gents to be pipetted slowly to minimize shearing. This is 
a time-consuming process that can result in inconsistent 
read lengths, and even a small shift in pipetting volume 
can cause DNA shearing [20].

Different preparation kits require different amounts of 
minimum quantity and minimum concentration of the 
sample. For MinION, the genomic DNA is sheared by 
g-tubes to > 8  kb in length per fragment [21]. The frag-
ments are end repaired and a non-templated dAMP is 
added to the 3’end of DNA fragment using dA-Tailing 
Kit. Protein-conjugated MinION adapters are ligated, 
and a tether protein is added to guide the tethered DNA 
molecule to the nanopore. Finally, the library is condi-
tioned before being loaded onto the MinION sequencer 
[21]. Library preparation for PacBio is called SMRT-
BELL library preparation and starts with the generation 
of acceptable DNA fragments. The fragments can origi-
nate from either random shearing or the amplification 
of a region of interest. The process of creating the library 
involves ligating universal hairpin adapters to both ends 
of the fragment.

Sequencing
Sequencing platforms
Oxford Nanopore Technology (ONT) and Pacific Bio-
sciences (PacBio) are two leading companies in the field 
of long-read sequencing (LRS), despite their shared goal, 
their procedures and technologies are distinct. In this 
section, mechanisms behind each platform are explored, 
as well as the advantages and limitations of each method.

Oxford nanopore technology
Three ONT platforms are available for LRS. MinION, 
first released in 2016, operates 1 flow cell and has a maxi-
mum run time of 72 h, maximum yield of 40 to 50 Gb, 
and up to 512 available channels. GridION, released in 
2017, operates 5 flow cells and has a maximum run time 
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of 72 h, maximum yield of 200 to 250 Gb, and up to 2560 
available channels. The last addition is PromethION, 
released in 2018, operates 48 flow cells, has a maximum 
run time of 68 h, a maximum yield of 8.6 to 15 Tb, and 
up to 144,000 available channels [22]. ONT platforms 
operate in a similar manner, for example, GridION is in 
essence five MinIONs.

In nanopore sequencing, a constant electric field is 
applied, leading to the observation of an electric cur-
rent due to the presence of an electrolytic solution within 
the nanopore system. [23]. The density of the electric 
current is influenced by both the dimensions of the 
nanopore, which is a pore created from protein or syn-
thetic material on a membrane, and the genetic mate-
rial composition of the extracted DNA/RNA as it passes 
through the nanopore [24]. In order to sequence a strand 
of DNA or RNA, a sequencing adapter, which is a piece 
of DNA with an enzyme motor, is added to the sample 
[15]. After applying a constant electric field to the nano-
pore membrane, the sample strand translocates through 
the nanopore until the sequencing adapter reaches the 
top of the nanopore. The adapter then functions as a 
helicase, unwinding DNA and allows single strands of 
nucleotide to pass through the nanopore. When a strand 
of DNA or RNA passes through the pores (assuming 
α-hemolysin is used), which are covalently bound to 
cyclodextrin ((6-deoxy-6-amino)-6-n-mono(2-pyridyl)
dithiopropanoyl-b-cyclodextrin) for increased selectiv-
ity, an electrical signal occurs, resulting in changes to the 
ion current. Each nucleotide type must have the ability to 
impede the ion flow into the pore for varying time inter-
vals. By detecting the fluctuations in ion current caused 
by these blockages, the sequence of the strand being used 
can be identified.

PacBio technology
PacBio offers five LRS platforms, but the RS II, released 
in 2013, has been overshadowed by newer platforms. 
The Sequel system, introduced in 2015, supports SMRT 
Cell 1 M, yielding up to 500,000 HiFi reads with over 99% 
accuracy, and offers up to 20  h of sequencing runtime 
per SMRT Cell. The Sequel II system, launched in 2019, 
supports SMRT Cell 8  M, capable of generating up to 
4,000,000 HiFi reads with > 99% accuracy and provides up 
to 30 h of sequencing runtime per SMRT cell. The latest 
model in the Sequel system, the Sequel IIe, was released 
in 2021 with similar specifications to the Sequel II plat-
form, but it is optimized for generating highly accurate 
HiFi reads. As of late 2022, the current newest model is 
Revio, which offers significant improvements over pre-
vious platforms. It enhances the SMRT cell design and 
computation capabilities, leading to increased through-
put and reduced costs. Leveraging HiFi technology, Revio 

achieves higher accuracy in sequencing. Additionally, 
Revio is capable of direct methylation detection, making 
it a versatile and advanced tool for long-read sequencing 
applications. Despite having a slightly shorter read length 
of 15-18 kb, when compared to ONT’s 10-100 kb, Revio 
compensates with its impressive high accuracy of 99.95%. 
It also offers shorter run times, taking only 24 h to com-
plete a sequencing run. Additionally, Revio is capable 
of accurately detecting indels, making it a powerful and 
accurate tool for various long-read sequencing appli-
cations. According to the data release from PacBio, the 
advancements in processing time and cost efficiency with 
Revio enable up to 1,300 human whole genome sequenc-
ing to be performed annually at a price of less than $1000 
per genome. Compared to Sequel IIe, Revio utilizes 25 
million Zero Mode Waveguides (ZMW) instead of 8 mil-
lion ZMW, resulting in increased throughput. Addition-
ally, Revio offers a shorter run time of 24  h compared 
to 30  h in Sequel IIe, and it can produce a significantly 
higher data output of 360 Gb/day as opposed to 24 Gb/
day. These improvements position Revio as a game-
changer in the field of long-read sequencing, offering 
higher efficiency and lower costs for genomic research 
and analysis.

Single molecule real time sequencing (SMRT) is a 
sequencing technology developed by PacBio. Simi-
lar to nanopore sequencing, SMRT requires a specific 
library preparation method. The library is prepared from 
approximately 5  mg of double-stranded DNA, which 
serves as the starting material for the SMRT sequenc-
ing process [25]. Next, hairpin adapters are ligated to the 
DNA molecules, creating SMRTbell, a circular structure 
that contains DNA inserts flanked by two hairpin adapt-
ers [26]. Once the primer and polymerase are annealed 
to the adapter in the library, it can be loaded onto the 
SMRT cell, which contains observation chambers known 
as Zero Mode Waveguides (ZMWs). The number of 
ZMWs in the SMRT cell can vary depending on the spe-
cific platform being used, ranging from 150,000 to a mil-
lion or more. These ZMWs are crucial for single molecule 
sequencing, as they allow individual DNA molecules to 
be isolated and sequenced in parallel, resulting in the pro-
duction of long-reads during the SMRT sequencing pro-
cess [25]. SMRTbell, now polymerase bound, are loaded 
onto ZMWs, and multiple ZMWs are loaded onto one 
SMRTbell to maximize the throughput and read lengths 
[27]. The small diameter of ZMW allows only a  minute 
volume for light detection. The fragments of DNA are 
pulled down to the bottom of ZMWs. Once the polymer-
ase is bound to SMRTbell, the incorporated fluorescent 
labeled nucleotides start emitting fluorescent signals, 
which are recorded in real time [25]. Besides registering 
fluorescent colors, the time interval between nucleotides 
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is measured in a process called interpulse duration (IPD). 
The signals are then converted into continuous long-
reads (CLR) [28]. CLR are then converted into multiple 
reads or subreads, which is an individual sequence reads, 
via the removal of adapter sequences. The resulting sub-
reads are combined to generate a single highly accurate 
consensus sequence called circular consensus sequence 
(CCS) [29]. A comparison of the sequencing technologies 
of ONT and PacBio can be found in Fig. 2, illustrating the 
key differences between nanopore sequencing and single 
molecule real-time (SMRT) sequencing.

Processing
Quality control phase
The quality control phase plays a critical role in filtering 
out unwanted and misleading data, particularly for tra-
ditional short-read techniques. In short-reads, various 
criteria are examined, including read length, GC con-
tent, quality score, sequence complexity distributions, 
sequence duplication, ambiguous bases, artifacts, and 
contaminations [30]. This meticulous assessment ensures 
that only high-quality and reliable data is retained for 
further analysis and interpretation. Software tools like 
FastQC are designed to take FASTA/FASTQ files as 
input and provide comprehensive analysis and quality 
assessment for sequencing data. FastQC displays essen-
tial statistics such as sequence quality, sequence content, 

GC content, N content (ambiguous bases), length dis-
tribution, and sequence duplication levels [31]. It also 
identifies overrepresented sequences and analyzes kmer 
content, allowing researchers to evaluate the overall qual-
ity and potential issues in their sequencing data. These 
functionalities aid in identifying potential problems, and 
guiding researchers in making informed decisions dur-
ing downstream analysis and interpretation. After qual-
ity control, the sequence data can be filtered based on 
length, GC content, quality scores, number of sequences, 
and other criteria [30]. The sequence can be trimmed to 
a specific length. To avoid potential duplication issues, 
trimming should be performed before the filtering pro-
cess [32]. This ensures that the filtered dataset retains the 
most relevant and non-redundant information, contrib-
uting to accurate downstream analyses.

LRS requires different quality control approaches 
than short-read sequencing. Some researchers use a 
hybrid method, sequencing the same sample with both 
short- and long-read technologies, to enhance accuracy 
and gain comprehensive insights into complex genomes 
and structural variants [33]. Unlike short-read QC, 
which requires trimming of the reads, long-read QC 
can only display visual output, while leaving filtering 
and trimming optional. Due to the inherent differences 
in long-read data provided by the two companies, a sin-
gle quality control tool may not effectively cover both 

Fig. 2  Overview of sequencing functional principle. A The ONT sequencing process initiates by passing a DNA or RNA strand 
through a nanopore—a small protein opening embedded in an electrically resistant membrane, functioning akin to a biosensor. A constant 
voltage applied to the electrolytic solution induces an ionic current through the nanopore. As a negatively charged DNA or RNA strand traverses 
the nanopore, inducing a shift from negative cis to positive trans, the motor protein influences the translocation speed. The change in ionic current 
resulting from this charge shift corresponds to the nucleotide sequence, enabling the identification of DNA/RNA strand bases. B The PacBio 
sequencing process involves fragmenting target double-stranded DNA molecules and ligating them to hairpin adapters, forming a SMRTbell—a 
closed, single-stranded circular DNA template. These SMRTbells are loaded onto a SMRT cell equipped with Zero-Mode Waveguides (ZMWs). 
A single polymerase binds to hairpin adaptors situated at the ZMW’s bottom, initiating replication. To identify bases, four fluorescent-labeled 
nucleotides with distinct emission spectrums are introduced, producing a unique light pulse when incorporated into the polymerase. This series 
of light pulses is recorded and utilized to interpret the sequence of bases
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datasets. For instance, PacBio’s long-read data from the 
Sequel sequencing platform may lack meaningful Phred 
scores, which are available in ONT’s data [34]. Conse-
quently, specific quality control tools tailored to each 
platform are necessary to ensure accurate assessment and 
processing of the respective long-read datasets.

There are several quality control software tools avail-
able for handling long-read sequencing data. One such 
tool is LongQC, which is specifically designed for nano-
pore and SMRT sequencing quality control. LongQC 
offers a user-friendly interface and incorporates multiple 
modules and algorithms for comprehensive analysis. The 
coverage module in LongQC is a key feature that pro-
vides essential information such as general statistics, read 
length analysis, quality score assessment, coverage analy-
sis, GC content analysis, error estimation, and more [34].

NanoPack is a widely used quality control tool for long-
read sequencing (LRS) data. It includes several sub-tools, 
such as NanoQC, NanoPlot, Cramio, and more, provid-
ing a comprehensive suite for quality assessment and 
data analysis [35]. While NanoPack can be utilized for 
both ONT and PacBio data, the lack of Phred scores in 
PacBio data can limit its usage for certain quality con-
trol aspects. Phred scores are crucial for assessing base 
call accuracy and the quality of individual bases in the 
sequencing reads. Without Phred scores in PacBio data, 
some specific quality control metrics may not be as 
robustly evaluated in comparison to ONT data [34]. Nan-
opack2 serves as the successor to NanoPack, featuring 
various enhancements across its modules. Improvements 
include code optimization, increased plot generation 
options, and dynamic HTML plots within NanoPlot and 
NanoComp. Furthermore, Nanopack2 combines NanoF-
lit and NanoLyse functionalities into the Chopper tool, 
enabling comprehensive filtering based on read score, 
read length, contamination level, and other factors. In the 
latest version of Nanopack, Cramino, built on rust-htslib, 
has replaced the slower NanoStat to efficiently generate 
summaries for long-read sequencing experiments. Along 
with this major update, several other smaller improve-
ments and changes have been implemented throughout 
the system [36]. Furthermore, Nanopack now offers the 
added functionality of filtering and trimming reads, pro-
viding users with the option to refine and process their 
LRS data based on specific criteria and quality thresh-
olds. These updates make Nanopack a more robust and 
user-friendly tool for quality control, analysis, and data 
manipulation in LRS experiments.

SMRT Link is a web-based tool of PacBio that is com-
patible with all Sequel systems as well as the new revio 
system. It is a comprehensive tool specifically designed 
to work with PacBio data, making it one of the best 
choices for handling PacBio sequencing data. SMRT Link 

provides a wide range of functionalities, including sample 
setup, run design, run QC, data management, and SMRT 
analysis [37]. One of the key features of SMRT Link is its 
quality control function, which empowers users to effi-
ciently sort, search, and filter the reads based on various 
parameters. These parameters include minimum and 
maximum subread length, minimum number of passes, 
minimum predicted accuracy, minimum read score, and 
others [38]. During the quality control phase, SMRT 
Link generates various informative data, such as sam-
ple information, run settings, total bases (in Gb), unique 
molecular yield (in Gb), productivity percentage, number 
of reads, and control information. Among the success-
fully quality controlled data, the plots such as polymerase 
read length, longest subread length, control polymerase 
RL, control concordance, base yield density, read length 
density, HiFi read length distribution, read quality dis-
tribution, and read length vs predicted accuracy can be 
viewed. Other tools such as SequelTools can perform 
quality control, read subsampling, and read filtering. The 
generated standard metrics includes N50, read length, 
count statistics, PSR (polymerase-to-subread ratio), and 
ZOR (ZMW-occupancy-ratio) [37]. However, Sequel-
Tools works primarily with CLR, rather than directly 
working with CCS which has higher accuracy. In general, 
both ONT and PacBio provide customized tools to effi-
ciently handle the distinct data generated by their respec-
tive sequencing platforms. If researchers are analyzing 
data exclusively from a specific platform, it is advisable 
to utilize NanoPack2 for ONT data or SMRT Link for 
PacBio data. However, in the case of hybrid data usage 
where filtering or trimming is unnecessary, longQC is 
recommended as a suitable tool for managing the com-
bined nanopore and SMRT sequencing datasets.

Assembly
An assembly is the process of merging fragmented reads 
obtained through sequencing to reconstruct the original 
sequence (Fig.  3A), and there are several approaches to 
perform it using LRS data. Two prominent methods for 
LRS assembly are HiFi assembly, which is designed spe-
cifically for LRS, and the hybrid method that combines 
HiFi sequencing with SRS methods. However, unlike 
genomics which deals with one organism, the challenge 
of metagenomics is to piece together thousands or mil-
lions of organisms simultaneously. The three most pop-
ular algorithms for genomic assembly are the greedy 
algorithm, overlap layout consensus (OLC), and De-Bru-
jin graph methods [39]. The greedy algorithm overlaps 
each read into contigs and stops when no more reads 
or contigs can be joined. OLC involves calculating pair-
wise overlaps among all reads and constructing an over-
lap graph with nodes representing individual reads and 



Page 7 of 19Kim et al. Journal of Translational Medicine          (2024) 22:111 	

edges denoting the overlaps. Each pathway through the 
graph results in a layout, and the most likely sequence is 
inferred through multiple alignments of the reads dur-
ing the consensus stage [40]. In De-Brujin graph method, 
k-mer algorithm, which is an overlapping of small seg-
ments, to construct a graph based on the co-occurrence 
of k-mers across the reads [39].

Genomic assembly in metagenomics is challenging due 
to the vast number of organisms present in the sample. 
The metagenomic sample contains a diverse range of 
species with varying abundance levels, resulting in une-
ven read coverage across the genomes [41]. Also the low 
coverage of most species in a metagenomic sample com-
pared to that of cultivated sample, can result fragmented 
and inaccurate metagenomic assemblies [41].

Traditional coverage statistics are rendered unreliable 
due to the uneven and often unknown representation of 
the variety of microbes within the sample. For example, 
unrelated individuals from different species with simi-
lar genomes may have a high identity rate, while closely 
related individuals from identical species with small 
genetic differences leading to lower identity rate. Both 
can complicate the assembly process [42]. This issue 
poses a serious problem of incomplete and fragmented 

assembly or even a misassembly when the difference in 
strains disrupts assemblers from resolving path across the 
assembly graph, such as OLC and de Brujin. The problem 
is partially resolved by the detection and masking of the 
genetic variation amongst closely related strains to gen-
erate consensus assembly [41]. However, the consensus 
assembly can result in annotation artifacts and the loss of 
individual strain information [39]. An uneven sequenc-
ing depth can lead to one organism receiving high depths 
of coverage, resulting in quadratic growth in computing 
time for the OLC algorithm and exacerbate the effects of 
errors in the De-Brujin graph algorithm [41]. Moreover, 
a large amount of input data is required to reconstruct 
rare strains, which requires a very high coverage depth 
that can significantly increase the computation cost [39]. 
It is important to understand the type of results that an 
assembler produces and to note that different assem-
blers can have very different performances. Metagenome 
assemblers produce contigs and assembly graphs and 
perform finding path across assembly graph and between 
contigs. Metagenomic assembly process can also create 
metagenome assembled genome (MAG), which refers 
to the  collection of microbial genomes or scaffolds that 
share similar characteristics. MAGs are particularly 

Fig. 3  Overview of assembly algorithm. A Fragmented reads are overlaid and merged to reconstruct microbial genomes, with the longer reads 
enhancing the connections between each fragment. B MetaFlye, a LRS metagenome assembler, uses k-mer and repeat detection algorithm, 
which is particularly useful when detecting repeats inside a bubble. C Canu utilizes a form of k-mer algorithm known as adaptive MinHash 
k-mer weighting, in combination with an altered version of the greedy best overlap graph (BOG) algorithm. The greedy BOG algorithm, initially 
developed by Miller and colleagues, serves as the foundation for constructing the graph in Canu. Sequences with mutual best overlap are indicated 
with arrows going both ways. However, sequences G, H, and I have one-sided arrows, meaning that the best overlap regions are not mutual 
and are not included as part of the best overlap. D Hifiasm-meta utilizes k-mers to query reads and construct an overlap graph while retaining reads 
with rare k-mers, which typically correspond to low abundance sequences
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useful when there is not enough high-quality reference 
genome [43].

Usually, metagenome assemblies use short-reads with 
fragments of ~ 1000 bp in length [44], which result in low 
repeat resolution and unresolved repeats. However, the 
recent advances in LRS technologies and the extraction 
technique for DNA with high molecular weight, enabled 
sequencing of long metagenomes [45]. LRS technology 
has improved the extraction of high molecular weight 
(HMW) DNA through various enhancements. These 
include minimizing DNA shearing during extraction, 
employing a magnetic bead-based method, and avoiding 
vigorous vortexing that could potentially fragment the 
DNA. The technology also enables the direct sequenc-
ing of single DNA molecules without the necessity for 
amplification and implements advanced library prepara-
tion protocols tailored for HMW DNA. These protocols 
involve gentle DNA extraction methods, steering clear 
of harsh conditions that could lead to DNA fragmenta-
tion [46]. LRS has the potential to improve metagenomic 
assemblies and overcome many limitations stated above. 
A few popular choices are metaFlye, Canu, and hifiasm-
meta. MetaFlye is a long-read metagenomic assembler, 
modeled after Flye, as a fast long-read genome assembler. 
The original Flye attempts to estimate the set of genomic 
k-mers by selecting high frequency k-mers (solid k-mer) 
[47]. The metaFlye, on the other hand, favors high abun-
dance species while low abundance species having lower 
solid k-mers are not assembled. Instead of relying on 
solid k-mer (high frequency), metaFlye uses a combina-
tion of global k-mer counting with local k-mer distri-
bution analysis [45]. The new algorithm detects repeat 
edges in assembly graphs, which allows them to bypass or 
identify repeat regions within simple bubbles, superbub-
ble, and roundabout. This allows metaFlye to not require 
structures such as superbubble to be acyclic, unlike many 
assemblers, and allowing the repeats within the bub-
ble to be analyzed. This repeat detection algorithm uses 
iterative detection to go through all edges and catego-
rize some edges as either repetitive or unique and grant 
strong resilience against read coverage with high nonu-
niform distribution [47]. A simplistic visual representa-
tion of the k-mer and an example of a bubble is shown in 
Fig. 3B.

Canu, a successor to Celera Assembler, is a reliable tool 
that can handle diploid, polyploid, and metagenomic 
assembly. Canu utilizes a new overlapping and assembly 
algorithm, which incorporates a tf-idf weighted MinHash 
based adaptive overlapping strategy and sparse assem-
bly graph construction to improve assembly continuity 
with a decrease in the required depth of coverage and 
run time. The adaptive MinHash k-mer weighting allows 
the number of repeats to be for overlapping, while not 

eliminating the chances entirely. This is achieved by using 
MinHash Alignment Process to compare compressed 
sketches instead of comparing each individual k-mers for 
potential read overlaps, allowing Canu to compare entire 
reads to compressed sketches. The construction of sparse 
overlap graph uses a variation of greedy algorithm of best 
overlap graph. By only loading the best overlaps per read 
end, this method is memory efficient and works best with 
longer read lengths [48]. The basic concept of greedy best 
overlap graph, or BOG, is demonstrated in Fig. 3C. It was 
first adopted for Celera Assembler and was successful in 
producing one of the longest contigs among assemblers 
back when it was tested.

Hifiasm-meta, a tool developed in 2022, is designed 
to leverage the significantly enhanced quality of long-
read sequences. The workflow of hifiasm-meta includes 
read selection, sequencing error correction, read over-
lapping, string graph construction, and graph clean-
ing. Going through 2000 reads per round, k-mer counts 
are recorded onto an empty hash table. For each read 
encountered, canonical k-mer are queried in the hash 
table for frequency. The percentiles 3%, 5%, and 10% per-
centiles are compared to the respective threshold values, 
and only the reads that do not reach the thresholds are 
kept. This allows the reads with rare k-mer to be kept. 
Hifiasm-meta keeps reads that have no overlapping reads 
in the  middle section but have 5 or fewer overlaps on 
either end of the read. This ensures that the  genome of 
low abundance is not discarded. Hifiasm-meta retains 
contained reads (reads contained within a longer read) if 
the identical overlapping reads are from different haplo-
types and drops contained reads only if there is no similar 
haplotype nearby. Finally, at the graph construction, any 
overlaps between unitigs (a hifiasm terminology: a high 
confidence contig) from different haplotypes are rejected 
[49]. This process adds benefit of fixing assembly gaps by 
patching up unitigs. Unitig coverage is then used to filter 
overlaps. However, all these are applied to unitigs longer 
than 100 kb [49] (Fig. 3D).

Binning
After the assembly phase is complete, contigs, which 
are overlapping segments of short-reads are left. In 
data science, binning refers to the process of grouping 
continuous values into smaller sets of “bins” (Fig. 4A). 
In biology, a similar definition can be applied, where 
"continuous value" refers to sequences from the reads. 
During the binning phase, patterns are identified using 
k-mer profiles that can determine whether two con-
tigs belong to the same genome or not [50]. The pat-
terns are then used to group and link contigs into bins, 
where each bin is ideally assigned to only one original 
genome (MAG). There are various ways to separate 



Page 9 of 19Kim et al. Journal of Translational Medicine          (2024) 22:111 	

contigs, including taxonomic assignment, GC content, 
tetranucleotide composition, and abundance. Taxo-
nomic assignment falls under taxonomic dependent 
binning, which is a supervised method that compares 
the sequence to a reference database using aligning 
algorithms [51]. This method is limited to the reference 
database, which is oftentimes incomplete. Genome 
binning is an unsupervised method that clusters con-
tigs into bins using features of the sequences [51]. The 
two common methods are binning by composition 
and abundance. Composition based method works on 
2 main assumptions: different genomes have distinct 
sequence features, and a genome has similar sequence 
features [50]. This method uses % of G/C composition, 
nucleotide frequency (k-mer frequency), and essential 
single copy genes as composition features [51]. Usu-
ally, longer sequence lengths typically result in better 
extraction of genome signatures [52]. However, due to 
increasing sequencing depths and inherent challenges, 
coverage (abundance) method is becoming more reli-
able. Differential abundance (coverage) binning meth-
ods have 2 main assumptions: sequences have similar 
abundance level within the same sample if the sequence 
is from the same genome, and these sequences will 
display similar abundance level across a  multitude of 
samples [51]. It is possible to combine the two meth-
ods (hybrid), especially with longer contigs and newer 
assembly tools.

Binning of long-reads presents a set of challenges such 
as a lack of coverage information, which is the informa-
tion of an average number of reads that is mapped to a 
position in a reference genome, relatively high error 
rates, and varying degree of species coverage [53]. When 
compared to contigs from short-reads, the read length 
is significantly longer, which requires a unique binning 
algorithm.

MetaBCC-LR is a long-read binning tool that does 
not require a reference database to perform the bin-
ning. The reads are separated using k-mer coverage his-
tograms and trinucleotide compositions, and statistical 
models are built for each bin. Then, all the reads are 
assigned to their respective bins [54]. While MetaBCC-
LR employs a multitude of algorithms, obtaining k-mer 
coverage and using density-based clustering algorithm 
(DBSCAN) for dimension reduction are notable ones. 
Instead of estimating the coverage of each read by using 
all versus all type alignment, using k-mer to break down 
reads allows for larger metagenomic datasets. DBSCAN 
is used to reduce dimension and clustering based on 
both k-mer coverage and trinucleotide composition, 
which helps with visualization. DBSCAN is a non-par-
ametric density-based clustering  algorithm, where the 
radius of each point of a cluster must contain a cer-
tain set of minimum number of points that are closely 
packed together. The dots that form two circular shapes 
represent samples or other variables of interest. It is 
particularly useful since it is density based, allowing it 

Fig. 4  Overview of binning algorithm. A Binning is a process in metagenomics where the assembled sequences are clustered or grouped 
based on their similarities, which helps in reconstructing both known and unknown genomes from complex metagenomic datasets. B A visual 
representation of k-mer coverage and DBSCAN algorithm that forms the key algorithm of MetaBCC-LR. C LRBinner enhances sequence binning 
accuracy by combining composition and coverage information through k-mer profiles and advanced algorithms
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to correctly differentiate two clusters (Fig. 4B). A prob-
lem with a number of long-read bin tools is that they 
either use only composition information, foregoing 
coverage information, or independent use of composi-
tion and coverage information. It can lead to problems 
such as bins of low abundance species being ignored or 
bins of non-uniform coverage species being incorrectly 
categorized [55].

Currently, LRBinner is one of the newest LRS bin-
ning tools. Similar to MetaBCC-LR, LRBinner is also 
a reference free long-read binning tool that can use 
composition information in addition to the coverage 
information. LRBinner also utilizes an algorithm that 
uses distance histograms for the detection and extrac-
tion of confident clusters of varying sizes. The tool 
showcases deep learning algorithms to perform feature 
aggregation. This comprehensive k-mer representa-
tion allows LRBinner to assign sequences more accu-
rately and effectively to their respective bins during the 
binning process. The VAE (variational autoencoder) 
is a deep learning algorithm that provides a probabil-
istic approach to represent observations in a latent 
space. In the context of LRBinner, the VAE is utilized 
to learn a latent representation for long-read binning. 
The general workflow of LRBinner consists of identify-
ing lower dimensional latent representations of both 
composition and coverage, clustering the latent repre-
sentations, and obtaining complete clusters. The com-
position is calculated from normalized k-mer counts. 
First, the composition and coverage feature vector goes 
through variational autoencoder (VAE), a type of deep 
learning that integrates k-mer composition and cover-
age from metagenomic assemblies. This process is used 
to obtain low dimensional latent representation. Next, 
generate a histogram using the distance between a cho-
sen seed point and other remaining points. The peak 
of the histogram is used to estimate candidate clus-
ter, ultimately resulting in a bin containing the chosen 
seed point. Lastly, the final bin is obtained by assign-
ing unassigned points to clusters via statistical models 
such as maximum likelihood. The general structure 
of VAE can be broken down into 5 parts, the input, 
encoder, latent space, decoder, and output. Input is 
fed into  the encoder, which uses the mean vector and 
standard deviation vector to construct the latent space. 
Latent space is a  representation of collection of items 
that are similar to each other. Then, samples are taken 
from latent space for the  decoder to produce an out-
put that is ideally identical to the original input. When 
compared to MetaBBC-LR, LRBinner is capable of pro-
ducing bins with better completeness, lower contami-
nation, better estimation of the number of bins, and 
overall higher precisions [53] (Fig. 4C).

Bioinformatic analysis
Taxonomic annotation
Although there are various bioinformatic tools that can 
work directly with raw reads after quality control with-
out the need for an assembly phase, data assembly can 
greatly benefit the process when working de novo with-
out a robust reference database. Taxonomic annotation is 
the process of classifying the reads using a reference data-
base. Amongst several algorithms used for taxonomic 
annotation, k-mer based and alignment-based meth-
ods were frequently used. Kmer-based method utilizes 
a short word of length k to conduct an exact match [56]. 
Alignment-based method employs alignment algorithms, 
such as Bowtie2, to align reads to a reference sequence. 
In addition to the two different types, there are popu-
lar taxonomic classifiers, such as Centrifuge, which uses 
Burrows-Wheeler transform. Both SRS and LRS have 
the capacity to provide taxonomic profiles at the species 
level. Unlike amplicon sequencing, which targets only the 
hypervariable region, SRS and LRS sequence the entire 
sample and obtain a higher volume of data. Even in SRS, 
a relatively unbiased representation of species within the 
sample can be extracted. This advantage is further pro-
nounced in LRS, where species with abundances as low 
as 0.1% can be detected with high accuracy. Taxonomic 
profiles of species are derived during the taxonomic 
annotation process [57]. To achieve resolution down to 
the species level, thorough consideration and validation 
of LRS data are essential, along with the integration of 
various techniques. These include in  situ hybridization 
for visualizing specific microbial taxa within a sample, 
quantitative PCR designed to target particular microbial 
species, traditional cultivation and isolation methods 
focused on specific microbial species, and whole-genome 
sequencing of isolated strains [58–61]. The integration of 
these diverse approaches ensures a comprehensive and 
accurate characterization of microbial communities.

As discussed in earlier sections, long-reads and short-
reads require different approaches including taxonomic 
annotation. Although conventional tools like Kraken2, 
Centrifuge, and MetaPhlAn are applicable to both, it is 
important to select appropriate tools for the type of data, 
and using inappropriate tools with long-read data may 
result in several drawbacks. For example, heavy filter-
ing is required to achieve acceptable precision, and even 
then, the results may yield high false positives, especially 
in lower abundance regions, and inaccurate abundance 
estimates [62]. Therefore, using tools that are specifically 
designed or modified for LRS can produce more reliable 
results without requiring heavy filtering.

There are two types of algorithms used for the align-
ment, nucleotide, or protein (translation) alignment 
methods, on top of the general lowest common ancestor 



Page 11 of 19Kim et al. Journal of Translational Medicine          (2024) 22:111 	

(LCA) shared among the tools. Nucleotide or transla-
tion alignment simply refers to whether the alignment 
relies on each nucleotide or codon for amino acids when 
comparing against a database. Depending on the sample 
employed, nucleotide or translation alignment should be 
selected, for example, DNA database for environmen-
tal samples are relatively small and this problem can be 
mitigated by using translation algorithm. Many taxo-
nomic annotation tools use a naïve algorithm, but a few 
adjustments must be made for long-read. First, estab-
lish segments of reads where alignments accumulate 
as “conserved genes”. Second, apply naïve LCA to each 
conserved gene. Lastly, the LCA is used to identify the 
placement of these reads. This is a summary of the com-
plex algorithm used in taxonomic annotation tools for 
long-reads. Each long-read taxonomic annotation tool 
has pros and cons depending on the type of sample being 
studied (e.g., environmental/anatomical),  the type of 
database used, and available resources. It is important to 
carefully select the appropriate tool for a specific analysis 
to achieve reliable results.

Popular tools that utilize translation alignment are 
MMseq2 and MEGAN-LR. MEGAN-LR is one of the 
earliest developed tools for long-read while MMseq2 is a 
newer addition [63]. MEGAN (MEtaGenome Analyzer), 
developed in 2007, allows large metagenomic datasets to 
be analyzed [64]. MEGAN6, the newest version, is an all-
inclusive toolbox that can perform taxonomic analysis, 
functional analysis, various visualizations, and metadata, 
and it was this version that MEGAN-LR was built from. 
MEGAN-LR can perform translation alignment, which 
converts nucleotide sequence into a  protein, or in this 
case, aligns nucleotide sequence to the protein reference 
database.

While MEGAN-LR is compatible with a multitude 
of tools with translation alignment functions, it is com-
monly paired with DIAMOND. MEGAN-LR employs 
interval union LCA algorithm and other features to 
assign reads to taxa. Interval union LCA works in two 
steps. First, the reads are fragmented into smaller units 
known as intervals. This segmentation facilitates the 
alignment of all read-associated data, ensuring that 
alignments commence and conclude precisely at the 
boundaries of these intervals. An alignment is considered 
significant within an interval if its score falls within the 
default threshold of 10%. Next, all intervals containing 
significant alignment associated to a taxon are marked. 
The taxonomic nodes are then computed in a post order 
transversal, merging any overlapping intervals along the 
way. Then the total alignment is computed by placing the 
read on the taxon [65].

MMseqs2 (Many-against-Many searching) fol-
lows 3 steps: k-mer match stage, vectorized ungapped 

alignment, and gapped (Smith-Waterman) alignment 
[66]. To perform taxonomic annotation, all protein 
fragments from long-reads are extracted, extracted 
protein fragments are filtered and the filtered protein 
sequences are aligned to a  reference database. Finally, 
the novel LCA algorithm is used to assign reads to 
aligned sequences [66].

The other method for taxonomic annotation, nucleo-
tide alignment, is represented by tools such as BugSeq-
v2 and MEGAN-LR. Among these tools, MEGAN-LR is 
one of the best tools currently available. It can handle 
nucleotide alignment using a  similar approach to pro-
tein alignment, but the reference database is changed 
from DIAMOND to minimap2 [67]. Bugseq-v2 is a 
pipeline with an online service, consisting of 5 distinct 
steps. First, quality control of reads is done by fastp, 
Next, the reads are mapped with minimap2 (align-
ment). The alignments are then reassigned using Bayes-
ian statistical framework. Lastly, the LCA is calculated 
for the reassigned reads and used as an input for Recen-
trifuge, a tool that allows researchers to perform com-
parative analysis of multiple metagenomic samples [68]. 
MEGAN-LR, MMseqs2, and BugSeq-v2 use alignment 
based and a variation of LCA algorithm as a key player 
in performing taxonomic annotation.

Aside from the two main groups of taxonomic clas-
sifiers, there are also popular classifiers that use differ-
ent algorithms. One of these is CDKAM (Classification 
tool using Discriminative K-mers and Approximate 
Matching), developed to complement third generation 
sequencing technologies. CDKAM uses approximate 
matching to search k-mers, that happens in two distinct 
stages of quick mapping and dynamic programming 
[69]. It utilizes discriminative k-mer and approximate 
matching algorithm to perform taxonomic annotation. 
For discriminative k-mer, first, a reference genome and 
taxonomy information are downloaded to create data-
base. Next, the k-mer of all strains are collected. Then, 
genus level is assigned to overlapping k-mers if two or 
more species share it. After the assignment of genus, 
k-mers of all species included in the database are com-
bined and repeating or redundant k-mers are removed 
to produce discriminative k-mers. The discrimina-
tive k-mer represents the genomic region unique to 
each species. CDKAM uses an approximate matching 
method that is more lenient, allowing for replacements 
and indels to be included in the match. This allows 
CDKAM to deal with a  relatively higher error rate of 
LRS while maintaining high computing speed. The 
program increases the chance of detecting the query 
sequence within the database [69].

MetaMaps is one of the first tools specifically designed 
to handle long-reads and utilize approximate mapping 
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with probabilistic scoring methods. MetaMaps ana-
lyzes the reads in two steps. Step one, minimizer based 
approximate mapping method is used to produce poten-
tial mapping locations. Step two, a unique statistical 
model is used to give probabilistic scores to each poten-
tial mapping location, where expectation maximization 
(EM) algorithm is used to estimate the sample microbial 
composition. Being one of the first long-read taxonomic 
classifiers, MetaMaps offers three advantages. First, 

the approximate mapping method allows MetaMaps 
to regulate the mapping location of each read, and esti-
mate alignment identities and quality of mapping. Sec-
ond, MetaMaps is resilient against large contaminant 
genomes. Third, the approximate mapping method is 
faster than alignment-based methods [70]. Taxonomic 
annotation can be presented in various visualizations, 
such as the Krona chart, heatmap, and other graphical 
representations, to depict the taxonomic composition 

Fig. 5  Overview of  Taxonomic Annotation Algorithm. A The Krona chart represents hierarchical data, which can be visualized as a multi-layered 
pie chart and is useful for displaying various levels of taxonomy and their corresponding abundances simultaneously. The pie chart presents all 
NCBI taxonomy levels, from superkingdom to family, using a blend of radial and spatial display, along with parametric colors and zoom options. 
B Heatmap with hierarchical clustering is one of the more common visualizations of the difference in species abundance. Hierarchical clustering 
on selected parameters is applied to both rows and columns. Blocks with similar clustering are positioned together, and a color scheme is then 
applied corresponding to the parameters. C Nucleotide or translation alignment uses nucleotides or amino acid codons to search the database. 
The resulting similarity or dissimilarity can be used to draw conclusions about the relationship between species. Similarities can be indicative 
of a common ancestor, while mismatches may signify mutations in the form of indels or point mutations. For taxonomic annotation, the LCA 
algorithm and its variations are commonly employed to determine the taxonomic identity of query sequences based on their similarity to known 
sequences in the database. The figure depicts eight species, D to K, divided into two genera, B and C, which belong to family A. The read is aligned 
to the protein sequence from the database, represented in species D to K. The alignment percentage ranges from 90 to 20%. Nodes A and B have 
read coverage of 100%, while node C has read coverage of 90%. The read is placed on the lowest taxonomic node with ≥ 80% read coverage, which 
is D. If node D or any other lower taxonomic node has read coverage of 80% or higher, then node B will be chosen. D CDKAM utilizes discriminative 
k-mer and approximates matching algorithm to perform taxonomic annotation. The left image depicts a simplistic view of the k-mer (5-mer) 
search. The right image depicts approximate matching where the key sequence does not have to be identical but allows mutation or variation. 
Despite having 3 nucleotide mismatches, the algorithm identifies it as a match. A threshold for approximate matching can be adjusted. E MetaMaps 
employs minimizer-based approximate mapping and the EM algorithm for taxonomic annotation. First, minimizer-based approximate mapping 
is used to swiftly generate potential mapping location for each long read. Next, all mapping locations are given a score using a probability model, 
and EM algorithm estimates the overall sample composition. EM algorithm is comprised of two steps: the E-step or estimation step and the M-step 
or maximization step. The E-step computes missing or latent variables, and the M-step optimizes the parameter to best fit the data. The graph starts 
with the initial parameter θ(t). E-step constructs the function gt to define the lower bound of the function log P (x;θ). The maximum of function 
gt is θ(t+1) and is computed during M-step. The next E-step defines the new lower bound as function gt+1, and new M-step computes new 
maximization at θ(t+2). EM steps terminate when parameter estimation converges or reaches maximum iteration
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and relative abundances of different microbial taxa within 
a metagenomic sample. The general overview of algo-
rithms used by each tool can be seen in Fig. 5 and Table 1 
providing a simple representation of a few algorithms 
employed by each tool. However, the optimal choice of 
classifier may vary depending on the type and complex-
ity of the sample being analyzed. The byproduct of tax-
onomic classification is the creation of an abundance 
profile, which is the estimate of the number of microbes 
belonging to each species or genus, depending on the 
customization. While binning tools such as MetaBCC-
LR and LRBinner that use coverage provide abundance 
and composition information, it is during the taxonomic 
classification stage where bins are labeled and can be 
better represented visually. When only binning results 
are obtained, the next essential step involves convert-
ing these results into a taxa profile. Subsequently, upon 
obtaining the abundance profile, the resulting data can 
be used to conduct differential abundance analysis. This 
process involves evaluating differences in taxa abundance 
(such as species or genus) between various samples. The 
analysis can be conducted using the R software. 

In 16S rRNA sequencing, sequences are grouped into 
Operational Taxonomic Units (OTUs) based on 97% 
similarity, condensing millions of reads into OTUs and 
reducing computational load [71, 72]. In contrast to 
LRS or SRS, 16S sequencing employs unified tools like 
QIIME2 and MOTHUR. It commonly uses annotated 
reference sequence databases, such as SILVA, eliminating 
assembly needs. QIIME2, with BLAST + and VSEARCH, 
creates a taxonomy consensus classifier, outperform-
ing the original QIIME [73]. Various forms of amplicon 
sequencing, including ITS sequencing, 18S sequencing, 
and gyrB sequencing, serve different purposes based on 
the sample being studied. 16S is instrumental in studying 
prokaryotes and  detecting bacteria and archaea preva-
lent in microbiomes, especially in living organisms. ITS 
is optimal for studying the molecular ecology of fungi, 
while 18 s is used in the study of fungi and protists [74, 
75]. QIIME2, mother, or ITS can be adapted as assem-
bly tools for 18S and ITS sequencing, utilizing appro-
priate databases such as SILVA for 18S rRNA or UNITE 

database for fungi [76, 77]. Databases for the gyrB gene 
may not be as extensive or standardized as those for 16S 
rRNA. However, resources like the National Center for 
Biotechnology Information (NCBI) offer some sequences 
for gyrB, and the BLAST assembly tool can be applied.

Functional annotation
Functional annotation in metagenomics seeks to iden-
tify the metabolic and biological pathways of microor-
ganisms present within the sample, providing insights 
into their potential activities and functional roles in the 
environment. To achieve this, the identification of pro-
tein-coding regions through gene prediction is crucial in 
metagenomics, but it is more challenging than in isolated 
genomes due to various reasons.

Currently, there is a scarcity of specialized functional 
annotation tools tailored for long-read metagenom-
ics. Nevertheless, various tools have been extensively 
employed in studies utilizing long-read metagenomics 
data. Similar to assembly and taxonomic profiling, LRS 
has demonstrated its capability to enhance functional 
analysis by significantly increasing the proportion of 
assigned functional annotations compared to short-read 
sequencing methods. Some of the popular tools include 
Eggnog-mapper, MEGAN-LR, MetaErg, and MetaWRAP.

EggNOG-mapper v2 is the updated version of the orig-
inal EggNOG-mapper, with improvements in annotation 
coverage, program capability, and overall performance 
[78]. EggNOG-mapper v2 consists of four distinct stages. 
First, the prediction of Open Reading Frames (ORFs) or 
proteins is accomplished by using the assembled contigs 
with the help of a widely used tool called Prodigal, which 
scans the input contigs and identifies potential ORFs 
based on certain statistical models and sequence char-
acteristics. Second, the predicted ORFs are searched via 
HMMER3, Diamond, or MMseqs2 against eggNOG and 
protein databases or HMM similarity search, resulting 
in seed orthologs. Third, the orthology inference stage 
generates a list of orthologs depending on the hierarchi-
cal level of the taxonomy. Finally, in the annotation stage, 
the annotation orthologs and domains are processed to 
the queries, resulting in annotated GFF file and PFAM 

Table 1  Taxonomic classifiers used for long reads

Name Algorithm Reference database Developed year LRS affinity

MEGAN-LR [65] Translation + LCA algorithm NCBI nt 2018 ONT

Nucleotide + LCA algorithm NCBI nt ONT

MMseq2 [66] Translation + LCA algorithm NCBI nt 2017 PacBio

BugSeq-v2 [68] Nucleotide + LCA algorithm NCBI nt 2021 ONT

CDKAM [69] Approximate matching + kmer NCBI nt 2019 ONT

MetaMaps [70] Approximate mapping + EM Miniseq + H 2016 PacBio
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realignment files [78]. EggNOG-mapper v2 has higher 
functional annotation precision than the traditional 
homology searches due to orthology prediction [78] 
(Fig. 6A).

MEGAN-LR can also be used for functional annota-
tion (or more precisely, functional binning). The length 
of LRS means there is a high chance of multiple genes 
being on the same read, and those genes could align to 
different taxa. This redundancy, where the same gene 
stretched across different taxa is individually function-
ally annotated, can be avoided by using the dominance of 
each alignment. An alignment is dominant over another 
alignment under 3 conditions. One, if the read covered 

by alignment B is more than 50% covered by alignment 
A. Two, if either of the alignment has a higher bit score, a 
score showing the statistical significance of an alignment. 
Three, if the same read contains both alignments [65]. 
During the functional annotation process, functional 
classes are assigned to alignments that are not dominated 
by other alignments. The general workflow of MEGAN-
LR is as follows. Long-read is put through LAST program 
that performs DNA to protein alignment and outputs 
long protein alignment over long-reads in MAF file for-
mat. MAF2DAA takes the chunky MAF file and converts 
it into DAA file. During the conversion, MAF2DAA fil-
ters out strongly dominated alignments and removes 

Fig. 6  Overview of workflow of functional annotation. Functional annotation utilizes data from previous steps to identify genes and maps them 
against databases, elucidating the functions of each gene and the respective host microbe. A The workflow of EggNOG-mapper v2 consists 
of gene prediction, search, orthology inference, and annotation stages. Gene prediction uses assembled contigs as input for Prodigal. Search stage 
aligns the input read against HMMER, DIAMOND, and MMseqs2. During orthology inference, a taxonomic scope filter is applied to get the desired 
orthologs. Lastly, in the annotation stage, annotated orthologs are put through eggNOG annotation database and other annotation tools, resulting 
in annotated ortholog. B MEGAN-LR starts by aligning the input reads against NCBI-nr, DNA-to-protein database using the LAST alignment tool. 
The LAST tool outputs a MAF file which is converted into DAA file. The DAA file is taken by Meganizer to perform taxonomic and functional 
binning, and the outputs are appended back into the DAA file. The newly appended DAA file is then opened in MEGAN-LR for visualization 
and analysis. C MetaErg uses assembled contigs as input and identifies CRISPR region, and non-coding regions, which include tRNA and rRNA. 
Prodigal uses the outcome to predict the protein coding region or ORF. The predicted ORFs are run through various functional categories, similarity 
search, and database such as GenomeDB, Casgene HMM, Metabolic HMM, Swiss-Prot, FOAM, Pfam-A, TIGRFAMs, etc. Once functional annotation 
is complete, output and visualization can be returned in various formats. D Nanopore (pipeline) starts by converting fast5 data into fastq files 
through base calling and demultiplexing. The taxonomic annotation takes fastq files and annotates them using two different tools. The first method 
uses Centrifuge to perform taxonomic binning and remove erroneous taxonomic assignments using minimap2. Sequences with mapQ score 
of 5 or higher are kept. The second method uses IGC and minimap2 and only sequence with highest mapQ score is kept. The gene count table 
is constructed by counting the number of sequences mapped by ONT reads. Using the mean value of the 50 most connected genes from the gene 
count table, metagenomic species abundance is estimated. For functional annotation, taxonomic results from Centrifuge utilize the KEGG API 
to retrieve KO content, while those from IGC use the IGC reference to obtain KO content
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many redundant alignments. The resulting DAA file is 
put through Meganizer for taxonomic and functional 
annotation [65] (Fig. 6B).

MetaErg is “a stand-alone and fully automated 
metagenomic and metaproteomic data annotation pipe-
line” [79]. MetaErg can perform feature prediction, 
functional annotation, and estimation and visualization 
of quantitative taxonomic and pathway composition. 
The functional annotation starts by inputting predicted 
ORF into HMM and DIAMOND-based profile similar-
ity searches. The resulting ORFs are then aligned and 
searched against different databases (MetaErg accepts 
external databases or built-in databases that are con-
structed using publicly available databases such as 
SILVA, RefSeq. FOAM, casgene.hmm, etc.). The search 
results are then combined to link query gene with vari-
ous aspects such as functional categories, KO terms, GO 
terms, EC numbers, protein domains, metabolic potential 
and trains [79]. In total, ORF from MetaErg is searched 
against HMM from Pfam-A, TIGRFAM, FOAM, Met-
abolic-hmm, and SwissProt. The mapping files derived 
from these searches are used as input for MinPath, which 
reconstructs metabolic pathways and infer KEGG and 
MetaCyc pathways [79] (Fig. 6C).

There is another method of performing functional 
analysis for reads from ONT. A pipeline was developed 
in 2021 for data processing and analysis, especially for 
the estimate of microbial composition and diversity [80]. 
Within the pipeline (simply named Nanopore), there is 
a functional analyses command. This analysis relies on 
the species abundance table to compute KO abundance 
and KO richness to get functional annotation. To achieve 
optimal results in functional analyses using this pipe-
line, it is recommended to utilize the entire pipeline, as 

the outputs from previous steps are required to proceed 
(Fig. 6D, Table 2).

Discussion
Metagenomics is a relatively young field with a shorter 
history; the term was coined in 1988, and the concept 
first appeared in 1985, compared to other omics fields 
such as genomics, which was coined in 1986 but began 
in the 1970s, and proteomics, coined in 1994 but initiated 
in 1975. Notably, whole-genome shotgun sequencing, 
which redefined metagenomics, was introduced in 2004 
[81–84]. Microbial studies continue to utilize 16S rRNA 
sequencing due to its affordability and the availability of 
a comprehensive reference database. However, the incor-
poration of LRS into metagenomics has introduced a new 
technology to the field, unlocking numerous possibilities. 
LRS has expanded the scope of metagenomic research, 
enabling in-depth analysis of complex microbial commu-
nities and offering valuable insights into the functional 
potential and taxonomic diversity that were previously 
challenging to explore. LRS has the potential to bring 
significant improvements and provide valuable insights 
in areas where short-read sequencing falls short. Its abil-
ity to generate longer and more contiguous reads allows 
for better characterization of complex genomic regions, 
resolving repetitive elements, and identifying novel 
sequences. In theory, LRS holds the potential to over-
come many drawbacks of short-read sequencing. How-
ever, in practice, LRS has faced several major challenges, 
including higher costs and a lack of dedicated tools. 
Despite these initial hurdles, LRS providers, such as ONT 
and PacBio, have made significant strides in improv-
ing accuracy, and the sequencing costs have gradually 
decreased and are expected to continue doing so. Moreo-
ver, more dedicated tools are continually being developed 
to tackle the challenges of LRS in metagenomics. LRS is 
expected to play a crucial role not only in metagenom-
ics but also in genomic research, enabling comprehen-
sive and accurate analysis of complex genomes, resolving 
structural variations, and identifying novel genetic ele-
ments. With these advancements, LRS has the potential 
to significantly contribute to various scientific disciplines 
and drive important discoveries in the field of biology 
and beyond. LRS and SRS are not mutually exclusive 
and can be used to complement one another. SRS offers 
superior accuracy at a lower sequencing cost while cap-
turing microbial diversity within well-defined regions. 
LRS, on the other hand, are better at mapping genetic 
regions with high structural variability and repetitive 
regions, identifying haplotype information and co-inher-
ited alleles, and detecting taxa with low abundance [85]. 
By strategically combining these technologies, research-
ers can leverage the accuracy of short-reads for precise 

Table 2  Functional annotation tools and pipelines

Name Developed year Database

EggNOG-mapper v2 [78] 2021 eggNOG

Nanopore (pipeline) [90] 2021 KEGG

MetaERG [79] 2019 casgene.hmm
FOAM
metabolic-hmms
Pfam
SwissProt
SILVA SSU
TIGRFAMS
GTDBTK
RefSeq

MEGAN LR [65] 2018 EC
eggNOG
InterPro
SEED
KEGG
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taxonomic identification and functional profiling in spe-
cific genomic regions, while utilizing the ability of long 
reads to elucidate the structural organization and inter-
actions among microbial species [86].

Obtaining species-level resolution using 16S rRNA 
sequencing is often challenging due to limited variabil-
ity at the species level. The 16S gene is a commonly used 
marker for microbial identification, but its sequence 
conservation within certain bacterial taxa makes it 
more suitable for genus and family-level classifications. 
Although BLAST against the NCBI database is an option, 
it lacks reliability. To improve resolution, utilizing an 
environment-weighted taxonomy classifier with alter-
native weight assumptions has been  shown to enhance 
results [87]. To achieve species-level, alternative mark-
ers such as the 18S rRNA gene or other markers like gyrB 
may be considered. The selection of markers depends on 
the study’s specific objectives and the taxonomic group 
being examined. Each marker has its advantages and 
limitations. The 18S rRNA is commonly used for eukary-
otic microorganisms. It provides higher variability than 
the 16S and can offer improved resolution at the spe-
cies level for certain taxa, especially among fungi and 
protists. The gyrB can exhibit higher variability than the 
16S gene, potentially allowing for better discrimination at 
the species level among certain bacterial groups such as 
the Bacillus subtilis group and genera like Myxococcus, 
Corallococcus, and Pyxidicoccus [88, 89]. In the future, 
researchers may explore alternative markers or use a 
combination of markers to enhance taxonomic resolution 
and accuracy in microbiome analysis.

ONT and PacBio, as two leading long-read sequenc-
ing platforms, each offer distinct advantages and disad-
vantages. ONT stands out for its longer read lengths, 
particularly with their new ultra long-read sequencing, 
which allows for better resolving complex regions and 
characterizing large genomic elements. On the other 
hand, PacBio provides relatively shorter reads but higher 
accuracy, enabling more precise base calling. While 
ONT’s longer read lengths appear advantageous, both 
platforms have made significant improvements in accu-
racy, making the decision less straightforward. The deci-
sion between ONT and PacBio for LRS is multifaceted 
and relies on specific research needs. Various factors, 
such as the desired read length, sequencing accuracy 
requirements, the complexity of the genome or metagen-
omic sample, and the available budget, all play a crucial 
role in determining the most suitable platform for a given 
application. For complex and larger cells like eukaryotes 
with larger genomes, PacBio’s iso-seq and HiFi sequenc-
ing can be advantageous due to their better ability to call 
structural variations accurately. These platforms are par-
ticularly useful for applications where precise resolution 

of genomic rearrangements is crucial. Furthermore, each 
platform has specialized tools that may perform better 
for specific analysis tasks, making it essential to assess 
the compatibility of the available tools with the intended 
research goals. Besides technical considerations, exter-
nal factors such as cost, and the  availability of the ser-
vice are vital in determining the most suitable platform. 
The MinION from ONT is a cost-effective option, mak-
ing it attractive for researchers with budget constraints. 
Additionally, familiarity with a particular platform and 
the availability of support or expertise can influence the 
decision-making process. Ultimately, researchers need 
to carefully weigh these factors and tailor their choice 
of long-read sequencing platform based on the specific 
requirements of their research project, ensuring the most 
effective and reliable outcomes.

Conclusions
Both ONT and PacBio platforms provide valuable 
insights into the future of long-read sequencing, offer-
ing longer reads that can capture low abundance taxa 
and improved species identification, thereby generating 
more accurate microbial profiles. As these technologies 
continue to advance, they hold immense potential to 
revolutionize our understanding of complex microbial 
communities and their functional capabilities in diverse 
environments, contributing significantly to the field of 
metagenomics and genomic research.
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