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Abstract

Spatial transcriptomics technologies developed in recent years can provide various information including tissue
heterogeneity, which is fundamental in biological and medical research, and have been making significant break-
throughs. Single-cell RNA sequencing (scRNA-seq) cannot provide spatial information, while spatial transcriptomics
technologies allow gene expression information to be obtained from intact tissue sections in the original physiologi-
cal context at a spatial resolution. Various biological insights can be generated into tissue architecture and further the
elucidation of the interaction between cells and the microenvironment. Thus, we can gain a general understanding of
histogenesis processes and disease pathogenesis, etc. Furthermore, in silico methods involving the widely distributed
R and Python packages for data analysis play essential roles in deriving indispensable bioinformation and eliminating
technological limitations. In this review, we summarize available technologies of spatial transcriptomics, probe into
several applications, discuss the computational strategies and raise future perspectives, highlighting the developmen-

tal potential.
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Introduction

Human organs and systems are comprised of distinct cell
subpopulations whose physiological processes and func-
tions are deeply correlated with their spatial distributions
and cellular interactions. To gain a deeper understand-
ing of tissue architecture as well as heterogeneity and to
subsequently obtain biological insights into intercellular
communication and microenvironment, it is crucial to
decipher the disparities among tissue regions and cells
in their original spatial context. Previously developed
single-cell RNA sequencing (scRNA-seq) [1] has pro-
vided comprehensive information about transcriptomes,
altering our ability to identify cell subpopulations. How-
ever, the segregation of cells while dissociating the tissue
destroys cellular spatial information in the original tissue
context, which sometimes could be extremely crucial to
understanding intricate cellular interaction networks.
Moreover, since scRNA-seq was developed in 2009,
many limitations have been emerging. For instance, the
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relatively low efficiency and coverage of RNA transcript
capturing may lead to the loss of gene expression infor-
mation for downstream analysis [2]. Furthermore, certain
types of cells may exhibit significant cell variations due to
factors such as cell size and cell cycle stage, causing less
reliable results. Another challenge of scRNA-seq is the
batch effect which also needs to be considered and cor-
rected before subsequent analyses [3]. Additionally, the
dissociation protocol of tissue sections may have reper-
cussions on transcriptome and induce transcriptome-
wide changes including ectopic expression of genes,
causing a contaminating signal and subsequently leading
to the misidentification of cell subpopulations [4]. These
obstacles are gradually improved with advances in spatial
transcriptomics where each cell is assigned a specific and
unique spatial label containing spatial coordinates infor-
mation, allowing for relatively precisely positioning each
identified cell subpopulation to the original tissue sec-
tions [5]. Employing spatial transcriptomics techniques
enables transcriptomic data to be acquired from intact
tissue sections and in turn obtains spatial distribution
information and elucidates cellular interaction patterns
[2].

Although current cutting-edge spatial transcriptomics
techniques are confronted with some drawbacks such as
relatively low resolution and comparatively insufficient
sequencing depth [2], they are extensively utilized in a
wide range of biomedical research because of the accel-
erating capacity to investigate the spatial architecture
of normal tissue and tumor. These approaches and plat-
forms have been applied to the adult mouse brain [6],
mouse liver [7], human dorsal root ganglia [8] and dorso-
lateral prefrontal cortex [9], human heart [10], embryonic
liver [11], intestine [12] and mammalian testis [13] to
reveal tissue architecture and delineate embryonic devel-
opmental blueprint and also been employed to lucubrate
disease pathogenesis and microenvironment [14—17]. An
important part of the disease research is into tumor biol-
ogy which encompasses pancreatic ductal adenocarci-
noma [18], human squamous cell carcinoma [19], breast
cancer [20] and cutaneous malignant melanoma [21],
etc. These applications provide adequate novel biological
insights and clinical relevance to resolving the intrinsic
mechanism of tissue dynamics and disease and to rem-
edying or optimizing present medical treatment pro-
tocols. Bioinformatics analysis strategies aim at mutual
and disparate purposes concerning clustering analy-
sis, data integration, deconvolution, spatially-variable
genes identification, etc. For example, early-developed
and now commonly-used Seurat [22] can be applied to
clustering and gene imputation, and the recently pub-
lished Tangram [23] tackles deconvolution and also gene
imputation.
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Spatial transcriptomics technologies have been con-
tinuously making significant progress. Multiple technolo-
gies have emerged in recent years, and their applications
and advantages and disadvantages are comprehensively
reviewed. In this article, we summarize the landscapes
of available spatial transcriptomics technologies, present
the employment of spatial techniques in extensive fields
of biomedical research and focus on the status quo of
computational strategies of data analysis.

Development of spatial transcriptomics
technologies

Since the initial spatial transcriptomics workflow was
established in 2016 [5], this field has been proceeding
apace with the unceasing evolution in resolution as well
as throughput. Notably, spatially resolved transcriptom-
ics was heralded as “Method of the Year 2020” by Nature
Methods in 2021 [24]. Feasible methods for obtaining a
fine-grained assessment of spatial transcriptome can be
generally classified into four primary categories including
microdissection, in situ hybridization, in situ sequenc-
ing, and spatial barcoding, each bearing its superiority
and constraints. Overviews of these categories are sum-
marized and a concise timeline depicting the remarkable
course of spatial transcriptomics techniques is presented
(Fig. 1) and detailed comparisons among existing meth-
ods are shown (Table 1). Some of the most commonly
used spatial transcriptomics platforms are also listed in
Table 2.

Technologies based on microdissection

Laser capture microdissection (LCM) [25] is a microdis-
section technique that employs a focused infrared laser
pulse to isolate a specific tissue region of interest (rang-
ing from 60 to 700 um in diameter) from the original tis-
sue section, enabling precise procurement of a specimen
from the specified anatomical region while diminishing
potential contamination. Moreover, these technologies
are appropriate for partly-degraded tissue section analy-
sis [26] and can interrogate the transcriptomes at a cellu-
lar resolution. One application of LCM technology is the
genetic analysis of small premalignant lesions that have
been isolated from histologically normal tissue or tumor
edges, and this approach underlies several other technol-
ogies including tomo-seq [27], Geo-seq [28], etc.

Junker and colleagues [27] devised RNA tomography
(tomo-seq), a technique that involves cryosectioning,
reverse transcription, and amplification. Notably, this
approach eliminates the need for carrier RNA and pro-
vides high sensitivity and spatial resolution. The robust-
ness of the tomo-seq protocol was validated by the
authors by applying it to zebrafish embryos, followed by a
three-dimensional reconstruction of a genome-wide atlas
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Fig. 1 Development of spatial transcriptomics. The timeline indicates technologies (in bold blue), the years (in bold black) when the
corresponding technologies were published and the journals (in dark red) where the corresponding technologies were published or employed
(as in 10x Genomics Visium). It should be noticed that scRNA-seq is presented in the figure only for reference, albeit a non-spatial technology.
LCM Laser Capture Microdissection, smFISH Single-molecule RNA Fluorescence In Situ Hybridization, /SS In Situ Sequencing, TIVA Transcriptome

In Vivo Analysis, FISSEQ Fluorescent In Situ RNA Sequencing, seqf/SH Sequential Fluorescence In Situ Hybridization, tomo-seq RNA Tomography,
MERFISH Multiplexed Error-robust Fluorescence In Situ Hybridization, smHCR Single-molecule Hybridization Chain Reaction, Geo-seq Geographical
Position Sequencing, BaristaSeq Barcode In Situ Targeted Sequencing, STARmap Spatially-resolved Transcript Amplicon Readout Mapping, osmFISH
Ouroboros Single-molecule RNA Fluorescence In Situ Hybridization, DSP Digital Spatial Profiling, HDST High-Definition Spatial Transcriptomics,
DBIT Deterministic Barcoding in Tissue, ExSeq Expansion Sequencing, Stereo-seq Spatial Enhanced Resolution Omics-sequencing, £x-ST Expansion
Spatial Transcriptomics, PNAS Proceedings of the National Academy of Sciences of the United States of America, Nat. MethodsNature Methods, Nat.
Protoc. Nature Protocols, Nucleic Acids Res. Nucleic Acids Research, Clin. Cancer Res. Clinical Cancer Research, Nat. Neurosci. Nature Neuroscience, Nat.

Biotechnol. Nature Biotechnology, Sci. Adv. Science Advances

at three developmental stages of the zebrafish embryo.
The 3D profiling of tomo-seq was accomplished by cryo-
sectioning three main body axes of the zebrafish and the
data sets measured along these axes were reconstructed
computationally by mapping gene expression informa-
tion onto the image. Analysis of the 3D transcriptomic
pattern of whole embryos and organs can be accom-
plished by tomo-seq but a main drawback of this method
is that multiple samples are needed to generate sections
of three axes so the application on human organs can
be limited. Chen and colleagues [28] proposed another
technology based on microdissection termed geographi-
cal position sequencing (Geo-seq) which integrates
LCM and scRNA-seq technologies, enabling simultane-
ous investigation of cell heterogeneity and spatial vari-
ation. Geo-seq implements gene profiling at a ten-cell
resolution, significantly facilitating the analysis of the
spatiotemporally-regulated gene expression compared
to individually utilizing the LCM method. In addition,

Geo-seq can also promote the understanding of rare
cells and the interaction between cells and surrounding
niches. However, some impediments still remain, includ-
ing the amplification merely of mRNA with a poly-A tail
while preparing the library, which can be a hindrance for
the subsequent Smart2-seq [28].

In summary, microdissection-based methods provide a
competent approach to obtaining regions of interest from
tissue samples with high sensitivity. These techniques
enable focused research into the microanatomical struc-
tures and gene expression information of specific regions.
However, Geo-seq, which integrates LCM and scRNA-
seq (Smart2-seq), offers only a ten-cell resolution due
to the limitations of microdissection-based techniques.
During the laser-capturing and tissue segregation pro-
cedures of LCM, the quality of RNA molecules and the
intactness of obtained cells may not be fully maintained.
Additionally, microdissection is time-consuming and
labor-intensive, limiting the throughput and the capacity



Page 4 of 21

(2023) 21:330

Du et al. Journal of Translational Medicine

S||92 U9oMlaQ SUO1eIDOSSe

[9/] indybnoiyr mo7  [enuaiajud 101paid 01 3|qy UO[ID3SSIPOIIN v/N IEIED) MOIIBUI BUOQ 3SNON 8107 Qluixold
$9001d 30| Aoeindoe ybiH
[s/]  -ped paubisap-aid spasN Aduapye ybiH  Bupuanbas nys u) /N Je|nj22gng  s||92 Asupiy Jaiswey Ageg 8107 bageisuieg
skemyied
Jejndsjow buipuodsaiiod
S|9pOW paJasulbud pue sadAy |92 Jo uon
/] Aj[eanausb 01 paywl]  -dNJIsuod |elreds sa1epdn|3 UO[1D3SSIPOIIN v/N IEIED) S||92 dunww| /107 bas-JHDIN
uonewloul [eireds bul
-A19521d 3|IYM §||9D |BI9AS 13 ‘ulelq asnow
[87] 1INdybnoIYI MO WioUy sawoldidsuel) S9|yoid UOI1D3SSIPOIIN 0008 < S22 01 ‘ofiquua Allea asno /102 bas-0a5
(wnisip
1un Bupusnbas yoes SOIWOUSD X O ])
[s] |92 [BJ9ASS SUIPIUOD)  UOIRUIOJUI [elleds saplnold  Bulpodieq [eeds  swoidudsuesy a1ug wrl gg/wr ol qIng A1010Bjj0 9snow NPy 9107 solwoxduosuel] [eneds
uon
-NJ0Sal PalWI|-UOIDRIL utelq
/] 1ndybnoiyl mon AUAIISUDS YBIH  UoRezIpugAy nuis uj S 1e|n||22gng  3snowd ‘soAIquud ysyeigaz  910¢ YOHWS
$10119 BUNDALI0D
pue bunoa1ap Jo 3|qeded
[SE]  JUSWRINSEaW YNY PalWIT paxajdninw AybiH - uonezipugAy nus uj orl Jejnjeagns S||92 15€|qOIqy uewiny - G10¢ HSI443IW
aeg ursepe
uoIssa1dxa aUab IpIM-aWIOL
-diosuel] JO UO[IdNIISUOD
papaau sadwes ‘uonnjosai |eireds ybiH
Ve [B2160]0Iq SUIES [RIDASS AUAISUSS YBOIH UOID3SSIPOIIN 00071 ~ V/N 0AIqWia Ysyeigaz 10T bas-owol
awoiduosuen
33 Jo buibew uonnjosal
pa1e|NWNdOe 3G AeW -||92-21buls sa|geul
[¥€] 183 SI0MJ3 JO 9DUBLINIDO Buipodieq [elpuanbag  uopezipugAy nus U 4 Je|nj@xgns S||921589A #7107 HS|14bas
Bupuanbas nyis ul
[6€] yrdap buipusnbas mon VNY apim-awloiduosuel]  Bupuanbas nuis uj 2018 Jen@xgng - s1sejgolqy Alewld uewnH 102 03SSHH
OAIA Ul 5][92 3|Buls
[c/] 1ndybnoiys mo 9AI| WOl YNYW ainided  Buipodieq epeds 0006~ Je|n|[@)  UleJg UBWNY ‘UleIq 3SNON 107 VAL
Aoeindoe ybiH
sago.d 30| agold
[8¢] -ped paubissp-aid spasN 3o0|ped syl uo paseg  Bupuanbas nys u| ks le|n||dxgng 19DURD 15e3IQ URWNH €107 SS|
AuAsuas ybiH
[67] ndybnoiy mo7 sydiosuesn 9|buls $19919(  UONRZIPHGAY NS U| 14 Je|nj|@xgns S||92 ASUpP 184 [BUWION 8661 HS|4Ws
SUO[13SSIP JUD 219 ‘eWoUlDIed
-efpe 01 UONRUIWIERIUOD ON 1sea.q nys Ul ‘sanbeid s Jsw
57 ndybnoiyi mo wioylad o} Isiseq UO[123SSIPOIDIN V/N IEIES) -12Yz|y ‘[NJawo|b Asuply 9661 W]
FERITEYETEN uoneywi J1IsudYdRIRYD Abajens pa329319p sauan uolnjosay 9|dwes Jieap anbiuyday

sojwoyduosuel] [eneds 1oy salbojouyda) pue spoyIalA Jo suosiiedwod | ajqer



Page 5 of 21

(2023) 21:330

Du et al. Journal of Translational Medicine

sisAjeue djwoidiosuely |92

SI192 €1€ HIN 3snouw

[€8] 9dInap pazieads saunbay -9|BuIs paselqun sajgeuy Buipodieq |eneds  swoidiudsuely 21Ul wr 005 'S|192 1 €6YIH UPWNH  170T bazAx
bas-apis
§||92 9|dINuW Woly ueyl AUARISUSS JaybiH ulelq
ad! syduosuesy ainided Aepy uopnjosas ybiy  buipodieq [eneds 6vEl wr ol 9SNOW ‘SOAIQUIS SN0 1 70T ZN\bas-apIIs
SaNSss
PUE S[|92 19B3Ul Ul SYNY JO
syduosuesy  buibewi paxajdinu AybiH J9DURD 15831Q DI1PIS
[ov] 1oys bundasep Ul suwi uoisipaid Ajjeneds ybiH - bupusnbas ns uj 6€0€ 1e|N||22gns  -el9W UBWNY ‘UleIq 3SNOW 120 bagx3
SaNSSI1 JO SISA| ploAy
(e8] S|2UUBYD MO} PRI uonnjosal jeieds ybiH  Bulpodieq jeleds 696'CC wrig| SOAIQUID 3SNO\  020T bas-119a
192UPD 15BAIQ ASNoW
SINSSI 108U 'SUOND9S 9POU YdWIA|
(18l uonN|osail |eneds paywi] Ul S||92 SAI| UO PaWLIODd Buipodleq |eneds  awoidiosuely alnug IEIEs) OAI| ‘$35R|q0IqU €1 E€/HIN  020C basdiz
s+ Auisieds eieg uonnjosal ybiy Buipodieq |eneds  awoidudsuel) 21Ul wrz gng A1012e4/0 3SNON 6107 1SaH
paysinbunsip aq
01 UOI1PZI[e0] IDUNSIP YHM
aNssiuewny  swlojos! 1d1dsuel} SMO|Y
[08] o1 uonedyjdde paywr] 5|19 buiAll Ul pausiopdd  buipodieq jeneds V/N Je|nj|aagngs S|I9D LE6TYAH 610 bas-x3dv
Adonus
DIUBUAPOUISY] UO Sal|9Yy
uoleuliojul
Sjeubis asieds  [eonndo 1noyum suswidads SIES
[6/] Buisned adeds A1dwg |ed1bojoiq abewi 01 3|qy  Bupuanbas nys uj v/N e 6¥5-19'S|192 LEC-aN-YAW 6102 Adodsoniw yYNg
suoibal aNssi1 1uaed pappaguia
[8/] HBuUND3|9S Ul Selq a1eald Aey xa|d-ybiH  Buipodieq [epeds v/N wrig| -uyjeled ‘paxy-uljewlod 6107 dSd XNO9D bulisoueN
uon
-Njosal JWl|-uondeIyIp-gqnsg
22 ndybnoiyy mo Aoeindde ybiH  uonezipugAy nus Ul 00001 1e|N}|22gNS  §||9 158|g0IgY ‘Ulelq 3SNOW  610C + Hs|4bas
s Aouaidyya bulnided moT uonnjosai |ereds ybiH Buipodieq |eneds  swoidudsuell alug wrl o ureiq asno 6107 bas-api|s
seale
anssiy able| ssadoid 01 9|qy
suolbal anssi
[z€] ndybnoiyi mo S91P2UISP A|[PDIIBWOINY  UONEZIPUGAY NS U] €¢ Jejn|;P2gns uleiq asno 810t HS|HWso
Aoeindoe ybiH
Aouapuyye ybiH
9Nssi] 15ejul
ul 192 9|buls e Jo uolssaldxa X102
[e¥) 1ndybnoiyr mo ayrainseawl 01 9|qy  bupusnbas nys uj 0201 ~091 Je|nj|@xgns [ensia Aiewd asno  810¢ dewyy]s
S3DUIDYDY uoneywI] J1suddRIRYD A63jens pa12919p SvUIDH uollnjosay o|dwes Jieap anbiuydap

(panunuod) L ajqey



Page 6 of 21

(2023) 21:330

Du et al. Journal of Translational Medicine

sojwoldudsuel) [eneds uoisuedxy | §-x3
‘buidUaNbas-sJIWQ UoIIN|OSaY padueyud [eneds bas-0asa1s ‘bBuduanbas uolsuedx3 basx3 *anssi| ul Buipodieg dnsiulwiRIRg 1/gd ‘soiwoldudsuel] jeneds uouyag-ybiH 1SgH ‘buljyoid [eneds [enbiq dsq ‘uonezipugAH
NJIS U] 92Ud5310N|4 YNY d|Nd3jow-3]|6uls soloqoinQ HS/{wso ‘buiddey Inopeay uodijdwy 1dudsuel] pajosai-A|jeneds dowyy/s ‘Buidpusnbag paiabie] niis u| apodieg baspisipg ‘buiduanbag uonisod [ediydeiboan
bas-0a9 'uoydeay uleyd uolleziplgAH a|ndsjow-3|6uIS YOHWS ‘UoezIpLgAH NS U] 93UddsaI0N|4 ISNQoJ-10113 paxa|diNAl HS/HYIW ‘Aydesbowo] YNY bas-owo} ‘uoiieziplugAH NS u| 93Uadsaion|d |elyuanbag

HS/4bas ‘buiduanbas yNY NS U] Juadsaion|{ OFSS/H ‘sisAjeuy oAl u] dwoidudsuel] YA/ ‘Bupuanbag NS uj §S7 ‘UoidassIPoIdI ainde) JaseT D7 ‘UonezipigAH NHS Uj 92Uads310Nn| YNY d|nNd3jow-3|BuIS HS/{ws

S|192 3|diNW woly

JASISEIRIIIE]
UOI123139p puUe UORN[OS3I
12yb1y ana1yde 0) sdLIReW

sndwedoddy

[98] sydiosueny ainided Aepy 914j0110994|0d S95N Buipodieq |eneds  swoidudsuell a1uj wrl oz pue q|ng A1010B}|0 3SNOW 20T 15-X3
p|ay buizijensia sbie qng
ANARISUSS YybiH A101284|0 pUE UleIg ISNOW
[s8] Aduapyye bupnided panwi] uonn|osal ybiH Buipodleq |eneds  awoidiosuely aliug wn zzo 1Npe ‘sokIquia 3sNO 20T bas-o0a1215
uopewIojU|
|erreds bupnided sjiym uon
8] uonN|osai [efeds paywi] -njosal [|92-9|buls suieldy  Buipodieq |eieds  swoidudsues) iU wrl ooz sofiquua asnop  120T 2oedg-1s
uoneziuebio [ed16o|
-0151Y 2y} 9zI[eNnsiA 01 9|qy
swoduosuesy JSIVEISIIE] SUOIDS
[ov] v-Ajod Ajuo uo pasnoo4  ainided awoidudsuely ybiH Buipooieq [enneds  awoidudsuely a1u3 wn g0-50~ UOJ0D pUB Al 3SNOW | 20T 2d02s-bag
EERITEYETEN uoneywi J1Is1dYdRIRYD Abarens pa329)19p Ssauan uolnjosay 9|dwes Jieap anbiuyday

(penunuod) L ajqeL



Du et al. Journal of Translational Medicine (2023) 21:330

Page 7 of 21

Table 2 Commonly used commercialized spatial transcriptomics technologies

Platform Technique Tissue Compatibility Website

10 x Genomics Visium ST Fresh frozen, FFPE https://www.10xgenomics.com/cn/products/spatial-gene-expression

Nanostring GeoMx DSP DSP Fresh frozen, FFPE https://nanostring.com/products/geomx-digital-spatial-profiler/
geomx-dsp-overview/

Vizgen MERSCOPE MERFISH Fresh frozen, FFPE https://vizgen.com/products/

FFPE Formalin-fixed Paraffin-embedded, DSP Digital Spatial Profiling, ST Spatial Transcriptomics, MERFISH Multiplexed Error-robust Fluorescence In Situ Hybridization

to handle large tissue samples. Despite these shortcom-
ings, microdissection-based technologies can still pro-
vide robust methods for gene expression profiling.

Technologies based on in situ hybridization

In situ hybridization is a strategy that enables the visuali-
zation of RNA molecules within their original context via
probes complementary to the objective transcripts rather
than extracting them from tissue sections. An early itera-
tion of in situ hybridization technique termed single-
molecule fluorescent in situ hybridization (smFISH) [29]
is competent in detecting several RNA transcripts simul-
taneously and has been advancing in gene measuring
throughput and efficiency through multiplexed smFISH
[30, 31]. This method exhibits high sensitivity and offers a
subcellular resolution and is commonly utilized as a pow-
erful tool for biological validation, such as corroborating
the findings of bioinformatic analyses for newly identified
genes. This technology requires fluorescent labeled RNA
probes to hybridize with target molecules so the main
drawback of smFISH is the limitation on the number of
color channels due to the fluorescent overlapping of dif-
ferent channels, which means that smFISH can detect
only a small number of genes concurrently. Another
in situ hybridization technology called ouroboros
smFISH (osmFISH) [32] is a non-barcoded and unampli-
fied method based on cyclic smFISH, which can identify
weakly-expressed genes [33] due to the circumvention of
optical crowding. OsmFISH can be applied to large tissue
samples, particularly for the examination of low-expres-
sion RNA transcripts. However, low throughput remains
a technical limitation of this technique. Sequential FISH
(seqFISH) is a barcoding protocol that leverages the high
efficiency of FISH and the fact that distinguishing RNA
transcripts does not require base-pair resolution [34]. In
this approach, mRNAs are assigned temporal barcodes
through multiple rounds of hybridization. During each
round of hybridization, each transcript is targeted with
several probes labeled with one color, and subsequently
the probes are removed before the next round of hybridi-
zation where the same probes are labeled with fluoro-
phores of a different color. Thus, seqFISH can generate
a large number of transcripts while reducing spectral
overlap that occurs in smFISH. However, seqFISH can be

time-consuming and errors may accumulate over multi-
ple rounds of hybridization, potentially leading to inaccu-
rate information. Despite these limitations, seqFISH can
be used to generate transcriptomic images of complex
tissues, including brain samples [26].

To overcome the drawbacks of accumulating errors,
Chen and colleagues [35] devised multiplexed error-
robust FISH (MERFISH), a highly multiplexed smFISH
protocol incorporating combinatorial labeling, succes-
sive rounds of sequential hybridization imaging, and
error-robust encoding. MERFISH workflow is capa-
ble of measuring genes and combating accumulating
detection errors by the error-robust encoding strat-
egy designating each RNA transcript with a binary
word. A 140-gene measurement was simultaneously
performed with the encoding strategy that can detect
and correct errors, whereas a 1001-gene measurement
was performed with an alternative encoding strategy
which can detect errors, albeit with no correction [35].
Notably, efforts have been made to evolve the MER-
FISH approach, enabling the simultaneous detection
of RNA molecules to achieve up to 10,000 [36]. Moreo-
ver, MERFISH can be implemented to accomplish a
high-throughput analysis of intercellular gene expres-
sion variation and elucidate the spatial distributions of
multiple RNA transcripts concurrently. In contrast to
seqFISH, the MERFISH protocol removes fluorophores
but not the probes, making it more time-efficient than
seqFISH [37]. The MERFISH approach has been com-
mercialized as Vizgen MERSCOPE (Table 2) and can be
applied to multiple tissue samples including fresh fro-
zen and formalin-fixed paraffin-embedded (FFPE) tis-
sue sections.

Overall, in-situ-hybridization-based techniques allow
for the visualization of RNA molecules within their
original tissue context by hybridizing probes with com-
plementary targets. This enables the detection of target
genes for biological validation of bioinformatic analysis
results and the study of gene expression patterns. How-
ever, the nature of FISH methods imposes an intrinsic
limitation on throughput. Additionally, specific probes
must be synthesized before the hybridization process,
necessitating the use of ready-made kits to overcome this
challenge [33].


https://www.10xgenomics.com/cn/products/spatial-gene-expression
https://nanostring.com/products/geomx-digital-spatial-profiler/geomx-dsp-overview/
https://nanostring.com/products/geomx-digital-spatial-profiler/geomx-dsp-overview/
https://vizgen.com/products/
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Technologies based on in situ sequencing

In situ sequencing (ISS) method developed by Ke and
colleagues [38] enables targeted analysis of RNA mol-
ecules in cells within a histomorphologically-retained
context. This protocol entails single-strand DNA padlock
probes with complementary sequences that bind to the
c¢DNA generated by reverse transcription of mRNA mol-
ecules. Two targeted approaches, gap-targeted sequenc-
ing and barcode-targeted sequencing, were developed
in the ISS procedure. In gap-targeted sequencing, the
padlock probe has a gap between the probe ends which
precisely binds to the targeted base pairs in the cDNA,
and DNA polymerization and ligation subsequently fill
the gap to form a circular DNA molecule. In barcode-
targeted sequencing, the padlock probe contains a
barcode sequence and only one breakpoint, so the forma-
tion of circular DNA undergoes only the ligation of the
breakpoint. Rolling-circle amplification of the circular-
ized DNA generates a rolling-circle product which then
undergoes sequencing by ligation. The accuracy of the
ISS protocol has been validated through its implementa-
tion in human breast cancer to manifest point mutations
and decompose multiplexed gene expression profiling,
using gap-targeted sequencing and barcode-targeted
sequencing, respectively [38]. However, the ISS method
requires prior knowledge of examined tissue to design
padlock probes.

To examine transcripts without prior knowledge of tis-
sue, Lee and colleagues [39] devised fluorescent in situ
RNA sequencing (FISSEQ), a non-targeted approach
measuring 8102 RNA species unbiasedly (transcriptome-
wide). FISSEQ predominantly detects genes depict-
ing cell type and function but low sequencing depth
and incapability of ascertaining targeted RNA remain
to be the drawbacks. Based on FISSEQ, another in situ
sequencing strategy named expansion sequencing
(ExSeq) was launched, enabling highly-multiplexed RNA
visualization in cells and tissues of multiple-organ species
with high spatial precision [40]. ExSeq encompasses tar-
geted and untargeted versions, both of which can resolve
biological problems ranging from nano-scale to system-
scale. The targeted version addresses the issue of cellular
crowding by attaching RNA molecules to an expandable
hydrogel and expanding the hydrogel before ligating and
sequencing, and the untargeted version optimizes the
efficiency [41]. Untargeted ExSeq allows the detection
of RNA molecules in the whole transcriptome includ-
ing rare transcripts, whereas targeted ExSeq enables a
smaller defined gene set to be detected and can be uti-
lized to project cells onto tissue context and also visual-
ize gene regulation. Wang and colleagues [42] developed
spatially-resolved transcript amplicon readout mapping
(STARmap) incorporating hydrogel-tissue chemistry and
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in situ sequencing, which can be employed to sequence
RNA in 3D intact tissue with high efficiency and accu-
racy. Additionally notably, a modified STARmap scheme
can be adopted for 3D analysis of thick tissue blocks, and
sequencing with error-reduction by dynamic anneal-
ing ligation (SEDAL) was specifically devised for STAR-
map to eradicate misdecoding resulting from sequencing
errors.

In contrast to traditional sequencing methods that
separate cells from their spatial context, in-situ-sequenc-
ing-based methods enable spatial-level gene expres-
sion analysis and avoid the bias introduced by transcript
extraction. However, these techniques still face chal-
lenges. For example, prior knowledge of the tissue may
be required to design specific padlock probes, and read
length may be limited. Additionally, in situ sequenc-
ing may not be feasible for unconventional or rare cell
types and genes. Potential applications of these methods
include studying gene expression regulation within tis-
sues or cells and localizing gene variants.

Technologies based on spatial barcoding
Stahl and colleagues [5] proposed Spatial Transcriptom-
ics (ST), which is practicable for quantitatively visualiz-
ing and determining the transcriptome whilst retaining
spatial information. Tissue sections of adult mouse olfac-
tory bulbs are placed on the glass slides immobilized
with reverse transcription primers with poly-T to bind
to the poly-A tail of mRNA derived from the tissue sec-
tions. The primers also embody spatial barcodes and
unique molecular identifiers (UMIs) representing the
coordinates of each array. During the tissue permeabi-
lization process, mRNA molecules in tissue cells diffuse
into 100-um microwells on slides and hybridize with
primers. Reverse transcription reagents are then added
to the tissue to synthesize cDNA, using Cy3-labeled
nucleotides for visualization of the generated cDNA.
The tissue is subsequently removed by enzymes, leaving
c¢DNA hybridized with nucleotides on the glass slides
[5]. Although this technology provides spatial informa-
tion, the resolution is limited to 100 pm, containing
multiple cells. In 2019, 10 X Genomics further developed
this method and commercialized it as “10X Genomics
Visium’, upgrading the resolution to 55 pm and refin-
ing the protocol to be compatible with both fresh frozen
tissue sections and formalin-fixed paraffin-embedded
(FFPE) tissue sections. This method has been widely
used to study various tissue and disease. Maynard and
colleagues [9] initially exploited the Visium platform to
interpret gene expression information spatially in the
human DLPFC on a transcriptomic scale.

Improvement of the resolution of spatial barcod-
ing strategies has been continuously pursued. In 2019,
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Rodriques and colleagues [43] developed Slide-seq which
provided an approach for spatially analyzing gene expres-
sion information at high resolutions (10 um) analogous to
the size of a single cell using beads deposited on the slide,
with scalability to the large volume of tissue. Since these
beads are randomly placed on the slide surface, their
position information must be decoded through sequenc-
ing to match transcripts with their location, which may
limit the capture efficiency. In 2021, Stickels and col-
leagues [44] described the improved version of Slide-
seq, termed Slide-seqV2, which advanced approximately
an order of magnitude in RNA capturing efficiency and
sensitivity than the original Slide-seq. Not long after the
publication of Slide-seq, a high-resolution spatial tech-
nology named high-definition spatial transcriptomics
(HDST) utilizing barcoded bead arrays to capture RNA
molecules from tissue sections in a histological context
achieved a 2-um resolution which is much higher than
Spatial Transcriptomics [45]. It is also prominent that
Seq-Scope technology yields a submicrometer resolution
of 0.5~0.8 um [46].

Slide-seq, HDST and Seq-Scope introduced above can
provide much higher and even subcellular resolutions,
generating more refined spatial distribution information.
The approaches to improving the resolutions of Slide-seq
and HDST are similar, involving bead arrays with 10-um-
and 2-um-diameter beads, respectively [43, 45]. It should
be noticed that Slide-seq and HDST involve beads similar
to or smaller than the size of a single cell but they may
cover multiple cells so the single-cell resolution may not
be always achieved. Seq-Scope achieves subcellular reso-
lution through the dense distribution of clustered bar-
codes. To be specific, many oligonucleotides containing
high-definition map coordinate identifiers (HDMI) act
as seed molecules, and an HDMI-array is generated by
amplifying these seed molecules to form many clusters,
each of which is derived from one seed molecule. This
process can almost eliminate the areas with no detected
RNA molecules [46]. However, pursuing such high reso-
lution may introduce challenges such as data sparsity and
difficulty inferring cell borders [47]. Noise is also a chal-
lenge due to limited coverage in each sequencing unit
and the complex procedures required to maintain spatial
positions during sequencing. The higher the resolution is,
the more severe the noise is likely to be [48]. To improve
the resolution while preserving comprehensive and nec-
essary information, future breakthroughs may involve
smaller but more sensitive detection units and the inte-
gration of spatial transcriptomics with high-throughput
scRNA-seq data.

Overall, spatial-barcoding-based techniques allow
for the simultaneous acquisition of gene expression and
spatial location information. However, selecting the
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appropriate resolution requires careful consideration.
Low resolution may obscure the intrinsic tissue structure
and require further decomposition analysis to gain com-
prehensive insights, while high resolution may introduce
those aforementioned challenges. Additionally, capture
efficiency may be relatively low. Despite these limitations,
spatial-barcoding-based techniques are widely used to
study tissue architecture, tumor heterogeneity, the tumor
microenvironment, etc.

Gaining biological insights from spatial
transcriptomics

Spatial transcriptomics technologies are potent tools for
studying the intricate structure, the dynamics of tissue
and organ systems and inherent mechanisms within their
original context. These technologies can provide valuable
biological insights by revealing tissue architecture, devel-
opmental patterns and diseases, among which tumor
biology may be one of the most extensive applications of
spatial transcriptomics. Primary application scenarios of
implementing spatial transcriptomics techniques are pre-
sented (Fig. 2) and several representative studies utilizing
spatial transcriptomics are enumerated (Table 3).

lllustrating tissue architecture and developmental atlas

Decoding intercellular interaction and identifying cell
subpopulations are of fundamental significance in delin-
eating tissue architecture and defining structural compo-
nents through the establishment of a transcriptome atlas
of a specific tissue or organ, thus facilitating the percep-
tion of tissue dynamics. Hildebrandt and colleagues [7]
managed to delineate the transcriptional landscape of
sectioned mouse liver by employing spatial transcriptom-
ics, corroborating the concept that liver lobular zona-
tion characterized tissue heterogeneity by profiling of
pericentral and periportal expression of representative
marker genes. Ortiz and colleagues [6] accomplished a
molecular atlas by applying spatial transcriptomics to a
whole mouse brain to spatially manifest the brain tissue
organization and composition. They also used a scRNA-
seq dataset containing both neuronal and nonneuronal
cells to map their spatial positions using a trained neural
network model. This study demonstrates the potential of
spatial transcriptomics to analyze complex samples such
as brains, in addition to other tissues or organs. In addi-
tion, a study on the human dorsolateral prefrontal cortex
(DLPEC) also resorts to spatial transcriptomics, which
is notably the first research adopting the 10X Genom-
ics Visium platform, the commercialized version of
spatial transcriptomics [9]. This study demonstrates
the transcriptome-wide gene expression topography
of human DLPFC across cortical laminae and subse-
quently a series of bioinformatics analyses are conducted
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Table 3 Representative applications utilizing spatial transcriptomics
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Application Tissue sample Sequencing Sample number Journal Author Year References
platform
Tissue Architecture  Adult mouse brain lllumina NextSeq 1 Sci Adv Ortiz, C. et al. 2020 [6]
Human postmortem 10X Genomics 3 Nat Neurosci Maynard, KR.etal. 2021 [9]
DLPFC Visium
Wild type adult, lllumina NextSeq500 8 Nat Commun Hildebrandt, F.etal. 2021 [7]
female mouse livers
Human postmortem 10X Genomics 8 Sci Transl Med Tavares-Ferreira, D. 2022 [8]
DRG Visium etal.
Tissue Development Human embryonic  Illumina NextSeq 3 Cell Asp, M. et al. 2019 [10]
heart
Adult mouse and lllumina NovaSeq S2  Mouse: N/A Cell Rep Chen, H.etal. 2021 [13]
adult human testis Human: 2
Human embryonic  Illumina NextSeq 5 Cell Fawkner-Corbett, 2021 [12]
intestine D.etal
Human develop- lllumina Hiseq3000 2 Front Cell Dev Biol Hou, X. et al. 2021 [11]
mental liver
Disease Research Mouse spinal cord N/A Mouse: 67 Science Maniatis, S. et al. 2019 [15]
and postmortem Human: 7
spinal cord from ALS
patient
Mouse CD45~ lung  lllumina NextSeq Mouse: 4 Nature Boyd, DF. etal. 2020 [16]
cells after IAV infec- Human: 3
tion and human
lungs
Human BPH speci- 10X Genomics N/A J Pathol Joseph, DB. et al. 2022 [14]
men Visium & Nanostring
GeoMx DSP
Human heart 10x Genomics 31 Nature Kuppe, C. et al. 2022 [17]
Visium
Human lymph node  Illumina NextSeq 4 Cancer Res Thrane, K. et al. 2018 [21]
metastases of stage
Il cutaneous malig-
nant melanoma
Primary PDAC tumor  Illumina NextSeq 2 Nat Biotechnol Moncada, R. et al. 2020 [18]
Human ¢SCC lllumina NextSeq 6 Cell Ji, Al etal. 2020 [19]
HER2-positive breast  lllumina NextSeq500 8 Nat Commun Andersson, A.etal. 2021 [20]
tumor
Fresh hepatocellular 10 x Genomics 8 J Hepatol Liu, Y. et al 2023 [49]
carcinomas Visium
OSCC and CRC 10 x Genomics OSCC: 1 Nature Galeano Nifo, J.L. 2022 [50]
Visium & Nanostring  CRC: 1 etal.
GeoMx DSP
Early-stage lung Nanostring GeoMx 12 J Immunother Wong-Rolle, A.etal. 2022 [51]

cancer

DsP

Cancer

ST Spatial Transcriptomics, DRG Dorsal Root Ganglia, DLPFC Dorsolateral Prefrontal Cortex, ALS Amyotrophic Lateral Sclerosis, IAV Influenza A Virus, BPH Benign
Prostatic Hyperplasia, DSP Digital Spatial Profiling, PDAC Pancreatic Ductal Adenocarcinoma, cSCC Cutaneous Squamous Cell Carcinoma, OSCC Oral Squamous

Cell Carcinoma, CRC Colorectal Cancer, Sci Adv Science Advances, Nat Neurosci Nature Neuroscience, Nat Commun Nature Communications, Sci Transl Med Science
Translational Medicine, Cell Rep Cell Reports, Front Cell Dev Biol Frontiers in Cell and Developmental Biology, J Pathol Journal of Pathology, Cancer Res Cancer Research,
Nat Biotechnol Nature Biotechnology, J Hepatol Journal of Hepatology, J Immunother Cancer Journal for Inmunotherapy of Cancer

to refine previous lamina-enriched genes and identify
novel lamina-enriched genes. Moreover, the study delves
into schizophrenia and autism spectrum disorder by
incorporating previously-procured publicly-available
neuropsychiatric disorder gene datasets to distinguish
the particular lamina where genes associated with the

diseases enrich, underlining the clinical significance of
the study. Another study utilizing 10 X Genomics Visium
probes into human nociceptors to present molecular fea-
tures by applying the technology to human dorsal root
ganglia [8]. Given that nociceptors are principal targets
for acute and chronic pain treatment, the study might
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also provide insights into advancing medical treatment
protocols and identifying novel drug targets.

Furthermore, spatial transcriptomics technologies are
generally utilized in developmental biology to reveal spa-
tiotemporal gene expression patterns and uncover tis-
sue morphogenesis throughout the entire development
course or multiple pivotal stages. Asp and colleagues
[10] profiled a cell atlas of human cardiogenesis course
where three developmental stages of the human embry-
onic heart were comprehensively delineated. They com-
bined spatial transcriptomics with scRNA-seq to perform
single-cell analysis and identify multiple cell types, and
exploited in situ sequencing to position cells within their
original clusters. The integration of spatial transcriptom-
ics, scRNA-seq and in situ sequencing provides compre-
hensive insights into spatiotemporal patterns, marker
genes, cellular interaction networks and developmental
trajectories. Chen and colleagues [13] generated a spatial
atlas for the transcriptome of mammalian spermatogen-
esis by adopting Slide-seq to mouse and human testis
specimens and further characterized the microenviron-
ment surrounding and mediating spermatogonial course
by combining in situ sequencing.

Disease research
Beyond the above insights about tissue architecture and
development, spatial transcriptomics techniques have a
robust capacity for clarifying disease microenvironments
and pathogenesis. Boyd and colleagues [16] combined
scRNA-seq with spatial transcriptomics to interrogate
tissue inflammatory impairment in acute respiratory dis-
tress syndrome induced by severe respiratory influenza
A virus infections. Their findings provided compelling
evidence of the essential role played by lung fibroblasts
in regulating immune reactions at the site of infec-
tions. This study demonstrates the utility of spatial tran-
scriptomics in studying inflammatory diseases and the
immune microenvironment and has stimulated research
into immunopathy of other infectious diseases, includ-
ing COVID-19, which continues to be a global health
concern. Maniatis and colleagues [15] employed spatial
transcriptomics on spinal cords from mice and amyo-
trophic lateral sclerosis patients to gain gene expression
information to elucidate spatiotemporal dynamics medi-
ating the degeneration of motor neurons. This research
identifies the locations and distributions of specific genes
associated with the disease and elucidates the underlying
mechanisms regulating this neurodegenerative disorder.
A substantial part of disease research is the study of
tumor biology which could be the most extensive appli-
cation of spatial transcriptomics. Significant challenges
in devising tumor treatment procedures are induced
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by tumor heterogeneity. Moncada and colleagues [18]
utilized both scRNA-seq and spatial transcriptomics
to investigate pancreatic ductal adenocarcinomas and
distinguished cell populations and subsequently gen-
erated an unbiased map of the transcriptomes across
the tumor, revealing its intrinsic architecture and het-
erogeneity. Another study that combined scRNA-seq
and spatial transcriptomics to delineate the constitu-
tion and spatial architecture of cells within cutaneous
squamous cell carcinoma revealed the cancer cell sub-
populations and their communication [19]. The tumor
microenvironment has become another hotspot of
tumor-related research due to its complexity and diver-
sity. Deciphering the tumor microenvironment is cru-
cial for perceiving the intricate interactions between
the tumor and microenvironment and may also aid in
tumor immunotherapy. One study integrating spatial
transcriptomics and scRNA-seq revealed the tumor
microenvironment related to the immunotherapeutic
efficacy of hepatocellular carcinoma, demonstrating
a potential treatment target [49]. Another study ana-
lyzed the interactive relationship between the host and
the microbiota in oral squamous cell carcinoma and
colorectal cancer at a spatial level utilizing spatial tran-
scriptomics and GeoMx digital spatial profiling [50]. It
indicated that the tumor-associated microbiota, as an
essential part of the tumor microenvironment, could
impact tumor heterogeneity and induce the migration
of cancer cells. Wong-Rolle and colleagues [51] con-
ducted research related to intratumoral bacteria, where
they discovered the enrichment of intratumoral bac-
teria in lung cancer and their association with several
oncogenic pathways. The employment of spatial tran-
scriptomics in tumor biology can reveal tumor hetero-
geneity and microenvironment to a large extent, thus
providing ample instructions on addressing current
obstructions confronting the treatment protocols.

Data analysis of spatial transcriptomics

To comprehensively interrogate the tissue sections, bio-
informatic analyses have to be performed to unravel
the intertwined and multiplexed bioinformation and
minimize the impact of current technological limita-
tions and subsequently derive biological significance
more accurately from raw spatial transcriptomics data.
These bioinformatics analyses range from spatially-
variable genes identification and clustering analysis to
gene imputation, etc., which can be handily effectuated
through a substantial number of computational strat-
egies devised in recent years. Herein, circumstantial
comparisons of algorithms and usages among the exist-
ing R or Python packages are presented (Table 4).
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Clusters identification

Distinguishing cell types and subpopulations is a fun-
damental task in the bioinformatic analysis of spatial
transcriptomics data. This can be resolved with the help
of clustering analysis where spatially-variable genes
can be discovered and data dimensions can be reduced
through approaches such as principal component analy-
sis (PCA), t-distributed stochastic neighbour embed-
ding (t-SNE) and uniform manifold approximation and
projection (UMAP). These methods calculate similarity
among barcode spots and define clusters within a tissue.
A robust clustering procedure is provided by a widely-
distributed R package Seurat [22], on which another R
package capable of clustering analysis STUtility builds
its framework [52]. Seurat is prevalent in scRNA-seq and
spatial transcriptomics data analysis and is also compe-
tent in other bioinformatics analyses such as gene impu-
tation. Zhao and colleagues [53] proposed BayesSpace
based on a Bayesian model with a Markov random field,
which outperformed previous clustering algorithms and
improved spatial transcriptomics resolution to subspot
levels. BayesSpace was validated by analyzing tissue sam-
ples, including brain and melanoma, overcoming chal-
lenges of low resolution and technical noise. SpaGCN is
a python package based on a graph convolutional net-
work that incorporates gene expression, spatial coordi-
nates, and tissue histology visualization [54]. Clustering
analysis is accomplished by aggregating gene expression
from neighboring spots using a graph convolutional layer.
SpaGCN has been tested on various species and utilized
to analyze data generated from Spatial Transcriptomics
and MERFISH. However, this strategy has the limitation
of potential disagreement between actual tissue struc-
ture and detected spatial regions because the detection
of spatial regions is primarily driven by gene expression
information.

Spatially-variable genes identification

Within a certain tissue, some genes exhibit conspicuous
spatially-variable expression whereas some other genes
such as housekeeping genes are expressed equally among
the cells. The specific pattern in which the expressions
of genes spatially vary can convey indispensable bio-
informatic insights into identifying cell types and sub-
populations and corresponding spatial information and
underlying spatial functions. Some program packages
perform outstandingly in identifying spatially-variable
genes. Svensson and colleagues [55] described a strategy
named SpatialDE, based on Gaussian process regres-
sion, which utilized two random effect models including
a spatial variance model and a noise model to decom-
pose variable expression of each gene into spatial and
non-spatial components, respectively. Another package
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that identifies genes with statistical significance in spa-
tial expression is termed trendsceek, building on marked
point processes [56]. The trendsceek strategy can be per-
formed on spatially resolved transcriptomics data sets
and also scRNA-seq data projected onto a low dimen-
sion. Spatial pattern recognition via kernels (SPARK)
technology, based on a generalized linear spatial model
with a penalized quasi-likelihood algorithm, can over-
come the high type I errors and low statistical power of
previous strategies such as SpatialDE and trendsceek and
is furthermore capable of analyzing large-scale spatial
transcriptomics datasets [57]. However, SPARK may per-
form better for certain datasets and genes, causing intrin-
sic bias.

Spatial decomposition and gene imputation

A common issue in spatial transcriptomics technology is
that a single barcode-capturing spot may be overlaid by
multiple cells. Thus, the detected expression is an aggre-
gation of a heterogeneous set of cells within the spot,
which may impact the efficiency and accuracy of iden-
tifying cell subpopulations and delineating tissue atlas.
For example, 10X Genomics Visium offers a resolution
of 55 pm meaning the diameter of each capturing spot
is 55 um which is several-fold larger than a typical tissue
cell. The spatial decomposition process through various
deconvolution algorithms can address this discrepancy,
which is to disentangle the mixture of mRNAs and sub-
sequently predict the proportions of each cell type in one
capturing spot. A spatial decomposition method devised
by Ma and colleagues [58] is termed conditional autore-
gressive-based deconvolution (CARD) building on a non-
negative matrix factorization model, which outperforms
SPOTlight [59], RCTD [60], SpatiaDWLS [61], etc. in
deconvolution accuracy, corroborated by correlation
analysis with scRNA-seq data. One potential improve-
ment to this strategy is to incorporate tissue images,
allowing for easier comparison between histological fea-
tures and analysis results.

Gene imputation refers to the task of inferring lost gene
expression information or “dropouts” caused by factors
such as low protocol sensitivity, mitigating errors during
gene measurement and facilitating deconvolution. Bian-
calani and colleagues [23] introduced a deep learning
framework Tangram performing gene imputation. Gene
imputation generated by Tangram yields an estimation of
“dropouts” and prediction of spatial expression patterns
more accurately conforming to MERFISH technology
which is also competent in combating detection errors
[35], thus promoting deconvolution of cells hampered
by “dropouts” The integrative and widespread R pack-
age Seurat can also impute gene expression utilizing co-
expression patterns [22]. Abdelaal and colleagues [62]
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proposed Spatial Gene Enhancement (SpaGE) incorpo-
rating scRNA-seq and spatial data to predict gene expres-
sion which spatial transcriptomics techniques fail to
detect, depending on a domain adaptation model. SpaGE
is flexible and scalable when applied to large datasets and
outperforms previous tools.

The aforementioned strategies, including spatial
decomposition and gene imputation, have demonstrated
considerable efficacy in enhancing the resolution of spa-
tial transcriptomics data and compensating for lost gene
expression information. Nevertheless, certain limitations
persist. These approaches are based on computational
models for predicting cell locations and gene information
and therefore, their predictions may be subject to error,
potentially resulting in imprecise and spurious results.
Further investigation and refinement are necessary to
more effectively leverage these technologies and derive
more reliable biological insights.

Cellular interaction

Cellular interaction operated within the microenviron-
ment where cells are adjacent to each other can convey
significant perceptions into tissue dynamics and the way
the communication networks change when experiencing
conditions such as disease. A Graph Convolutional Neu-
ral networks for Genes (GCNG) method was introduced
to infer extracellular interactions from gene expression by
depicting a cellular relationship graph transformed from
spatial transcriptomics data and subsequently encod-
ing gene expressions, and the graph is then convolved
with expression information [63]. Cang and colleagues
[64] launched spatially optimal transporting the single
cells (SpaOTsc) to obtain intercellular communication,
based on a structured optimal transport model. How-
ever, SpaOTsc does not account for time delays during
intercellular communication. Owing to the three-dimen-
sionality of tissue blocks, utilizing exclusively either
scRNA-seq or spatial transcriptomics cannot output
sufficient information to decipher cellular communica-
tion networks, therefore the integration of both datasets
becomes a fundamental consideration when conducting
bioinformatic analysis.

Spatial copy number variations identification

Copy number variation (CNV) refers to the increase or
decrease in the copy number due to gene segment rear-
rangements. Typically, CNVs involve segments longer
than 1000 base pairs and are mainly manifested as submi-
croscopic deletions or duplications. CNVs are a common
form of genetic variation in the human genome, with
5% ~ 10% of the genome affected by CN'Vs, which is much
higher than other forms of genetic variation. Ascertain-
ing the transition from benign to malignant tissue forms
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the foundation for improving early cancer diagnosis, as
genomic instability in histologically benign tissue can sig-
nal an early event in cancer evolution. Furthermore, the
spatial distribution and activity of CNVs can impact phe-
notype, making mapping their spatial distribution valua-
ble for comprehending, diagnosing, and treating diseases.
Previously, gene expression was utilized to infer CNVs in
individual cells, successfully identifying regions of chro-
mosomal gain and loss [65]. Erickson and colleagues
[66] expanded this approach to a spatial modality with
the development of SpatiallnferCNV, an R package that
identifies CNVs in each spatially barcoded region. Addi-
tionally, another package named SPATA also integrated a
module for CNV detection [67].

Region annotation and spatial trajectories

Gene expression within a tissue is influenced by the
spatial position of cells in the tissue microenvironment.
Spatial transcriptomic data can provide valuable insights
into tissue regions, as they contain information on spa-
tial position matrices, HE region staining of sections,
and relative distances between individual cells, which
can be used to delineate spatial regions. MULTILAYER
is an algorithm that utilizes agglomerative clustering and
community detection methods for graphical partitioning,
enabling digital imaging of spatial transcriptomic analysis
[68]. This allows for contextual gexel (namely, the locally
defined transcriptomes) classification strategies, which
can be used to develop self-supervised molecular diagno-
sis solutions.

Spatial trajectory analysis is an analytical method fre-
quently employed in spatial transcriptomics to uncover
dynamic cellular evolution and differentiation processes.
This approach infers evolutionary trajectories and differ-
entiation relationships between cells by analyzing their
spatial positions and gene expression levels within tis-
sue sections. The stLearn package can visualize spatial
trajectories in tissue slices and infer biological processes
from transcriptional state gradients across tissues [69].
Similarly, SPATA concentrates on temporal alterations
in gene expression to deduce transcriptional patterns
dynamically governed by the spatial organization [67].

Data integration

Both spatial transcriptomics and scRNA-seq are effec-
tive methods for obtaining biological insights into tissues
and diseases. However, each method has its limitations.
By integrating spatial transcriptomics and scRNA-seq
data, these methods can complement each other to pro-
vide comprehensive biological information. For instance,
RCTD generates spatial decomposition by assigning cell
types to spatial transcriptomics spots [60], whereas Tan-
gram performs gene imputation by aligning scRNA-seq
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data with spatial transcriptomics data to learn spatial
transcriptome-scale paradigm [23]. Additionally, Cell-
Trek is a computational strategy that integrates scRNA-
seq and spatial transcriptomics data sets to perform
spatial decomposition by reconstructing a cellular map
on tissue sections [70]. This strategy is distinct from
other spatial decomposition methods in that CellTrek
directly maps single cells to corresponding spatial posi-
tions in the spatial context. Other than these R or Python
packages, many studies have incorporated spatial tran-
scriptomics and scRNA-seq. Liu and colleagues [49] dis-
covered a tumor immune barrier structure and a series
of cancer-associated fibroblasts related to the efficacy
of immune treatments through an integrative analysis
of spatial transcriptomics and scRNA-seq. The scope of
‘data integration’ encompasses not only the alignment
of these two methods but also the incorporation of spa-
tial transcriptomics with other omics data. However,
few individual computational tools are designed spe-
cifically for combining spatial transcriptomics and other
omics. Therefore, linking multiple packages for analysis
is necessary. For instance, a remarkable study integrated
spatial transcriptomics, scRNA-seq, proteomics and
whole-exome sequencing to resolve pancreatic cancer
microenvironment, utilizing various packages including
Seurat, RCTD, CellPhoneDB (for detecting ligand-recep-
tor interactions), Monocle3 (for inferring cell transitions),
inferCNV (for detecting CNVs in scRNA-seq data), ger-
mlinewrapper and somaticwrapper (for calling germline
variants and somatic variants, respectively), among oth-
ers [71]. Thus, we can see the significant potential in the
integrative analysis of spatial transcriptomics, scRNA-
seq and other omics.

A brief pipeline of spatial transcriptomics data analysis
Methods for analyzing spatial transcriptomics data are
generally similar and can be divided into data preproc-
essing and downstream analysis. Data preprocessing
typically involves quality control and normalization to
improve data quality for downstream analysis and obtain
more reliable biological information. For spatial-bar-
coding-based methods, quality control aims to remove
low-quality spots and genes from spatial transcriptomics
data. Quality control parameters can be adjusted based
on tissue type, research requirements, and other factors.
These parameters may include removing spots with fewer
than a certain number of transcripts, removing genes
expressed in fewer than a certain number of spots, and
removing spots with a high proportion of mitochon-
drial genes. Normalization accounts for the difference
in sequencing depth among different spots. Since differ-
ences among spots in spatial transcriptomics data can be
relatively large, effective normalization is essential.
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After preprocessing, downstream analysis can be per-
formed. The data should first undergo dimensionality
reduction and clustering analysis to distinguish spots
with different features. Biological information can then
be interpreted through these clusters in subsequent
analysis. Algorithms such as PCA, t-SNE, and UMAP
can be used for this purpose and are available in many
data analysis packages. Next, gene expression patterns in
the data can be analyzed, including differential expres-
sion analysis and spatially variable gene analysis, which
can be performed using packages such as Seurat and
SpatialDE, respectively. Additionally, cell information
from tissue slices can be annotated onto spatial tran-
scriptomics data. Since the sequencing unit (e.g., spots
in 10X Genomics Visium and beads in Slide-seq) of some
spatial transcriptomics technologies may contain more
than one cell, spatial decomposition can infer the propor-
tion of various cells in each sequencing unit based on the
data to obtain cell locations in the spatial context. This
step can be achieved using packages with deconvolution
algorithms such as RCTD and cell2location. Gene impu-
tation can also predict the positions of low-expressed
or missing genes in space due to possible dropout using
packages like Tangram. Furthermore, personalized anal-
ysis can be conducted based on research objectives. For
instance, packages such as Giotto can be used to ana-
lyze the communication between cells or spatial regions,
including receptor-ligand interactions. SpatiallnferCNV
can perform copy number variation analysis at the spatial
level, while stLearn and SPATA can be used for spatial
trajectory analysis and MULTILAYER for spatial region
identification. These analytical methods and packages
provide excellent visualization during data analysis, facil-
itating step-by-step comprehension of current analyti-
cal outcomes to guide subsequent analysis. Moreover, it
is essential to integrate spatial transcriptomics data with
scRNA-seq data and other omics data to obtain a more
comprehensive understanding of biological information.

Conclusion and future perspectives

Explosive advances in spatial transcriptomics tech-
nologies have been made in recent years to expand our
understanding of miscellaneous tissues and organs.
However, current spatial transcriptomics methods are
confronted with some challenges of low resolution, sensi-
tivity, throughput, etc., hindering our precise perception
of normal and abnormal tissues, which calls for further
innovations in technologies to overcome these deficien-
cies. Given that each technology bears its biological
strengths, we envision the integration across these tech-
nologies which complement each other in the drawbacks
before a novel and robust technology is launched. With
future technology revolutions, intercellular signaling
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could be resolved at higher and even single-cell reso-
lution. In addition, larger-scale tissue specimens may
be investigated to allow for depicting organ-level tis-
sue topography, enabling a more holistic and consecu-
tive interpretation of tissue structures, which latently
poses challenges for accelerating bioinformatic analysis
with higher efficiency and accuracy and more powerful
information processing capacity. Beyond the prospec-
tive advancement in refining and optimizing current
protocols of spatial transcriptomics, we also envisage the
integration with multi-omics including epigenomics, pro-
teomics, and metabolomics to shed light on the intrinsic
convoluted mechanisms of cellular interactions and dis-
ease and better probe into tumor progression and growth
course. In addition to advances in spatial transcriptomics
technologies, innovations in data analysis strategies are
also anticipated. As deep learning technology continues
to progress, its application in spatial transcriptomics data
analysis is expected to become more widespread. In the
future, more deep-learning-based methods may be devel-
oped to process and analyze spatial transcriptomics data
to improve data resolution and interpretation reliability.
Furthermore, as data scale and complexity increase, visu-
alization and interactive analysis will become important
tools for spatial transcriptomics data analysis. Future spa-
tial transcriptomics data analysis methods will need to
integrate visualization and interactive analysis technolo-
gies to better understand and interpret data.

Since some spatial transcriptomics techniques, espe-
cially some widespread spatial-barcoding-based tech-
niques, are not capable of offering single-cell resolution
at the spatial level and scRNA-seq cannot reflect the spa-
tial distribution of each cell, we envision a more organic
and efficient alignment of single-cell datasets and cor-
responding spatial information. The alignment can be
achieved by mapping single cells to spatial data, where
each cell is matched with a spatial location in an ideal
condition. Nevertheless, current methods for integra-
tion cannot generate precise matching due to techno-
logical limitations, which calls for further breakthroughs
in the effectiveness and efficiency of data integration
algorithms. By integrating both datasets, we can deci-
pher potential intercellular communication pathways,
including ligand-receptor interactions and juxtacrine and
paracrine signaling. This may provide insights into pre-
viously unclear physiological and disease mechanisms
and help discern more refined classifications of certain
diseases, facilitating precise and individualized medi-
cal treatment. Additionally, publicly-available datasets
can be interrogated retrospectively with the integration
of spatial transcriptomics and scRNA-seq data to obtain
novel biological cues which may be concealed in the raw
data before.
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Moreover, we anticipate the translational medicine
research into the clinical significance of spatial tran-
scriptomics, particularly with the compatibility of the
10X Genomics Visium platform with FFPE tissue blocks
allowing retrospective analysis into previously opaque
tissue specimens to glean more sufficient information on
clinical diagnostics and prognostics as well as therapeutic
methods and targets. For example, research into human
DLPEC distinguished the layer-enriched genes that may
be associated with schizophrenia and autism spectrum
disorder, implicating the potential of neuropsychiat-
ric disorders progression in those bearing the risk gene
expression [9]. In tumor biology, spatial transcriptom-
ics incorporated with other omics can identify cancer
gene signatures and subsequently reveal novel targets for
cancer treatment and assist us to abate or suppress the
degree of tumor cell proliferation, infiltration, and inva-
sion. Nevertheless, it is noteworthy that before translat-
ing omics data into clinical relevance, the robustness of
the technologies and the quality of specimens and speci-
mens processing must be considered.

Abbreviations

smFISH Single-molecule RNA fluorescence in situ hybridization
LCM Laser capture microdissection

scRNA-seq Single-cell RNA sequencing

ISS In situ sequencing

TIVA Transcriptome in vivo analysis

FISSEQ Fluorescent in situ RNA sequencing

seqFISH  Sequential fluorescence in situ hybridization

tomo-seq RNA tomography

MERFISH  Multiplexed error-robust fluorescence in situ hybridization
smHCR Single-molecule hybridization chain reaction

Geo-seq  Geographical position sequencing

BaristaSeq Barcode in situ targeted sequencing

STARmap  Spatially-resolved transcript amplicon readout mapping

osmFISH  Ouroboros single-molecule RNA fluorescence in situ hybridization
DSP Digital spatial profiling

HDST High-definition spatial transcriptomics

DBIT Deterministic barcoding in tissue

ExSeq Expansion sequencing

Stereo-seq Spatial enhanced resolution omics-sequencing

Ex-ST Expansion spatial transcriptomics

UMI Unique molecular identifiers

FFPE Formalin-fixed paraffin-embedded

DLPFC Dorsolateral prefrontal cortex

CovID Corona virus disease

ST Spatial transcriptomics

DRG Dorsal root ganglia

ALS Amyotrophic lateral sclerosis

IAV Influenza A virus

BPH Benign prostatic hyperplasia

PDAC Pancreatic ductal adenocarcinoma

cSCC Cutaneous squamous cell carcinoma

CARD Conditional autoregressive-based deconvolution

DSTG Deconvoluting spatial transcriptomics data through graph-based
convolutional networks

GCNG Graph convolutional neural networks for genes

RCTD Robust cell type decomposition

SOM Self-organizing map

DE Differential expression

SPATA Spatial transcriptomic analysis
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SpaGCN  Spatial graph convolutional network

SpaGE Spatial gene enhancement

SpaOTsc  Spatially optimal transporting the single cells

SPARK Spatial pattern recognition via kernels

DWLS Dampened weighted least squares

STAGATE  Spatially resolved transcriptomics with an adaptive graph atten-
tion auto-encoder

CNV Copy number variation

HMRF Hidden markov random field

PCA Principal component analysis

t-SNE T-distributed stochastic neighbour embedding

UMAP Uniform manifold approximation and projection
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