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Abstract 

Background  Gastric cancer (GC) is a major cancer burden throughout the world with a high mortality rate. The per-
formance of current predictive and prognostic factors is still limited. Integrated analysis is required for accurate cancer 
progression predictive biomarker and prognostic biomarkers that help to guide therapy.

Methods  An AI-assisted bioinformatics method that combines transcriptomic data and microRNA regulations were 
used to identify a key miRNA-mediated network module in GC progression. To reveal the module’s function, we 
performed the gene expression analysis in 20 clinical samples by qRT-PCR, prognosis analysis by multi-variable Cox 
regression model, progression prediction by support vector machine, and in vitro studies to elaborate the roles in GC 
cells migration and invasion.

Results  A robust microRNA regulated network module was identified to characterize GC progression, which con-
sisted of seven miR-200/183 family members, five mRNAs and two long non-coding RNAs H19 and CLLU1. Their 
expression patterns and expression correlation patterns were consistent in public dataset and our cohort. Our find-
ings suggest a two-fold biological potential of the module: GC patients with high-risk score exhibited a poor prog-
nosis (p-value < 0.05) and the model achieved AUCs of 0.90 to predict GC progression in our cohort. In vitro cellular 
analyses shown that the module could influence the invasion and migration of GC cells.

Conclusions  Our strategy which combines AI-assisted bioinformatics method with experimental and clinical valida-
tion suggested that the miR-200/183 family-mediated network module as a “pluripotent module”, which could be 
potential marker for GC progression.
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Background
Gastric cancer (GC) remains a major global health prob-
lem and is the third leading cause of cancer-associated 
death worldwide [1]. Although recent advances in tech-
niques have improved the prognosis of patients with GC, 
many patients are still diagnosed in advanced stages [2], 
and the mortality rate remains high because of the het-
erogeneity and complicated regulatory relations at the 
molecular level [3–6]. Thus, novel insights into the mech-
anisms underlying GC progression will be crucial.

Studies are increasingly characterizing the regulatory 
effects of non-coding RNAs in the initiation and devel-
opment of GC, as well as drug resistance [7–12]. Micro-
RNAs (miRNAs) and long non-coding RNAs (lncRNAs) 
have received substantial attention. However, RNA mole-
cules do not function in isolation and can be grouped into 
“competitive endogenous RNA networks” on the basis 
of the crosstalk between lncRNAs and mRNAs com-
peting for shared miRNA response elements [13]. This 
lncRNA-miRNA-mRNA crosstalk, which is involved in 
various human cancers, may enable effective approaches 
to studying cancer pathogenesis and progression [14]. 
In GC, several of these regulatory axes have been deter-
mined to play roles in tumorigenesis and cancer pro-
gression; examples include LINC01234/miR-204-5p/
CBFB [15], HOTAIR/miR-331-3p/HER2 [16], BC032469/
miR-1207-5p/hTERT [17], and DLX6-AS1/miR-204-5p/
OCT1 axis [18]. However, how lncRNA-miRNA-mRNA 
interactions control the regulatory mechanism of GC 
progression and the roles of these interactions have not 
been fully elucidated.

The bioinformatics methods that are with the help of 
miRNA-mediated regulated network (miRNet) enable 
study of the effects of RNA interactions in cancer at 
system level and global view, and may acid in the devel-
opment of new therapeutic strategies and discovery of 
biomarkers. In past decades, several bioinformatics strat-
egies have been proposed to identify module biomarkers 
or key modules for tumorigenesis and development, on 
the basis of miRNet. Cui et al. have integrated topologi-
cal analysis and a random walk with restart algorithm to 
identify a prognostic signature for GC [19]. He et al. have 
identified a module using a clique-percolation method 
with CFinder software, to divide patients into groups 
according to survival outcomes [20]. Recently, Wang et al. 
have proposed the network-based matrix factorization 
framework NSOJNMF for miRNA-mediated regulated 
co-modules associated with the occurrence and develop-
ment of cancer [21]. Most of the above methods take full 
advantage of network structures. Together with advances 
in “-omics” data, machine learning and AI techniques are 
powerful tools that can assess module biomarker discov-
ery by integrating multimodal data.

In this study, we identified a miRNet module to char-
acterize GC progression by an AI-assisted bioinformatics 
method (Fig. 1) based on our previous designed scoring 
systems (RNs), which integrates various types of high-
throughput data including transcriptomic, interactomic 
and network topological feature data [22]. Subsequently, 
we explored the prognostic and predictive roles of the 
module and validated the module in clinical samples 
and cell lines. Our findings suggested that miR-200/183 

Fig. 1  Overview of our method for identification of the key miRNA-mediated network module in GC progression
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family-mediated network modules may have potential as 
biomarker for GC progression.

Methods
Derivation of the GC dataset
A data set containing the miRNA, mRNA and lncRNA 
expression profiles of 257 patients with TNM stage infor-
mation from The Cancer Genome Atlas (TCGA) was 
used for identification of the miRNA-mediated network 
module [23]. The RNA counts were used for further anal-
ysis. The differentially expressed genes (DEGs) between 
early stage (stage I or II, 129 samples) GC groups (ESGC) 
and late stage (stage III or IV,128 samples) GC groups 
(LSGC) were identified with the R package DESeq2 [24], 
with the filter adjusted p-value < 0.05. The detail clinical 
information of the patients was listed in Additional file 1: 
Table  S1. The association between gene expression and 
the clinicopathological features of GC patients was evalu-
ated using the chi-square test.

Construction and analysis of a GC progression‑specific 
miRNA mediated (GCP‑miR) network
A GCP-miR network was constructed in four steps: 
(1) the correlation between miRNAs and lncRNAs or 
mRNAs was determined with Spearman correlation 
tests, and pairs with p-value < 0.05 were retained and 
subjected to further steps. (2) The miRNA-mRNA inter-
actions were selected by integrating the miRNA-mRNA 
pairs (Spearman’s correlation coefficient (SCC) < −  0.3) 
and the miRNA regulations predicted by miRDB 
(score > 50) [25, 26]. (3) To obtain more miRNA-lncRNA 
links, we retained the links meeting one of the following 
two criteria: (a) miRNA-lncRNA pairs with SCC less than 
− 0.3; and (b) miRNA-lncRNA pairs with SCC less than 
zero and were also predicted by starBase [27] or DIANA-
LncBase [28]. (4) LncRNA-miRNA and mRNA-miRNA 
interactions that shared the same miRNAs were regarded 
as links in the GCP-miR network.

The R package igraph was used to calculate the topo-
logical parameter degree (D), betweenness (B) and close-
ness (C) for each node.

Gene prioritization based on RNs score
The topological features from molecular networks alone 
are not sufficient to identify disease-associated genes 
without biological information. To overcome this limita-
tion, we used RNs score (Eq.  (1)) which integrated gene 
expression data via the SVM-RFE algorithm and topolog-
ical characteristics of network nodes [22]. In our previous 
work, the RNs score was designed for protein–protein 
interaction networks. To further validate and extend the 
application of it, we applied the score to prioritize both 

coding and non-coding genes in the miRNA-mediated 
network.

where K is the degree of a node in the network, L is the 
shortest path length of the node with the remaining 
nodes in the network, and Rs is the SVM-RFE score rank-
ing the genes by expression level.

Survival model construction
Using the selected genes fitted in a multivariable Cox 
regression model, we determined a risk score formula 
based on gene expression. Subsequently, each patient 
had a risk score, and the patients were divided into low-
risk and high-risk groups according to a cutoff mean risk 
score. The Kaplan–Meier method was used to estimate 
the survival time and the log rank test was used to com-
pare the survival difference between the low-risk and 
high-risk groups. A p-value < 0.05 was considered statisti-
cally significant.

Functional enrichment analysis
Functional enrichment analysis and visualization were 
performed using R package clusterProfiler [29, 30]. Gene 
Ontology (GO) terms with adjusted p-values < 0.01 were 
considered significantly enriched, whereas Kyoto Ency-
clopedia of Genes and Genomes (KEGG) pathways with 
p-values < 0.05 were retained as significantly enriched 
pathways.

Predictive model construction
To explore the predictive significance of gene combi-
nations, we constructed an SVM predictive model on 
TCGA datasets and then evaluated its performance in 
our cohort with R package mlr3 [31]. The receiver opera-
tor characteristic (ROC) curve was plotted and the area 
under the curve (AUC) was calculated with R package 
ROCR [32].

Sample collection and characterization
GC tissue samples and paired non-tumorous adjacent 
(NT) tissues (located 5 cm from the tumor margin) were 
obtained from patients with tissue pathology confirma-
tion of GC at the First Affiliated Hospital of Soochow 
University (Suzhou, China) between March 2017 and 
August 2018. No patients had received radiotherapy 
or chemotherapy before surgery, and none of them had 
cardiac, liver or renal dysfunction. In the GC group, 
TNM-staging was determined according to the patho-
logical staging criteria (version 8) of the American Joint 
Committee on Cancer. A total of 20 patients were finally 

(1)RNs =
K ∗ Rs

L
.
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enrolled in the analysis. The clinical characteristics of all 
patients were summarized in Additional file 1: Table S1.

Cell culture and transfection
The cell lines GES-1, AGS, MKN-45, MKN-28 and HGC-
27 were obtained from the American Type Culture Col-
lection (Manassas, VA, USA). Cells were cultured in 
RPMI-1640 (Biological Industries, Beit Haemek, Israel) 
with 10% fetal bovine serum (Biological Industries) and 
1% penicillin–streptomycin-amphotericin B (NCM 
Biotech, Suzhou, China, #C100C8) under 5% CO2 at 
37  °C. Cells were transfected with CLLU1 siRNA, con-
trol siRNA (RiboBio, Guangzhou, China), has-miR-429 
and has-miR-183-5p mimics or control mimics (Genep-
harma, Shanghai, China) with Lipofectamine 2000 
(Invitrogen, Carlsbad, CA, USA) according to the manu-
facturer’s protocol. The sequences of mimics were pro-
vided in Additional file 1: Table S3.

Transwell migration and invasion assays
Transwell migration and invasion assays were performed 
with Transwell plates (8.0 mm pore size, PET membrane, 
Falcon, USA). The lower chamber was filled with 400 µL 
RPMI 1640 containing 20% fetal bovine serum. Subse-
quently, 5 × 104 cells in 400 µL serum-free medium were 
added to the upper chamber. After 24  h incubation at 
37 °C, non-migrating cells were removed from the upper 
of membrane surface with a cotton swab. The filters were 
then fixed with 4% methanol for 15 min at room temper-
ature, and stained with Crystal Violet for 10  min. Next, 
the membranes were washed with phosphate-buffered 
saline and allowed to dry, and an optical microscope 
(Olympus, Tokyo, Japan) was used to visualize the stained 
cells in five random fields on each membrane. Cells pen-
etrating the membrane were counted at a magnifica-
tion of 100× and the mean number was determined. For 
Transwell invasion assays, the membrane in the upper 
chamber was pre-coated with 50 µL Matrigel (Corning, 
Corning, NY, USA). All assays were performed in tripli-
cate, and the experiment was repeated three times.

Wound healing assay
Wound healing assays were performed to examine the 
migration ability of cells. Briefly, MKN-45 and HGC-27 
cells were transfected with CLLU1 siRNA, or control 
siRNA for 48 h, then seeded in 12-well plates. When the 
cells reached 90–95% confluence, a single scratch wound 
was made across the plate surface with a 200-μL pipette 
tip. The scratch wounds were photographed over a 48-h 
period using an inverted microscope (Olympus), and the 
wound width of was quantified with imaging software. 
Each assay was performed in triplicate.

RNA extraction and qRT‑PCR analysis
Total RNA was extracted from tissue samples with 
TRIzol reagent (TaKaRa) according to the manufac-
turer’s instructions. For mRNA and lncRNA expres-
sion, 1  μg total RNA was reversed transcribed into 
cDNA with PrimeScript RT Master Mix (Takara). The 
qRT-PCR was performed in a CFX96 TouchTM real-
time PCR system (Bio-Rad, Hercules, CA, USA) with 
SYBR Green Master Mix (Vazyme, Nanjing, China). 
For miRNA expression analysis, 1  µg total RNA was 
used for first-strand DNA synthesis with a miRNA 1st 
Strand cDNA Synthesis Kit (Vazyme), and qRT-PCR 
was performed with miRNA universal SYBR qPCR 
Master Mix (Vazyme). Relative gene expression was 
calculated using the 2−ΔΔCt method, with β-actin and 
small nuclear RNA U6 used as endogenous controls for 
mRNA/lncRNA and miRNA. The primer sequences for 
qRT-PCR are provided in Additional file  1: Table  S2. 
The Wilcoxon rank sum test was used to test the dif-
ference between the GC and NT groups, as well as the 
ESGC and LSGC groups.

Results
GCP‑miR network construction
Expression data for lncRNAs, mRNAs and miRNAs were 
collected from 129 patients with ESGC and 128 patients 
with LSGC in TCGA. First, the significant DEGs between 
ESGC and LSGC were identified. A total of 1165 mRNAs 
(649 up-regulated and 516 down-regulated), 15 lncR-
NAs (11 up-regulated and four down-regulated) and 59 
miRNAs (33 up-regulated and 26 down-regulated) were 
found to be differentially expressed between two groups 
and the miRNA-lncRNA and miRNA-mRNA pairs with 
significant negative correlations were used in subsequent 
analyses.

We then established the GCP-miR network by inte-
grating the above pairs and the results from miRNA tar-
get prediction tools as described in Methods. The final 
GCP-miR network consisted of three types of nodes (22 
miRNAs, 126 mRNAs, and 7 lncRNAs), and two type of 
links (295 miRNA-mRNA and 46 miRNA-lncRNA links; 
Fig. 2a).

Functional enrichment analysis was performed on 
genes in the GCP-miR network to explore their biologi-
cal functions. As shown in Fig. 2b, c, the GO biological 
process terms and KEGG pathways were highly enriched 
in cancer development and progression associated path-
ways, such as circadian entrainment [33], the apelin 
signaling pathway [34, 35], and the cGMP-PKG signal-
ing pathway [36]. Notably, beyond the cancer-associated 
pathways, several nervous system-associated terms were 
enriched, such as glutamatergic synapse. These results 
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indicated that the GCP-miR network is involved in GC 
progression.

The miR‑200/183 family miRNAs are key in GC progression
To identify key genes associated with GC progression, we 
calculated the RNs score for each gene in the GCP-miR 
network, which fully accounts for the network topologi-
cal structure and gene expression levels in cancer sam-
ples. The top 10 genes with highly RNs in the network are 

listed in Table  1, including eight down-regulated miR-
NAs and two up-regulated lncRNAs in LSGC samples. 
Because miR-203a-3p had the highest RNs score, and has 
been reported to predict metastases and poor progno-
sis in human GC clinical samples [37]. We selected the 
remaining nine genes for further analysis. Notably, the 
remaining seven miRNAs were grouped into two fami-
lies: miR-200 and miR-183 (Table  1) All seven miRNAs 
were significantly up-regulated in TNM stage I than 

Fig. 2  GCP-miR network and its biological function. a Construction and visualization of the GCP-miR network. Diamonds, rectangles, and ellipses 
indicate mRNAs, miRNAs and lncRNAs, respectively. Pink represents high expression, and blue represents low expression in LSGC compared with 
ESGC. b GO biological process enrichment analysis of genes in the GCP-miR network (adjusted p-value < 0.01). Each node represents a GO term and 
each edge represents the overlap between two terms. c KEGG-based enrichment analysis of genes in the GCP-miR network (p-value < 0.05). KEGG 
terms were sorted by gene ratio
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in other stages (Fig.  3a). Previous studies have demon-
strated that down-regulation of miR-200 family mem-
bers promotes GC progression in vitro in GC cell lines 
[38–41] and characterize sub-types of GC with poor-
prognosis [42]. Moreover, miR-182-5p and miR-183-5p 
are involved in GC cell proliferation and have been sig-
nificantly negatively correlated with ETM scores in lung 
cancer [43], but their expression patterns have not been 
consistent in across prior studies [44–46]. Beyond miR-
NAs, two lncRNAs H19 and CLLU1 had high RNs score. 
H19 affects GC cell proliferation and contributes to GC 
progression [47, 48]. Although no evidence has indicated 
a role of CLLU1 in GC progression, it has been reported 
to be associated with hepatocellular carcinoma prognosis 
[49]. Its roles in GC cells will are explored below.

The miR‑200/183 family‑mediated module is key in GC 
progression
Because of the important roles of the seven miRNAs and 
two lncRNAs with high RNs score in GC progression, we 
selected them and mRNAs, which were interacted with 
members from both miR-200 and miR-183 families in 
GCP-miR network, as the key module for GC progres-
sion. As shown in Fig.  3b, nine mRNAs were added in 
the module, which were also significantly up-regulated 
in LSGC (Fig. 3c) and involved in the adipogenesis, TGF-
beta signaling, nuclear receptor and EMT in colorectal 
cancer pathways. The results indicate that miR-200/183 
family-mediated module might contribute the GC pro-
gression by regulating their target genes. Moreover, in 

the module, the gene expression showed significantly 
negative correlations of lncRNAs and mRNAs with miR-
200/183 family members, and significantly positive cor-
relations between miRNAs in GC samples (Additional 
file 1: Fig. S2).

Then we examined the relationship between miR-
200/183 family-mediated module’s members and clini-
cal characteristics of the patients in TCGA dataset. The 
results (Table  2) showed that the expression level of all 
the miRNAs were significantly correlated with the age 
of patients (p < 0.05), six of the seven miRNAs were sig-
nificantly correlated with the TNM stage (p < 0.05), and 
five miRNAs were significantly correlated with histologi-
cal grade. For lncRNAs, CLLU1 expression levels were 
correlated with histological type (p = 0.041) and grade 
(p = 0.044). Moreover, the TNM stages and histologi-
cal grade had also significantly relation with most of the 
mRNAs in the module (Table 3).

Finally, we investigate the prognostic values of the 
module in the TCGA dataset and our validation cohort. 
For TCGA datasets, patients were randomly allocated to 
the training (n = 180) or testing (n = 77) cohorts using 
a 7:3 ratio. A risk score formula based on the expres-
sion level of miRNAs in the training cohort was cre-
ated as follows by multi-variable Cox regression model: 
Risk score = (0.0316 × miR-200b-3p) + (0.0716 × miR-
141-3p) + (−  0.0193 × miR-200c-3p) + (−  0.1105 × miR-
200a-3p) + (0.1529 × miR-429) + (−  0.5501 × miR-
182-5p) + (0.3274 × miR-183-5p). The HR and 95% 
confidence interval for each miRNA were listed in 

Table 1  Top ten genes ranked by RNs score

Name D B C RNs Family Function in GC cell

miR-203a-3p 25 0.175 0.394 9.847 miR-203 Proliferation, cycle and apoptosis [57]

miR-200c-3p 24 0.063 0.386 8.421 miR-200 Growth and invasion [39]

miR-200a-3p 25 0.083 0.394 7.609 miR-200 Proliferation, cell cycle and migration [40]

miR-141-3p 28 0.110 0.400 7.127 miR-200 Proliferation, invasion, migration and metastasis [38]

miR-200b-3p 23 0.058 0.390 6.522 miR-200 Growth and invasion [39]

miR-182-5p 17 0.083 0.378 6.140 miR-183 Proliferation and colony formation [45]

miR-429 28 0.098 0.400 5.091 miR-200 Proliferation and viability [41]

miR-183-5p 15 0.063 0.361 4.426 miR-183 Proliferation and migration [46]

H19 13 0.145 0.428 5.561 lncRNA Proliferation and apoptosis [47, 58]

CLLU1 17 0.195 0.453 5.500 lncRNA –

Fig. 3  The miR-200/183 family-mediated module is key module in GC progression. a Expression of miR-200 and miR-183 families in GC tissues 
with four TNM stages. b The miR-200/183 family-mediated module for GC progression. Pink and blue denote up and down regulation, respectively, 
in LSGC samples. c Expression of nine mRNAs in GC tissues with four TNM stages. d Kaplan–Meier analysis was used to estimate the survival of 
high-risk vs. low-risk patients with GC according to the seven miRNA signatures from the miR-200 and miR-183 families in the training set. e 
Kaplan–Meier analysis was used to estimate the survival of high-risk vs. low-risk patients with GC according to the seven miRNA signatures from the 
miR-200 and miR-183 families in the validation cohort. (*p-value < 0.05, **p-value < 0.01, ***p-value < 0.001)

(See figure on next page.)
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Fig. 3  (See legend on previous page.)
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Additional file  1: Table  S4. Then the score for each 
patient was calculated, and the patients were assigned 
to high-risk score or low-risk score groups according to 
the median value of risk score (− 2.4568) in the training 
cohort. The Kaplan–Meier curves showed the high-risk 
group had significantly shorter overall survival than the 
low-risk group in the training group (p-value = 0.039; 
Fig.  3d), the testing group (p-value = 0.042; Additional 
file  1: Fig. S3a), and the whole group (p-value = 0.005; 
Additional file 1: Fig. S3b). For our validation cohort, the 
results were consistent with those of the TCGA, that is, 
low-risk score groups exhibited better survival than the 
high-risk groups (p-value = 0.034; Fig. 3e).

Validation of the miR‑200/183 family‑mediated module 
in GC progression
To ascertain the role of the miR-200/183 family-medi-
ated module in human GC progression, we further vali-
dated the module by using newly collected samples from 
patients with GC. The expression levels of seven miR-
NAs, the two lncRNAs H19 and CLLU1, and five ran-
domly selected mRNAs (LDB3, NOVA1, NPTX1, NR3C1 
and ZEB2) in 20 pairs of GC and NT tissues were meas-
ured. The miR-200 and miR-183 families members were 
significantly lower in cancer tissues than NT tissues, and 
also were significantly lower in LSGC than ESGC. In 
contrast, their potential targets, two lncRNAs and five 
mRNAs, were significantly up-regulated in the GC and 
LSGC with respect to NT tissues and ESGC, respectively 
(Fig.  4a, p-value < 0.05), thus highlighting the specificity 
of these candidate biomarkers for GC progression.

We then performed correlation analysis to validate the 
association among the genes in the module in our cohort 
(Additional file  1: Fig. S4). The interactions between 
the miRNAs and their targets with p-value < 0.5 and 
SCC < −  0.5 were marked as green lines in the module 
(Fig. 4b). In agreement with the results based on TCGA 
datasets, lncRNAs H19 and CLLU1 showed a significant 
negative correlation with the miR-200 and miR-183 fami-
lies. Similarly, most mRNAs and miRNAs also showed 
negative correlations in our cohort. The miR-200 family 
members displayed significant positive correlations with 
miR-183 family.

Finally, to evaluate the predictive ability of the mod-
ule in the classification of ESGC and LSGC, we con-
structed SVM models according to the expression levels 
of genes in the module. We first constructed the pre-
dictive models with SVM for all combinations of 14 
genes in the module with the dataset from TCGA, then 
evaluated the predictive ability of the combinations to 
stratify ESGC and LSGC in our independently collected 
GC samples. Finally, the combination of six genes miR-
182-5p, miR183-5p, LDB3, NOVA1, NPTX1 and NR3C1 

achieved the highest AUC (0.90, Fig. 4c) among all com-
binations, thus indicating their ability to predict GC 
progression.

The miR‑200/183 family‑mediated module influence 
the invasion and migration of GC cells
To further validate the biological functions of the miR-
200/183 family-mediated module in GC, we performed 
functional analysis for the RNAs that involved in it. 
As shown in Table  1, most of the miRNAs in the mod-
ule, such as miR-200a-3p and miR-141-30, have been 
reported to affects the invasion and migration of GC 
cells in multiple studies. Therefore, we selected miR-429 
and miR-183-5p as representatives of the miR-200 and 
miR-183 families and explore their function in GC cells, 
as well as their predicted targets as shown in Fig.  5a. 
MKN-45 and HGC-27 cells were transfected with miR-
429 mimics, miR-183-5p mimics, or control mimics 
(Fig.  5b). Transwell invasion and migration assays were 
then performed to examine the migratory and invasive 
ability in vitro. As shown in Fig. 5c, d, the invasion and 
migration of GC cells was more suppressed in the miR-
429 and miR-183-5p mimics groups than in the controls 
(p-value < 0.01). These results indicated that the expres-
sion of miR-429 and miR-183-5p efficiently weakened the 
metastatic potential of GC cells.

We next validated the interactions among the miRNAs 
and their targets in Fig. 5a by evaluating the expression 
of the targets in GC cells that were transfected with miR-
429 mimics and or miR-183-5p mimics. We observed 
that both miRNA mimics significantly decreased the 
expression of their targets (Fig. 5b). The expression lev-
els of miR-429 targets, including NR3C1, ZEB2, CLLU1 
and H19, were significantly lower than those in the NC 
groups. Similarly, the expression of miR-183-5p targets 
NR3C1, ZEB2 and CLLU1 in the corresponding mimic 
group was also significantly lower than that in the NC 
groups. These expression patterns confirmed the poten-
tial interactions among the miRNAs and their targets in 
GC cells.

Finally, we explored the functions of targets of miR-
429 and miR-183-5p in GC cells. Because several studies 
have reported that high expression of their targets such 
as ZEB2 [50, 51] and H19 [48, 52] could promote the GC 
progression, we performed functional analysis of another 
lncRNA CLLU1 in the module. CLLU1 showed elevated 
expression in MKN-45 and HGC-27 cell lines compared 
with normal gastric cells (Fig. 6a). The expression levels 
of eight other genes with high RNs scores were also meas-
ured in GC cell lines (Additional file 1: Fig. S1). We trans-
fected siRNAs to knock down CLLU1 in MKN-45 and 
HGC-27 (Fig.  6a). Transwell and wound healing assays 
were then performed to examine the in  vitro migratory 
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Fig. 4  Validation of the miR-200/183 family-mediated module in clinical GC samples. a Expression levels of genes in the miR-200/183 
family-mediated module (*p-value < 0.05, **p-value < 0.01, ***p-value < 0.001). N: NT samples; C: GC samples; E: ESGC samples; L: LSGC samples. b 
Validation of the miR-200/183 family-mediated module in GC progression. Green links denote significantly negative correlations with p-values less 
than 0.05 and SCC less than -0.5. c ROC curve of six gene signatures to stratify the ESGC and LSGC samples
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and invasive ability of CLLU1. As shown in Fig.  6b, c, 
the invasion and migration of GC cells was greatly sup-
pressed in the knock down group (p-value < 0.01). These 
results indicated that inhibition of CLLU1 efficiently 
weakened the metastatic potential of GC cells. Taken 
together, these results reveal that the miR-429 and miR-
183-5p regulated sub-module contribute to the invasion 
and migration of GC cells.

Discussion
GC is a major cause of global mortality and remains a 
major health burden in Asian countries including China. 
It is often diagnosed in advanced stages. Because molec-
ular events in GC progression are promoted by complex 
genomic interactions, molecules can be grouped into 
“networks” according to their interactions that contribute 
to cancer progression; several network-based computa-
tional methods have been proposed [53]. The miRNAs 

Fig.5  Evaluation the effects of miR-200/183 family-mediated module effects on invasion and migration of GC cells. a miR-429 and miR-183-5p 
regulated sub-module. b Expression of miR-429, miR-183-5p and their targets in miR-429 or miR-183-5p mimics-transfected MKN-45 cells and 
HGC-27 cells. c, d Transwell migration and invasion assays showed that miR-429 mimics and miR-183-5p inhibited the migratory and invasive 
capacity of MKN-45 and HGC-27 cells. The data represent means ± SD. *p-value < 0.05; **p-value < 0.01; ***p-value < 0.001
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Fig. 6  Knockdown of CLLU1 inhibits the invasion and migration of GC cell lines. a Expression of CLLU1 in GC cell lines and its expression after 
knockdown by siRNA. b Transwell migration and invasion assays indicating that knockdown of CLLU1 inhibits the migratory and invasive ability 
of GC cell lines. c Wound healing assay indicating that knockdown of CLLU1 impairs the migratory ability of GC cell lines. The data represent 
means ± SD. *p-value < 0.05; **p-value < 0.01; ***p-value < 0.001
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interact with different molecules and produce varying 
outcomes depending on the tumor microenvironment 
[54–56]. In this study, we attempted to delineate the 
miRNA-mediated molecular mechanism operating in GC 
progression with an AI-assisted bioinformatics method 
to integrate transcriptomic, interactomic and network 
topological feature data. Some major findings are listed 
as follows.

We first identified the key genes in GC progression by 
using our previously designed RNs score, which consid-
ered both the topological characteristics of genes in the 
GCP-miR network and the expression profiles of genes 
in GC samples. Seven miRNAs from the miR-200 and 
miR-183 families had high RNs scores, thus indicating 
their important topological roles in the network. These 
seven miRNAs showed significantly different expression 
levels during GC progression. Indeed, we validated their 
significant down-regulation in LSGC in our cohort, and 
observed robust correlations among them. The results 
confirmed their important roles in GC progression, thus 
providing a molecular network perspective corroborating 
findings from previous reports [38–41, 44–46].

Subsequently, we identified the module for GC pro-
gression by selecting the identified miRNAs and their 
target genes, both of which were regulated by members 
of the miR-200 and miR-183 families in the GCP-miR 
network (Fig.  7). The identified module consisted of 
seven miRNAs, two lncRNAs and five mRNAs. All tar-
gets were significantly up-regulated in LSGC, and their 

expression levels were significantly negatively correlated 
with the miRNA expression in TCGA datasets and the 
validation cohort. The combination of miRNAs yielded 
a highly significant predictive power for patient survival. 
The model constructed from the six genes in the module 
could stratify the ESGC and LSGC in independent GC 
samples. Finally, the contribution of the module to the 
invasion and migration of GC cells was validated in vitro. 
Therefore, the miR-200/183 family-mediated module can 
be potential clinical biomarker for GC.

However, there are still many challenges and validation 
is required for their clinical application. This study has a 
few limitations. First, the validation cohort was relatively 
small, which might result in potential performance bias 
of the model. Second, the follow-up information of the 
patients in the validation cohort was not sufficient to 
study the overall survival and to evaluate the prognostic 
role of the module biomarker. Third, further research is 
also warranted on the functions of the module in vivo. 
Large-scale prospective studies are needed to validate the 
prognosis value of miR-200/183 family-mediated mod-
ule. In future, we will make efforts to perform large and 
confirmatory prospective studies to consolidate the find-
ings in present study.

Conclusions
Identifying functional modules in the cancer progres-
sion is a challenging task. Our AI-assisted bioinformat-
ics model based on multimodal data revealed a highly 

Fig. 7  Schematic diagram of miR-200/183 family-mediated module promoting GC progression
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modular architecture and indicated that seven miRNAs 
from the miR-200 and miR-183 families were key regu-
lators in GC progression. The candidate module may 
serve as an indicator of GC progression and a poten-
tial marker to stratify patients with ESGC versus LSGC. 
Our findings suggest that this module is a “pluripotent 
module” in gene regulatory network as the two sides of 
a coin, providing a roadmap to investigate new diagnos-
tic and therapeutic opportunities.
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