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Abstract 

Background  Positron Emission Tomography (PET) imaging with Prostate-Specific Membrane Antigen (PSMA) and 
Fluorodeoxyglucose (FDG) represent promising biomarkers for risk-stratification of Prostate Cancer (PCa). We verified 
whether the expression of genes encoding for PSMA and enzymes regulating FDG cellular uptake are independent 
and additive prognosticators in PCa.

Methods  mRNA expression of genes involved in glucose metabolism and PSMA regulation obtained from pri-
mary PCa specimens were retrieved from open-source databases and analyzed using an integrative bioinformatics 
approach. Machine Learning (ML) techniques were used to create predictive Progression-Free Survival (PFS) models. 
Cellular models of primary PCa with different aggressiveness were used to compare [18F]F-PSMA-1007 and [18F]
F-FDG uptake kinetics in vitro. Confocal microscopy, immunofluorescence staining, and quantification analyses were 
performed to assess the intracellular and cellular membrane PSMA expression.

Results  ML analyses identified a predictive functional network involving four glucose metabolism-related genes: 
ALDOB, CTH, PARP2, and SLC2A4. By contrast, FOLH1 expression (encoding for PSMA) did not provide any additive 
predictive value to the model. At a cellular level, the increase in proliferation rate and migratory potential by primary 
PCa cells was associated with enhanced FDG uptake and decreased PSMA retention (paralleled by the preferential 
intracellular localization).

Conclusions  The overexpression of a functional network involving four glucose metabolism-related genes identifies 
a higher risk of disease progression since the earliest phases of PCa, in agreement with the acknowledged prognostic 
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value of FDG PET imaging. By contrast, the prognostic value of PSMA PET imaging is independent of the expression of 
its encoding gene FOLH1. Instead, it is influenced by the protein docking to the cell membrane, regulating its acces-
sibility to tracer binding.

Keywords  Prostate cancer, Glucose metabolism, Prostate-specific membrane antigen, Positron emission 
tomography, Prognosis

Introduction
Prostate cancer (PCa) manifests a broad spectrum of 
intrinsic biological aggressiveness, paralleled by sig-
nificant inter-patient heterogeneity [1]. While 5-year 
survival rates are excellent for localized PCa, lifespan 
is limited for patients with distant tumour burden [2]. 
Moreover, local relapse and distant metastases occur 
during the clinical follow-up in 20–30% of PCa patients 
initially treated with curative intent [3–5]. This variable 
clinical behaviour asks for the development of biomark-
ers potentially able to improve risk stratification, mostly 
in newly diagnosed treatment-naïve patients.

In the last years, PCa initial staging has been pro-
foundly reshaped by the introduction of [18F]F- or 
[68  Ga]Ga-labelled radiotracers targeting the Prostate-
Specific Membrane Antigen (PSMA) [6, 7], a type II inte-
gral membrane glycoprotein encoded by the FOLH1 gene 
whose expression is markedly higher in PCa than in nor-
mal prostatic tissues [8]. Mapping the PSMA distribution 
by Positron Emission Tomography/Computed Tomog-
raphy (PET/CT) imaging couples the improved capabil-
ity to define the presence and localization of cancer cells 
with the estimation of antigen expression and tumour 
volume. Several studies have already reported a direct 
correlation between the degree of PSMA tracer uptake 
and histopathological features of disease severity, includ-
ing the Gleason Score [9–12]. Coherently, the higher the 
PSMA tracer uptake by the primary tumour, the lower 
the long-term clinical outcome [13]. However, the PSMA 
PET prognostic penetrance is challenged by the acknowl-
edged limitation of PET imaging that underestimates 
tracer concentration in small tumours and by the notion 
that 5–10% of clinically relevant PCa do not express this 
protein [14, 15].

[18F]F-Fluorodeoxyglucose (FDG) is one of the most 
used PET tracers in oncology. Mapping the high gly-
colytic rate (also termed the Warburg effect), it displays 
most solid cancers’ proliferative and migratory poten-
tial [16]. Differently from early studies [17, 18], recent 
data reported a high prognostic power of FDG PET in 
PCa, at least in the metastatic castration-resistant phase 
[18–23], which is characterized by a higher prevalence 
of glucose-avid less differentiated neoplastic cells insen-
sitive to androgen deprivation [24]. Prognostic insights 
provided by PSMA and FDG PET imaging may thus be 

complementary, reflecting the presence of different can-
cer phenotypes in different phases of the disease.

The present study tested this hypothesis through a mul-
tidisciplinary approach. Using a bioinformatics approach, 
we verified whether the expression of genes encoding 
for PSMA and enzymes regulating glucose metabolism 
are independent and additive outcome predictors in 
patients with newly diagnosed PCa. Thereafter, we com-
pared PSMA and FDG uptake kinetics in validated cel-
lular models of primary PCa with different aggressiveness 
grades.

Materials and methods
Genes selection
The glucose metabolism-related gene set was down-
loaded from the Kyoto Encyclopedia of Genes and 
Genomes (KEGG), a meta-database used to integrate 
information with genomes, diseases, and biological 
pathways [25]. FOLH1 and its interactors in PCa were 
retrieved from the Protein Interaction Network Analysis 
(PINA) platform (https://​omics.​bjcan​cer.​org/​pina) using 
The Cancer Genome Atlas Prostate Adenocarcinoma 
(TCGA-PRAD) dataset. This inquiry provided us with 
122 genes that are reported in Additional file 1: Table S1.

Construction and statistical analyses of predictive models 
through machine learning techniques
Analyzing the cBioPortal database (https://​www.​cbiop​
ortal.​org/), we searched studies reporting data associ-
ated with the mRNA expression for all 122 investigated 
genes in primary PCa specimens obtained after surgery 
in primary PCa patients. These data were available for 
493 PCa patients in the TCGA-PRAD [26] dataset. The 
study focused on z-score mRNA expression relative to 
diploid samples (RNA Seq V2 RSEM) compared with 
the follow-up data of all PCa patients (details about 
the expression profile are reported in the Additional 
file 2). Progression-Free Survival (PFS) was used as the 
primary clinical endpoint as the most reliable outcome 
for PCa [26] and was defined as the interval between 
the date of diagnosis and the date of the new event 
returned, including the progression of the cancer, local 
recurrence, distant metastases, or death from the can-
cer. All data were retrieved from open resources, and 
thus no ethical issues were involved. Predictive models 
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of PFS were set up using two Machine Learning (ML) 
techniques: Random Forest [27] and a hybrid version 
of Lasso [28], where an unsupervised fuzzy C-means 
step chooses the threshold for the definition of the 
event. Both techniques provide a weight representing 
its contribution to the predictive model for each gene 
expression to retain the more significant predictors 
and discard the ones with negligible weights. To test 
the robustness of obtained ranking, we applied a boot-
strap analysis. Data encompassed 493 subjects, 93 of 
whom (18.9%) displayed disease progression during the 
follow-up. This cohort was divided into a training set 
containing 329 patients (67%) and a test set containing 
the remaining 164 (33%). This division was performed 
randomly, with the only constraint of respecting the 
event rates in the training and test sets. The random 
split was repeated 100 times. We then trained the 
ML algorithms on the training sets and tested their 
predictive performance on the test sets. For all 100 
realizations the two ML methods allow an automatic 
ranking of the input features and the identification of 
the features that mostly impact the prediction. These 
features were selected for a multivariable Cox regres-
sion model. No further clinic-pathological data were 
added to the multivariable analysis to obtain a purely 
genetic model. Only those with a p-value < 0.05 in the 
multivariable model were retained in the final model. 
To stabilize the coefficient of each feature included in 
the multivariable model, a bootstrap approach with 500 
replications was applied. The concordance of Harrell’s 
c-index was also reported to evaluate the discrimina-
tive ability of the multivariable model. To consider the 
possible overfitting during the building and estima-
tion of the prognostic model, a bias-corrected estimate 
(optimism correction) of the c-index was reported. The 
weight of each gene resulting in statistically significant 
was extracted from the multivariate logistic regression 
model. Obtained results were used to create a formula, 
resulting in a genetic score able to predict PFS. Clinical 
characteristics of PCa patients divided according to the 
genetic score result were compared using a t-test for 
continuous variables or a Chi-square test to compare 
proportions. Moreover, the obtained genetic score was 
included in a univariate and multivariate logistic regres-
sion model built to predict PFS including the available 
clinical characteristics retrieved from the TCGA-PRAD 
dataset. In particular, age at diagnosis, race, histo-
pathological tumour type, local (T)- and nodal (N)-
status at histopathology. The obtained genetic score’s 
predictive power was then validated using an external 
dataset retrieved from the cBioPortal database (PRAD-
MSKCC). MedCalc 19.4 (MedCalc Software, Ostend, 

Belgium), Stata v.16 (StataCorp. 2019) and R (v.4.0.2; 
Rcore Team) were used for the computation.

Tissue‑specific functional networks
To explore the potential effects of the involved genes, we 
planned to identify their interactors (Additional file  1: 
Table  S2), building a tissue-specific functional network 
using data from the PINA platform (https://​omics.​bjcan​
cer.​org/​pina/). The protein–protein interaction network 
was created by extracting data from five manually curated 
databases (IntAct, MINT, BioGRID, DIP, HPRD) and uni-
fied using database integration techniques [29]. To build 
the cancer-specific network we used the “cancer-context” 
utility with the following query parameters: the TCGA 
PRAD transcriptomic profiles, tumour type specificity 
score > 2 and Spearman correlation coefficient > 0.1. In 
the obtained figures, the edge width is proportional to 
the correlation coefficient. This network’s first ten central 
genes (hubs) were determined with PINA network analy-
sis utility by eigenvector centrality measure. Enrichment 
analysis and visualization of Gene Ontology (GO) terms 
in biological process and molecular function categories 
were performed using ClueGO Cytoscape plugin (signifi-
cance: p-value < 0.05). A network diagram was created by 
grouping GO terms using the kappa score (> 0.3).

Human PCa LNCaP cellular model
LNCaP cells, obtained from the American Type Culture 
Collection (CRL-1740), were maintained in RPMI 1640 
medium supplemented with 10% FBS, 1% glutamine, 
10 mM HEPES, 1 mM sodium pyruvate, 4.5 mg/ml glu-
cose, 1% penicillin and 1% streptomycin, in poly-D-lysine 
coated flask. Different degrees of PCa severity were 
reproduced using a previously validated model, imply-
ing the evaluation of LNCaP with less than 33 passages 
(LNCaP-30) and with over 80 passages (LNCaP-80) as 
models of low and high aggressiveness, respectively [30, 
31]. According to local legislation, no ethical approval 
was needed for in vitro experiments.

In vitro kinetics of [18F]F‑FDG and [18F]F‑PSMA‑1007 uptake
Uptake kinetics of [18F]F-FDG and [18F]F-PSMA-1007 
were estimated in both LNCaP-30 and LNCaP-80 cell 
cultures. A total of six experiments were performed for 
each culture type. Both tracers were synthesized by the 
radiopharmacy lab of the Nuclear Medicine facility of 
IRCCS Ospedale Policlinico San Martino and passed the 
due quality controls. Tracer uptake of each cell culture 
was evaluated using the LigandTracer White® instru-
ment (Ridgeview, Uppsala, SE) according to our validated 
procedure [32–35]. The device consists of a beta-emis-
sion detector and a rotating platform harbouring a 

https://omics.bjcancer.org/pina/
https://omics.bjcancer.org/pina/


Page 4 of 12Bauckneht et al. Journal of Translational Medicine            (2023) 21:3 

standard Petri dish. The rotation axis is inclined at 30° 
from the vertical so that the organ alternates its position 
from the nadir (for incubation) to the zenith (for count-
ing) every minute for an experiment duration of 120 min. 
One hundred seventy-five thousand cells were seeded the 
day before the experiments and cultured under stand-
ard conditions. Soon before each experiment, the cul-
ture medium was replaced with 3 mL DMEM containing 
glucose at 5.5  mM and either [18F]F-PSMA-1007 (1.8–
2.2  MBq/ml) or [18F]F-FDG (1.8–2.2  MBq/ml). Each 
experiment was preceded by a calibration procedure 
documenting that recovered counts were 3 ± 0.07% of the 
source emission in all cases. Accordingly, culture radio-
activity content at each time was normalized as a frac-
tion of the administered dose. [18F]F-FDG accumulation 
was analyzed considering the standard Sokoloff assump-
tion of an irreversible pool for tracer accumulation. The 
model was thus tested using the conventional graphical 
approach described by Patlak et  al. [36], identifying the 
straight line described by the following equation:

where FDGcells

FDGDMEM
 represents the fraction of administered 

dose taken up by PCa cells, while FDGDMEM is the tracer 
concentration in the medium and thus the administered 
dose subtracted by FDG cells at each time t. By contrast, 
a (the slope of the regression line) represents the tracer 
accumulation rate multiplied by the glucose concen-
tration to estimate the glucose consumption of the cell 
culture.

Kinetic analysis of [18F]F-PSMA-1007 uptake was per-
formed according to the conventional one-phase associa-
tion ligand-receptor kinetics. For this purpose, we used 
the non-linear regression analysis routine of the Prism 
GraphPad software package fitting each experimental 
curve according to the following function:

where At is the observed fraction of administered dose 
in cell culture at each time t, Amax is its maximal asymp-
totic plateau phase, representing the number of maximal 
ligand sites, and k represents the receptor-ligand affinity 
constant.

PSMA expression pattern by confocal microscopy
Intracellular and plasma membrane PSMA expression 
was assessed on LNCaP-30 and LNCaP-80 cells cultured 
on glass coverslips by immunofluorescence, using an 
anti-PSMA monoclonal antibody (GCP-05) followed by 
Goat anti-Mouse Alexa 488 antibody (both from Ther-
moFisher). The abundance of plasma membrane docked 

FDGcells

FDGDMEM

= a

∫
t

0
FDGDMEM(t)

FDGDMEM(t)

+ b

At = Amax × (1− e
kt)

PSMA was evaluated in fresh and un-permeabilized cells. 
For PSMA intracellular content, immunofluorescence 
cells were fixed with 3.7% paraformaldehyde and permea-
bilized with 0.1% Triton X-100. Cells were counterstained 
with DAPI, and the slides were mounted with Mowiol 
mounting medium for analysis on the SP2-AOBS confo-
cal microscope (Leica Microsystems, Mannheim, Ger-
many). Each experiment was performed in triplicate, and 
immunofluorescence computation was performed using 
appropriate software packages (ImageJ, NIH and Leica 
software). A graphical summary of the study experiments 
and their timeline is represented in Fig. 1.

Results
Gene’s expression predictive model
Glucose metabolism-related and PSMA expression-
related genes in PCa (Additional file  1: Table  S1) were 
analyzed using integrative bioinformatics analysis. For 
this purpose, we created the top 10 ranking hubs for Ran-
dom Forest and Hybrid Lasso, averaging and ordering the 
100 rankings provided by the bootstrap analysis. Then, 
we considered the two top 10 rankings and looked for the 
features present in both. The most prominent genes were: 
ALDOB, CTH, PARP2, and SLC2A4. The weight of each 
gene was extracted from the multivariate logistic regres-
sion model built to predict PFS (Table 1, see also Fig. 2A 
for the PFS function of the entire study cohort). Obtained 
results were used to create a genetic score according to 
the following formula:

Once divided according to the median value, the result-
ing score significantly predicted PFS in PCa patients 
(mPFS not reached vs 73.4  months, p < 0.0001, Fig.  2B). 
PCa patients belonging to the low- and high-risk groups 
according to the glucose-metabolism-related genetic score 
did not differ in age at diagnosis (60.61 ± 7.3 vs. 61.45 ± 6.2, 
respectively, p = 0.173) and race (95.5% vs. 95.5% white 
race, respectively, p = 1.00). By contrast, the two subgroups 
diverged according to the histopathological tumour type 
(0.4% vs. 2.6% non-acinar subtype, respectively, p = 0.003), 
T-status (24.5% vs. 37.2% ≥ T3a, respectively, p < 0.0001) 
and N-status (4.8% vs. 13.8% N1, respectively, p < 0.0001) 
at histopathology. Once included in a univariate and mul-
tivariate Cox regression model together with the available 
clinical characteristics of the TCGA-PRAD dataset (age 
at diagnosis, race, histopathological tumor type, T- and 
N-status at histopathology), the glucose-metabolism-
related genetic score significantly and independently pre-
dicted PFS together with the T-status at histopathology 
(Table  2). The same glucose-metabolism-related genetic 

0.254*PARP2−0.733*SLC2A4−0.372*CTH + 0.140*ALDOB
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score significantly predicted PFS also in the validation data-
set (PRAD-MSKCC, HR = 1.75, p = 0.011).

Unlike glucose metabolism-related genes, FOLH1 
expression did not significantly predict PFS (p = 0.81, 
Fig.  2C). FOLH1 was then forcedly added to the genetic 
score described above, according to the following formula:

As expected, FOLH1 addition did not substantially 
modify the predictive value of the genetic score (mPFS 
not reached vs 73.4 months, p < 0.0001, Fig. 2D).

0.254*PARP2−0.733*SLC2A4−0.372*CTH

+ 0.140*ALDOB −0.0943*FOLH1

Tissue‑specific functional networks
The subsequent analysis was performed to evaluate the 
functional relationships of ALDOB, CTH, PARP2, and 
SLC2A4 and their interactors in PCa (Additional file  1: 
Table S2). The resulting protein–protein interaction net-
work retrieved from the TCGA-PRAD dataset by PINA, 
showed a good closeness between them (clustering coef-
ficient 0.36) (Fig.  3A). The topological distribution of 
each protein (node) was estimated to infer its centrality 
in the network. Among the first ten central nodes of the 
network (inset table in Fig. 3A), PARP2 had the highest 
centrality score. Performing the functional enrichment 

Fig. 1  Graphical summary of the study experiments. The four panels of the figure summarise the bioinformatics (blue frame) and experimental 
(orange frame) study experiments. The grey arrows display the timeline of the study

Table 1  Multivariate logistic regression model built to predict PFS

a Corrected for Optimism

Original set (n = 493) Bootstrap (500 replication)

Gene β-coefficient ± SE p-value β-coefficient ± SE HR (95% CI) p-value

PARP2 0.247 ± 0.0788 0.002 0.254 ± 0.0914 1.29 (1.08–1.54) 0.005

SLC2A4 − 0.713 ± 0.234 0.002 − 0.733 ± 0.244 0.48 (0.30–0.78) 0.004

CTH − 0.370 ± 0.118 0.002 − 0.372 ± 0.144 0.69 (0.52–0.91) 0.009

ALDOB 0.144 ± 0.0564 0.011 0.140 ± 0.0588 1.15 (1.03–1.29) 0.024

FOLH1 − 0.0888 ± 0.112 0.43 − 0.0943 ± 0.110 0.91 (0.73–1.13) 0.44

Harrell’s C-index 0.714 0.701a
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Fig. 2  The predictive power of genetic scores in PCa. A displays the PFS function of the entire study cohort. Subsequent panels display Kaplan–
Meier curves for PFS according to the genetic score built using the four most prominent glucose metabolism-related genes (PARP2, SLC2A4, CTH, 
ALDOB) (B), according to FOLH1 expression (C), and FOLH1 forcedly added to the genetic score described above (D), respectively. Median values 
were set as cut-off values to binarize data

Table 2  Univariate and multivariate Cox regression model built to predict PFS including the genetic score and clinical characteristics 
of PCa patients

Statistically significant p values are highlighted in bold

Variable Univariate Multivariate

HR (95% CI) p-value HR (95% CI) p-value

Glucose-metabolism-related genetic score  < 0.1511 1.00 (ref ) – 1.00 (ref ) –

 ≥ 0.1511 3.42 (2.15–5.45)  < 0.0001 2.81 (1.69–4.62)  < 0.0001
Age at diagnosis (years)  < 61 1.00 (ref ) –

 ≥ 61 1.62 (0.77–1.74) 0.469

Race White 1.00 (ref ) –

Black or African 
American

0.001 (0.001–255.10) 0.957

Histopathological tumour type Acinar 1.00 (ref ) –

Other type 2.04 (0.74–5.57) 0.162

T-status  < T2c 1.00 (ref ) – 1.00 (ref ) –

 ≥ T3a 3.69 (2.09–6.54)  < 0.0001 3.06 (1.61–5.85) 0.0007
N-status 0 1.00 (ref ) –

1 1.81 (1.11–2.96) 0.016
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Fig. 3  Functional network of PARP2, SLC2A4, CTH and ALDOB genes in PCa. A functional network of the four genes and their interactors reported 
in Additional file 1: Table S2. The edge width is proportional to the correlation coefficient. The top 10 central genes and their centrality score are 
listed in the inset table. B graphical overview of ClueGO results of genes reported in Additional file 1: Table S2. The pie diagram in the inset shows 
the percentage of the GO terms associated with the groups
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analysis using ClueGo, we explored the biological and 
functional role of ALDOB, CTH, PARP2, and SLC2A4 
in PCa (inset pie of Fig. 3B). Although PARP2, SLC2A4 
and ALDO8 are genes involved in glucose metabolism 
and CTH is related to the cysteine biosynthetic pro-
cess, recombinational repair and chromatin DNA bind-
ing were the most relevant GO terms associated with 
the four genes interactors. Interestingly, performing the 
same analyses using PARP2, SLC2A4, CTH, ALDO8 and 
FOLH1, any significant difference was found in the func-
tional network (Additional file  3: Figure S1A-B, Addi-
tional file  2: Figure S1 legend), while, as expected, the 
ClueGO enrichment showed an increase in the cellular 
amino acid biosynthetic process (from 8.3% to 13.2%, 
inset pie of Additional file 3: Figure S1B, Additional file 2: 
Figure S1 legend).

Opposite kinetics of [18F]F‑FDG and [18F]F‑PSMA‑1007 
in LNCaP‑30 and LNCaP‑80 cell cultures
We thus investigated the FDG and PSMA kinetics in 
LNCaP-30 and LNCaP-80 cultures as cellular models of 
primary PCa with different grades of biological aggres-
siveness [30, 31]. [18F]F-FDG uptake was markedly 
slower in LNCaP-30 than in LNCaP-80 cultures. This 
difference was observed in the analysis of raw time-
activity curves and Patlak regression lines, which docu-
mented an almost halved rate of tracer accumulation 
in the former compared to the latter PCa cellular mod-
els (1.4 ± 0.2 × 10–7  min−1 vs 2.7 ± 0.2  min−1, Fig.  4A, 
B). This finding suggested that the already documented 
increase in proliferation rate and migratory potential of 
LNCaP cells exposed to a high number of passages [30, 
31] is paralleled by increased avidity for the glucose ana-
logue. By contrast, [18F]F-PSMA-1007 kinetics showed 
the opposite behaviour, being faster in LNCaP-30 than in 
LNCaP-80 cultures (Fig.  4C, D). In all experiments, the 
kinetics of 18F-PSMA-1007 accumulation well agreed 
with the ligand-receptor interaction model showing a 
high adherence of the fitted curve with the experimental 
data (R squared values > 0.95 in all cases). This analysis 
showed a 15-fold decrease in the number of accessible 
receptors (Fig. 4E) and an almost fivefold decrease in the 
affinity constant k (Fig. 4F) in LANCap-80 compared to 
LANCap-30 cells. Therefore, LNCaP cells exposed to a 
high number of passages showed a reduced affinity for 
the PSMA-targeted radioactive probe.

PSMA expression patterns in LNCaP‑30p and LNCaP‑80 
cells
The low [18F]F-PSMA-1007 uptake in the LNCaP-80 
cellular model apparently disagreed with the negligible 

prognostic penetrance of FOLH1 expression in the 
bioinformatics analysis. We thus used an immuno-
fluorescence approach to intact or permeabilized 
cells to identify the potential occurrence of different 
PSMA localizations in LNCaP-30 and LNCaP-80 cells. 
Fluorescence intensity evaluated in permeabilized 
cells (resulting from both cytosolic and membranous 
PSMA content) was superimposable in the two cell 
lines (Fig.  5A, B), suggesting a similar FOLH1 genetic 
expression. However, when intact cells were evaluated, 
the fluorescence signal at the cell surface was markedly 
higher in LNCaP-30 than in LNCaP-80 cells (Fig.  5C, 
D). Therefore, the two cell lines’ different aggressiveness 
was associated with a post-transcriptional shift modify-
ing the plasma membrane docking of the protein.

Fig. 4  Opposite kinetics of [18F]F-FDG and [18F]F-PSMA-1007 in 
LNCaP-30 and LNCaP-80 cell cultures. A–B display row time activity 
curves, and mean + SD curves in LANCaP-30 (green) and LANCap-80 
(red) cells exposed to [18F]F-FDG for 120 min under the LigandTracer 
instrument, respectively. C–D display the same curves in LANCaP-30 
(green) and LANCap-80 (red) cells exposed to [18F]F-PSMA-1007. 
E–F show the difference between the two experimental models 
in terms of number of accessible receptors and receptor-ligand 
affinity constant, respectively. Data are shown as the mean ± SD. 
n = 3 experiments per group, with each value defined in triplicate. 
* = p-value < 0.05; ** = p-value < 0.01
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Discussion
Our bioinformatic analysis of a public database docu-
mented a prognostic power of four genes (PARP2, 
SLC2A4, CTH, ALDOB) dedicated to glucose metabo-
lism in PCa. Instead, this capability did not characterize 
FOLH1 expression. Similarly, the increase in proliferation 
rate and migratory potential of a validated cellular model 
of primary PCa was paralleled by enhanced FDG uptake 
and a marked decrease in the retention of a PSMA-tar-
geted tracer. The preferential PSMA localization in the 
cytosol at least partially explained this finding.

Among the four identified glucose metabolism-related 
genes (PARP2, SLC2A4, CTH, ALDOB), at least two may 
directly corroborate the acknowledged predictive value of 
FDG PET imaging in PCa: ALDOB and SLC2A4. The for-
mer encodes for the glycolytic enzyme aldolase B, which 
has already been associated with poor clinical outcomes 
in several solid tumours [37] and represents a pivotal 
determinant of FDG uptake [38]. Similarly, the glucose 
transporter type 4 (GLUT4) encoded by the latter con-
tributes to glucose uptake [39–41], predicts biochemical 
recurrence in the hormone-sensitive phase of the disease 
[42] and is increased in aggressive PCa phenotypes [41, 
42]. On the other hand, no proven relationships with 

FDG uptake are currently reported in the literature for 
the two remaining genes identified by our bioinformatics 
analysis: PARP2 and CTH. However, PARP2 contributes 
to tumour aggressiveness by regulating several cellular 
functions, including the glycolytic rate [43]. Similarly, the 
enzyme cystathionine γ‐lyase, encoded by CTH, couples 
the capability to promote PCa spread with the activation 
of the Warburg effect via a mitochondrial impairment 
[44]. Although gene’s expression may not exactly reflect 
protein translation levels and is only indirectly related 
to glucose consumption [45], the combined activation 
of these four genes agrees with the reported prognostic 
value of FDG uptake in PCa.

The present data suggest a more complex relationship 
between FOLH1 expression and PSMA-targeting tracers’ 
uptake. Since these two variables are strictly correlated 
in preclinical models [46], FOLH1 overexpression has 
been intuitively claimed to explain the predictive value 
of PSMA tracers’ uptake in PCa patients. However, in 
the present study, we found that FOLH1 expression does 
not predict PFS per se. The interplay between FOLH1 
expression and PSMA-targeting tracers uptake depends 
upon protein localization since only plasma membrane 
PSMA is accessible for binding with the radioligand. The 

Fig. 5  Immunofluorescence staining and quantification analysis of PSMA expression patterns in LANCaP cells with different grades of 
aggressiveness. Representative confocal microscopy images of LNCaP-30 (solid line) and LNCaP-80 (dashed line) stained with anti-PSMA (green 
fluorescence) and DAPI (nuclei, blue fluorescence) in permeabilized (A) or intact (C) cells. Quantification of PSMA fluorescence in permeabilized 
(B) or intact (D) cells. Fluorescence was quantified by using ImageJ analysis software. Values of integral fluorescence cell are evaluated in fields 
containing at least 5 cells each, and are expressed as means ± SD. n = 3 experiments per group. ns not significant
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divergent tracer uptake in primary PCa cellular models 
with different biological aggressiveness agreed with the 
PSMA plasma membrane docking rather than the over-
all protein content (reflecting FOLH1 expression). This 
concept is corroborated by the specificity of the radioac-
tive signal documented by the strict adherence of tracer 
uptake kinetics with the ligand-receptor model. Thus, in 
clinical studies assessing the prognostic value of PSMA 
PET imaging in early-stage PCa [10–13, 15, 47], the most 
common metrics adopted to quantify the PSMA-target-
ing tracer accumulation at PET imaging (i.e., SUV) may 
be influenced by several variables beyond FOLH1 expres-
sion, including PSMA-expressing cellular density or 
tumour burden. Based on our results, it can be hypoth-
esized that the prognostic power of PSMA PET in this 
clinical setting might predominantly reflect these tumour 
characteristics rather than identifying a specific feature 
of PCa biological aggressiveness.

Finally, in the present study, we observed a decrease 
in the plasma membrane docking of PSMA in cellular 
models of aggressive primary PCa. Previous studies indi-
cated that the most prominent PSMA membrane stain-
ing characterizes poorly differentiated primary PCa and 
distant metastases [48]. An acknowledged exception to 
this notion is the PCa neuroendocrine differentiation, in 
which FOLH1 expression has been shown to inversely 
correlate with neuron-specific enolase and somatostatin-
receptor 2 in the pre-clinical analysis performed by Bakht 
et  al. [49]. The present study suggests that neuroendo-
crine differentiation may not be the unique aggressive 
low-PSMA expressing variant of PCa, and that the down-
regulation of plasma membrane PSMA docking may rep-
resent a post-transcriptional source of heterogeneity at 
PSMA PET imaging, coherently with previous data [50]. 
Given the potential drawback to the diagnostic accuracy 
of this technique, further studies focusing on the com-
plex relationship between the plasma membrane and 
cytosolic PSMA localization and tumour aggressiveness 
are thus needed.

Several limitations of our study deserve an accurate 
discussion. First, our multivariable model included gene 
expression exclusively. Therefore, we did not verify the 
eventual additive value of the obtained genetic score con-
cerning conventional prognosticators in primary PCa, 
including Gleason Score, clinical stage, and PSA levels. 
Further studies are needed to address this point. Second, 
the predictive value of gene expression was analyzed in 
primary PCa. Accordingly, the present data cannot be 
extended to patients with metastatic and, even more 
importantly, castration-resistant diseases. This topic is 
relevant due to the increasing combined use of PSMA/
FDG PET imaging in the clinical setting, e.g., in iden-
tifying ideal candidates for PSMA-based radioligand 

therapy [51]. Further studies addressing the gene expres-
sion profile underlying the divergent prognostic value 
of PSMA and FDG imaging in this clinical setting are 
thus still needed. Third, differential PCa aggressiveness 
was studied in the same cell line. This choice was based 
on previous studies documenting that studying cell cul-
tures exposed to a low or a high passage number reca-
pitulates the progression of human primary PCa towards 
a more aggressive disease [30, 31]. Forth, FOLH1 gene 
expression was not tested in these cultures that, however, 
showed a similar PSMA abundance associated with the 
reported difference in protein localization. Finally, the 
potential interference of androgen deprivation or andro-
gen-receptor signalling inhibitors was not tested. Accord-
ingly, further studies are needed to verify whether and to 
what degree these agents might interfere with the uptake 
of either FDG or PSMA and their prognostic values.

Conclusion
The present study showed that the overexpression of a 
functional network involving four glucose metabolism-
related genes (PARP2, SLC2A4, CTH, ALDOB) identi-
fies a higher risk of disease progression since the earliest 
phases of PCa. Coupled with the observed tracer kinetics 
in two cellular models of different disease aggressiveness, 
this finding agrees with the acknowledged predictive 
value of FDG PET imaging in PCa. By contrast, the prog-
nostic value of PSMA PET imaging is independent of 
the expression of its encoding gene FOLH1. Instead, it is 
influenced by the protein docking to the cellular mem-
brane, regulating its accessibility to tracer binding. Alto-
gether, these findings confirm that FDG and PSMA PET 
may provide complementary and independent prognos-
tic information in newly diagnosed PCa, posing the bases 
for the design of clinical trials combining these tools for 
the PCa initial risk stratification.
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