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Comparative profiling of single‑cell 
transcriptome reveals heterogeneity of tumor 
microenvironment between solid and acinar 
lung adenocarcinoma
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Abstract 

Background:  The diversity of histologic composition reflects the inter- and intra-tumor heterogeneity of lung adeno-
carcinomas (LUADs) macroscopically. Insights into the oncological characteristics and tumor microenvironment (TME) 
of different histologic subtypes of LUAD at the single-cell level can help identify potential therapeutic vulnerabilities 
and combinational approaches to improve the survival of LUAD patients.

Methods:  Through comparative profiling of cell communities defined by scRNA-seq data, we characterized the TME 
of LUAD samples of distinct histologic subtypes, with relevant results further confirmed in multiple bulk transcrip-
tomic, proteomic datasets and an independent immunohistochemical validation cohort.

Results:  We find that the hypoxic and acidic situation is the worst in the TME of solid LUADs compared to other 
histologic subtypes. Besides, the tumor metabolic preferences vary across histologic subtypes and may correspond-
ingly impinge on the metabolism and function of immune cells. Remarkably, tumor cells from solid LUADs upregulate 
energy and substance metabolic activities, particularly the folate-mediated one-carbon metabolism and the key gene 
MTHFD2, which could serve as a potential therapeutic target. Additionally, ubiquitination modifications may also be 
involved in the progression of histologic patterns. Immunologically, solid LUADs are characterized by a predominance 
of exhausted T cells and immunosuppressive myeloid cells, where the hypoxic, acidified and nutrient-deprived TME 
has a non-negligible impact. Discrepancies in stromal cell function, evidenced by varying degrees of stromal remod-
eling and fibrosis, may also contribute to the specific immune phenotype of solid LUADs.
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Background
Invasive lung adenocarcinomas (LUADs) account for 
almost 70–90% of all surgically resected lung cancers [1]. 
The morphologic manifestations of invasive LUADs have 
been well characterized microscopically and are mainly 
differentiated into lepidic, papillary, acinar, micropapil-
lary, and solid growth patterns [1, 2]. The diversity of 
histologic composition macroscopically reflects the inter-
tumor and intra-tumor heterogeneity of LUADs, with 
most LUADs manifesting as a successive tissue transition 
between two or more histologic patterns [2]. Solid and 
acinar are two histologic subtypes of LUAD with high 
frequency, the solid type was identified as a histologic 
pattern stronger in aggressiveness, higher in grade, and 
worse in prognosis than the acinar type [2]. Identification 
of patients who may benefit from additional treatment 
after curative surgery for early LUAD has been a focus 
in the field of adjuvant therapy. An early study suggested 
that the solid type benefited from adjuvant chemotherapy 
in terms of disease-free survival (DFS) and specific DFS, 
while the acinar type did not [3]. Moreover, the latest 
grading system, introduced with 20% or more of high-
grade patterns (including the solid pattern) as the cut-off 
for histologically high-grade LUADs, consistently dem-
onstrated that those patients with high-grade LUADs 
could benefit from adjuvant chemotherapy [4, 5].

To our knowledge, no study as yet has conclusively 
reported any association between the histologic subtype 
and the response to targeted or immune therapies, both 
in the adjuvant and neoadjuvant scenarios (comprehen-
sive histological assessment relies on radical surgical 
excision). Although the application of targeted therapies 
depends on driver gene detection, it has been shown that 
the solid type has a lower frequency of targetable altera-
tions when compared to the acinar type, as evidenced by 
rare EGFR mutations and a higher frequency of KRAS 
mutations, which implicates that tyrosine kinase inhibi-
tors (TKIs) may not be satisfactorily effective in solid-
type tumors [6, 7]. More importantly, several studies have 
proposed that the solid type may benefit from additional 
immunotherapy, especially the perioperative immune 
checkpoint blocker (ICB) treatment, which is supported 
by its higher TMB and PD-L1 expression [6–8]. Never-
theless, the efficacy of immunotherapy can be hampered 
by various factors, including hypoxic, acidic conditions 

and tumor metabolic reprogramming, which is precisely 
what makes the prospects for combinational treatment 
so attractive [9]. Whether the histologic constitution of 
LUAD serves to guide the determination of future combi-
national therapeutic regimens is largely unknown.

Since previous research addressing the molecular 
underpinnings of histologic subtypes was mostly based 
on bulk tumor sequencing [6, 7, 10, 11]. In-depth com-
prehension of the oncological characteristics as well 
as the tumor microenvironment of different histologic 
subtypes of LUAD at the single-cell level can help iden-
tify potential therapeutic vulnerabilities and combi-
national approaches to improve the survival of LUAD 
patients. Here we performed scRNA-seq analysis on 
solid-, and acinar-prevalent LUAD tumors, and adjacent 
normal lung samples. Through the comparative profil-
ing of scRNA-seq data-defined cell communities in the 
tumor microenvironment (TME), we brought some new 
insights into the molding of tumor cells to their sur-
rounding circumstances and the metabolic preferences 
of tumor cells from distinct histologic subtypes. Relevant 
results were further validated in multiple bulk transcrip-
tomic and proteomic datasets as well as in an independ-
ent immunohistochemical validation cohort. Moreover, 
the constitutional and functional differences of immune 
and stromal cell subpopulations were also addressed. Our 
study promises to provide some attractive clues and sup-
porting evidences for histologic subtype-oriented therapy 
in patients with LUADs.

Methods
Data resources
The scRNA-seq data of untreated, primary LUAD sam-
ples were collected from two of our previously published 
researches [12, 13]. The histologic constituents of each 
tumor were re-accessed and recorded semi-quantita-
tively by two experienced pathologists (L.H. and S.L.) 
as suggested by the World Health Organization [2]. The 
clinicopathological information of the enrolled samples 
was summarized in Additional file  1: Table  S1. For the 
complementation of scRNA-seq data, three additional 
LUAD cohorts comprising mRNA or protein expres-
sion datasets were also collected. The RNA-seq data for 
The Cancer Genome Atlas (TCGA) cohort was down-
loaded from UCSC Xena (http://​xena.​ucsc.​edu/) and the 

Conclusions:  Overall, our research proposes several potential entry points to improve the immunosuppressive TME 
of solid LUADs, thereby synergistically potentiating their immunotherapeutic efficacy, and may provide precise thera-
peutic strategies for LUAD patients of distinct histologic subtype constitution.
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corresponding histopathologic information was obtained 
from the work presented by The Cancer Genome Atlas 
Research Network [14]. The RNA-seq data and histo-
pathological information for the East Asian ancestry 
(EAS) cohort were derived from Chen et  al.’s work [15] 
and obtained from OncoSG (https://​src.​gisap​ps.​org/​
OncoS​G/)​(16, 17). The RNA-seq and proteomic data, 
along with histopathological information for the Clini-
cal Proteomic Tumor Analysis Consortium (CPTAC) 
cohort were obtained from Gillette et  al.’s research 
[18]. The histologic categories of these LUAD samples 
were determined by their predominant histologic pat-
tern. In addition, for exploring the correlations between 
tumor cell metabolic pathway activities and the ratio 
of exhausted CD8 + T cells, an independent LUAD 
scRNA-seq dataset was used [19], and the processed 
data (including the normalized log2TPM matrix together 
with the cell annotation table) was downloaded from the 
Gene Expression Omnibus database (Accession Code: 
GSE131907).

We also retrospectively collected an additional 
cohort from our center which included 16 patients with 
untreated, surgically resected LUADs, and the forma-
lin-fixed paraffin-embedded (FFPE) samples from each 
patient were obtained. The basic clinical and histologic 
information for this validation cohort was provided in 
Additional file 1: Table S1. The study was conducted fol-
lowing the principles of the Declaration of Helsinki, and 
the study protocol was approved by the ethics committee 
of Shanghai Pulmonary Hospital. Because of the retro-
spective nature of the study, patient consent for inclusion 
was waived.

scRNA‑seq data processing and analysis
For all enrolled samples with scRNA-seq data, the spe-
cific procedures for single cell suspension preparation, 
library construction and sequencing were detailed in the 
original article [12, 13]. Raw sequence files in fastq for-
mat were obtained and processed with Cell Ranger (ver-
sion 4.0.0) coupled with the GRCh38 human reference 
genome to generate a gene count matrix for each sample. 
Then Seurat R package took over the downstream ana-
lytic procedures [20, 21]. First of all, cells met any follow-
ing criteria were removed: (1) Cells with extreme feature 
counts (< 500 or > 6000); (2) Cells with extreme RNA 
counts (> 40,000); (3) > 10% reads aligned to mitochon-
dria; (4) < 10% reads aligned to ribosome. Subsequently, 
we performed data normalization, identification of highly 
variable genes and principal component analysis (PCA) 
with Seurat’s classic workflow. Then, harmony algorithm 
was used to correct the potential batches among sample 
resources. Uniform Manifold Approximation and Pro-
jection (UMAP) was facilitated for dimension reduction 

with the parameter “reduction” set as “harmony”. The 
Seurat “FindNeighbors” and “FindClusters” functions 
were applied to detect communities and find cell clusters. 
And then the “FindAllMarkers” function with default set-
tings was used to find markers for each identified cluster.

Cell annotation and doublets removal
All cells were preliminarily labeled as epithelium, 
immune and stromal cells (roughly, PTPRC for mark-
ing immune cells, EPCAM for epitheliums, VWF and 
COL1A2 for stromal cells). Annotation of primary 
immune cell types was implemented according to the 
expression of canonical cell markers and by inspecting 
the top marker genes of each cluster. Notably, cell clus-
ters expressing two or more major cell lineage markers 
were manually removed due to their potential doublet 
identity (such as the co-expression of LYZ for myeloid 
cells and CD3E for T cells in one single cluster).

CNV estimation
Large-scale chromosomal copy number variations 
within the cancer cells at single-cell level were identified 
by inferCNV (https://​github.​com/​broad​insti​tute/​infer​
CNV) with stromal cells (fibroblasts and endothelium) 
as normal reference. The Hidden Markov Model (HMM) 
model was used to infer the variation degrees by setting 
“HMM = TRUE, denoise = TRUE”.

Differential expression analysis and gene set variation 
analysis (GSVA)
The Seurat “FindMarker” function was used to identify 
differentially expressed genes between cells from solid 
and acinar samples under the default Wilcoxon rank-
sum test. To estimate pathway activity at single-cell level, 
we applied GSVA with default parameters, as imple-
mented in the GSVA R package (version1.32.0), as pre-
viously described [22]. The gene sets of hallmarks (h.all.
v7.2.symbols.gmt) and KEGG pathways (c2.cp.kegg.
v7.2.symbols.gmt) used in this study were acquired from 
the GSEA website (https://​www.​gsea-​msigdb.​org/​gsea/​
index.​jsp) [23, 24]. The limma R package (version 3.42.2) 
was used to calculate the differential activities of path-
ways between groups. A Benjamini-Hochberg-corrected 
P value of ≤ 0.05 was used to identify significantly altered 
pathways.

Scoring of gene signatures in scRNA‑seq
For exploring the functional state of immune cells from 
tumors of different histologic types, we curated gene 
expression signatures including the cytotoxic, exhausted 
and hypoxic signatures for T/NK cells [25]; the M1 and 
M2 phenotype signatures for macrophages [26]; the anti-
gen presentation and immunosuppressive signatures for 

https://src.gisapps.org/OncoSG/)(16
https://src.gisapps.org/OncoSG/)(16
https://github.com/broadinstitute/inferCNV
https://github.com/broadinstitute/inferCNV
https://www.gsea-msigdb.org/gsea/index.jsp)
https://www.gsea-msigdb.org/gsea/index.jsp)
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DCs [27]; the fibrillar collagens and epithelial mesenchy-
mal transition signatures for fibroblasts [28]. The detailed 
list of genes for each signature and their reference sources 
were provided in the corresponding supplemental tables. 
The normalized weighted mean expression of those sig-
natures was calculated by Seurat’s “AddModuleScore” 
function, and signatures expression among subgroups 
was compared by two-sided Wilcoxon rank-sum test.

Cellular fraction calculation
To compare the variation in the percentage composi-
tion of immune cell subpopulations between different 
histologic subgroups, we calculated the fraction of cell 
numbers of the resulting cell subpopulations to the total 
number of clustered cells at the individual sample level. 
The significance of differences among histologic sub-
groups for the fractions was compared using two-sided 
unpaired Wilcoxon rank-sum test.

Analyses on the GEPIA2 web server
The prognostic relevance of molecular expression in 
the TCGA LUAD cohort was analyzed on the GEPIA2 
(http://​gepia2.​cancer-​pku.​cn/) web server [29]. Spe-
cifically, the “Survival Analysis” module was selected. 
Patient groups were divided by the median of molecu-
lar expression, the Kaplan–Meier curves were plotted to 
visualize survival differences, the cox proportional haz-
ard ratio (HR) was calculated and Log-rank test was used 
for hypothesis test. Additionally, correlation analysis 
between the expression of MTHFD2 and UBE2S in the 
TCGA LUAD cohort was performed on the “Correlation 
Analysis” module by Pearson correlation test.

Molecular expression in bulk transcriptome and proteomic 
datasets
Differential expression analyses of molecules of interest 
among histologic types were performed on three RNA-
seq datasets (log2-transformed FPKM expression val-
ues for TCGA and EAS cohorts, and log2-transformed 
RPKM for CPTAC cohort), and the CPTAC proteomic 
dataset (Two-component-normalized log2-transformed 
protein expression values). Pairwise comparisons of the 
solid type and other histological types were performed by 
two-sided Wilcoxon rank-sum tests.

Gene signatures enrichment in bulk RNA‑seq
The enrichment analyses of gene signatures in the TCGA 
bulk RNA-seq dataset were performed by gsva function 
in the GSVA R package (version 1.42.0) with parameters 
“method = ssgsea, kcdf = Gaussian, abs.ranking = TRUE”. 
The detailed list of genes for each signature and their ref-
erence sources are provided in Additional file 2: Table S2. 
Comparisons of signature enrichment scores across 

histologic subtypes were performed using the Kruskal–
Wallis test. Violin plots were drawn by the ggpubr R 
package (version 0.4.0) for visualization.

Metabolic pathway analysis
For comprehensive dissecting the metabolic differ-
ences of epitheliums across histologic subgroups in our 
scRNA-seq dataset, we quantified the metabolic activi-
ties of every single epithelium by applying the scMetabo-
lism R tool pipeline with parameters “method = VISION, 
metabolism.type = KEGG” [30, 31]. The median absolute 
deviation value was then used to measure the degree of 
inter-subgroup variation in metabolic pathway activ-
ity, only the top 50% variable metabolic pathways were 
selected for heatmap plotting.

For the independent LUAD scRNA-seq dataset, only 
samples from tumor lung (tLung) were included [19]. We 
also removed two samples with less than 50 tumor cells, 
and nine samples remained for further analysis. CD8 + T 
cells in the dataset were annotated as CD8 low T, Cyto-
toxic CD8 + T, Exhausted CD8 + T and Naive CD8 + T, 
as described in the original manuscript [19]. The 
exhausted CD8 + T cell ratio of each sample was calcu-
lated. We next quantified the metabolic activities of every 
single tumor cell in the same manner as described above. 
For each sample, the score on a specific metabolic path-
way was calculated as the average score of tumor cells in 
that sample on that metabolic pathway. Finally, Pearson’s 
correlation tests were applied to examine the correla-
tions between exhausted CD8 + T cell ratio and tumor 
metabolic pathway activities, with correction for multiple 
testing by Benjamini–Hochberg method, only metabolic 
pathways with P values less than 0.1 were selected for 
heatmap mapping.

Immunohistochemistry
Tissues were fixed in 4% paraformaldehyde, embedded 
in paraffin, cut into sections, and placed on adhesion 
microscope slides. Sections were subjected to immuno-
histochemical (IHC) staining according to standard pro-
cedures. We performed the IHC by using the MTHFD2 
mouse anti-human antibody (Abcam, ab56772). The pri-
mary antibody was incubated at 4 °C overnight followed 
by using the BOND™ Polymer Refine Detection Kit 
(Leica, DS9800) according to the manufacturer’s instruc-
tions. Whole slide scanning was performed using pano-
ramic MIDI under a 40 × objective lens. For each slide, 
the histologic patterns were firstly identified according to 
the cellular structure of the tumor, then three to five non-
overlapping fields of view for each histologic region were 
randomly captured at 100 × magnification, and the stain-
ing intensity of MTHFD2 was finally semi-quantified 
using the Image J software (1.53q) by transforming it into 

http://gepia2.cancer-pku.cn/
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mean optical density [32]. The statistical difference in 
staining intensity of MTHFD2 between solid and lepidic/
acinar was determined by the Wilcoxon rank-sum test.

Statistics
The statistical analyses involved in this study were 
described in the corresponding method section. All sta-
tistical analyses and data presentations were performed 
by the R program (versions 3.6.3 and 4.0.2). All reported 
P values were two-tailed, and P < 0.05 was considered sta-
tistically significant.

Results
Analysis of scRNA‑seq data from histologically annotated 
LUAD samples
The present study was a repurposing of scRNA-seq data 
from two of our previously published researches [12, 13]. 
All surgically excised samples came from patients with 
untreated, primary non-metastatic LUADs. The histo-
logic constituents of each tumor sample were assessed 
and recorded semi-quantitatively [1, 2]. We attempted 
to single out tumor samples with high histologic purity 
for the purpose of dissecting subtype-specific oncologi-
cal and immunological characteristics. Collectively, four 
solid-type, four acinar-type LUAD samples, and five adja-
cent normal lung samples were enrolled in this study. The 
representative hematoxylin–eosin (HE) stained images 
clearly visualized the microscopic structure of the acinar 
and solid patterns (Additional file 7: Fig. S1A–B). There 
was a "near-pure" tumor with the solid pattern covering 
more than 70% of the whole tumor in each solid LUAD 
sample [33]. With regards to the acinar type, the pro-
portion of acinar pattern in each sample was greater 
than 50%, with the content of solid/micropapillary pat-
terns limited to less than 10%, allowing to minimize the 
impacts of high-grade histologic components. The clin-
icopathological information for all enrolled samples was 
summarized in Additional file 1: Table S1.

The single-cell transcriptomic profiles generated by 
each sample were then combined for integrated analy-
sis. Following strict quality control procedures, a sparse 
matrix with 97,875 cells and 25,233 genes was obtained 
(Methods). Before performing unsupervised graph-
based clustering analysis, potential batch effects between 
samples were assessed and eliminated. Subsequently, all 
cells were labeled preliminary based on the expression 
of canonical cell markers (roughly, PTPRC for immune 
cells, EPCAM for epitheliums, VWF and COL1A2 for 
stromal cells; Additional file 7: Fig. S1C-D). Among these 
cells, 30,208 (30.86%) originated from solid samples, 
25,250 (25.80%) originated from acinar samples, and 
42,417 (43.34%) originated from adjacent lung tissues.

Tumor cells from solid LUADs create a more anoxic 
and acidic TME
We then committed to comparing the transcriptional 
characteristics of tumor cells derived from solid or acinar 
samples. By inferring large-scale copy number variations 
from transcriptome information, extensive chromosomal 
aberrations were observed in tumor-derived epitheliums 
relative to stromal cells (Additional file 7: Fig S1E). Com-
paring solid and acinar samples using gene set variation 
analyses (GSVA) [34] revealed that hallmarks associ-
ated with aggressiveness and metabolic activity, such as 
G2M checkpoint, angiogenesis, epithelial-mesenchy-
mal transition (EMT), MYC targets V1 and PI3K/AKT/
mTOR signaling, were up-regulated in tumor cells from 
solid samples (Fig. 1A, Additional file 2: Table S2), which 
was consistent with a more aggressive histopathological 
phenotype of solid LUADs. Notably, immune response-
related hallmarks (such as TNFα signaling via NF-κB, 
IL2-STAT5 signaling, and IL6-JAK-STAT3 signaling) 
were also significantly enriched in solid samples. These 
findings emphasized the invasiveness of tumor cells 
from solid LUADs as well as their adept immune evasion 
capabilities.

It has been well established that hypoxia and acidifi-
cation characterized the tumor microenvironment [35]. 
When comparing tumor cells from solid and acinar 
samples, hypoxia and glycolysis hallmarks were found 
to be more prominent in the former (Additional file  2: 
Table S2). Consistently, by applying single sample enrich-
ment analysis (ssGSEA) in bulk RNA-seq data from the 
TCGA LUAD cohort, we found the enrichment scores 
of the tumor proliferating rate [36] and hypoxia [25] sig-
natures were increased stepwise with histologic progres-
sion (Fig. 1B; Additional file 2: Table S2). Moreover, the 
expression levels of hypoxia-inducible factor-1 alpha 
(HIF1A) and lactate dehydrogenase A (LDHA), were 
observably upregulated in tumor cells from solid LUADs 
(Fig. 1C, Additional file 2: Table S2). As the key media-
tor of hypoxic response, HIF1A was intimately linked to 
multiple aspects of antitumor immunobiological pro-
cesses [37]. And LDHA was identified as a transcrip-
tion target of the oncogene MYC and was required for 
enhanced glycolysis and malignant potential of tumor 
cells [38]. LDHA was also an essential enzyme in lac-
tate production, which was reported to create an acidic 
tumor microenvironment and mediate immunotoler-
ance [35]. The upregulation of HIF1A and LDHA in 
solid LUADs was further corroborated in three publicly 
available bulk RNA-seq cohorts for which the histologic 
annotation data were available (Fig. 1D, Additional file 8: 
Fig. S2A, B; Methods). Moreover, enhanced glycolysis 
and lactate transmembrane transporter activity were also 
observed in solid LUADs in the TCGA cohort (Fig. 1E, F; 
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Fig. 1  Tumor cells from solid LUADs create a more anoxic and acidic tumor microenvironment. A. Differentially enriched hallmarks (top) and KEGG 
pathways (bottom) between tumor cells from solid and acinar samples revealed by GSVA. B. Violin plots showing enrichment scores of tumor 
proliferating rate and hypoxia signatures by histologic subtypes in the TCGA LUAD cohort. Global differences were measured by the Kruskal–Wallis 
test. C. Violin plots of upregulated genes in solid LUAD tumor cells. D. Boxplots showing mRNA expression of HIF1A, LDHA, UBE2S and UBE2C 
by histologic subtypes in the TCGA LUAD cohort. Box centerlines, median; box limits, the 25th and 75th percentiles; box whiskers, 1.5 × the 
interquartile range. Comparisons were performed using two-sided Wilcoxon rank-sum test (*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001, n s not 
significant). E–H. Violin plots showing enrichment scores of glycolysis (E), lactate transmembrane transporter activity (F), checkpoint molecules 
(G) and ubiquitin mediated proteolysis (H) signatures by histologic subtypes in the TCGA LUAD cohort. Global differences were measured by the 
Kruskal–Wallis test
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Additional file 2: Table S2). These findings supported the 
hypothesis that tumor cells of solid LUADs constructed a 
more anoxic and acidic peritumor niche, which not only 
facilitated malignant progression but also impaired anti-
tumor effector cell function. Indeed, immune suppression 
by checkpoint molecules was found to be most intense in 
solid LUADs (Fig. 1G; Additional file 2: Table S2).

The role of epigenetic mechanisms in the differentiation 
of LUAD morphological subtypes
Previous research established the critical role of epige-
netic mechanisms in determining the histologic identity 
of LUAD cells [10]. Intriguingly, we noticed the activity of 
the ubiquitin-mediated proteolysis pathway, as well as the 
expression of multiple ubiquitin-conjugating enzymes 
including UBE2S, UBE2E3 and UBE2C, were upregu-
lated in tumor cells from solid samples (Fig.  1C; Addi-
tional file 2: Table S2). A consistent trend in the activity 
of the ubiquitin-mediated proteolysis across histologic 
subtypes was also observed in the TCGA cohort (Fig. 1H; 
Additional file 2: Table S2). Indeed, ubiquitin-conjugating 
enzymes have been shown to be overexpressed in various 
cancer types and involved in the regulation of a variety of 
cancer-associated biological processes [39]. Overexpres-
sion of UBE2S, for instance, has been shown to reduce 
the stability and activity of the p53 protein by increasing 
its ubiquitination [40]. Furthermore, UBE2S was demon-
strated to be negatively correlated with the von Hippel-
Lindau tumor-suppressor (pVHL), which mediated the 
ubiquitin-dependent proteolysis of HIF1A, in multiple 
tumor cell lines [41, 42]. Actually, ubiquitination engaged 
in metabolic reprogramming of cancer cells by modify-
ing metabolic signaling pathways, transcription factors 
and metabolic enzymes [43]. The solid LUAD-enriched 
PI3K/AKT/mTOR and c-Myc signaling, could be 
enhanced by ubiquitination modifications in tumor cells 
[43]. Importantly, the differential expression of UBE2S 
and UBE2C across histologic subtypes were further cor-
roborated in bulk transcriptome from the TCGA and the 
East Asian ancestry (EAS) cohorts, as well as proteome 
from the Clinical Proteomic Tumor Analysis Consortium 
(CPTAC) cohort (Fig. 1D, Additional file 8: Fig. S2C–D; 

Methods). Briefly, our results hinted that post-transcrip-
tional modification represented by ubiquitination might 
play a crucial part in the acquisition of morphological 
phenotypes and the development of adaptive metabolic 
reprogramming in LUADs.

Metabolic preferences vary between histologic subtypes
We noticed a striking difference in the enrichment of 
multiple metabolic pathways between tumor cells derived 
from solid and acinar samples (Fig. 1A, Additional file 2: 
Table S2). Tumor cells in solid samples, for instance, had 
enhanced glycolysis and oxidative phosphorylation, while 
tumor cells from acinar samples had increased nitrogen 
metabolism. We next quantified a comprehensive col-
lection of metabolic pathways [30] to dissect the meta-
bolic landscape of epitheliums across groups (Fig.  2A). 
Remarkably, activities of some metabolic pathways, such 
as glycolysis/gluconeogenesis, purine and pyrimidine 
metabolism, and the citrate cycle (TCA cycle), showed 
progressive increases in lung epitheliums/tumor cells 
from normal to acinar and then solid samples. Never-
theless, some metabolic pathways exhibited histologic 
pattern preference. Specifically, tumor cells from solid 
samples were distinguished by increased activity in sul-
fur, glycerolipid, glutathione, selenocompound metabo-
lism, and folate biosynthesis, whereas tumor cells from 
acinar samples were recognized by enhanced activity 
in D-glutamine and D-glutamate, nitrogen, vitamin B6 
metabolism, and arginine biosynthesis. From a global 
perspective, tumor cells from solid LUADs upregulated 
pathways in both energy and substance metabolism 
(including nucleotide, amino acid, lipid metabolism and 
TCA cycle), which corresponds to their requirement for 
robust growth, proliferation and invasion. Among all 
these pathways, folate-mediated one-carbon metabolism 
supports a range of anabolic processes essential for can-
cer cell survival and growth [44]. Importantly, we discov-
ered that the methylenetetrahydrofolate dehydrogenase 2 
(MTHFD2), a key enzyme in the transformation of folate 
metabolites, was markedly upregulated in tumor cells 
from solid LUADs, along with the enhancement of folate 
biosynthesis and one-carbon pool by folate (Fig.  1C, 

(See figure on next page.)
Fig. 2  Metabolic preferences vary between histologic subtypes. A. Heatmap showing relative metabolic pathways activities in the three histologic 
subgroups. B-D. Boxplots showing MTHFD2 and C15orf48 mRNA expression in the TCGA (B) and the EAS cohorts (C), and protein expression in 
the CPTAC cohort (D). Box centerlines, median; box limits, the 25th and 75th percentiles; box whiskers, 1.5 × the interquartile range. Comparisons 
were performed using two-sided Wilcoxon rank-sum test (*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001, n s not significant). E. Representative 
immunohistochemical images of MTHFD2 in lepidic, acinar and solid tumor regions. Scale bar, 50 μm. F. Violin plots showing the reactive oxygen 
species pathway score across the three histologic subgroups. Comparisons were performed by two-sided Wilcoxon rank-sum test. G. Kaplan–Meier 
survival curves showing the prognostic difference between the low and high C15orf48 expression groups in the TCGA LUAD cohort. H. Correlations 
between tumor metabolic pathway scores and the ratio of exhausted CD8 + T cells. P values were determined by Pearson’s correlation test (*P < 0.1, 
**P < 0.05, ***P < 0.01)
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Fig. 2  (See legend on previous page.)



Page 9 of 21Li et al. Journal of Translational Medicine          (2022) 20:423 	

Fig.  2A; Additional file  2: Table  S2). Encouragingly, the 
expression differences of MTHFD2 across histologic sub-
types were further confirmed in the TCGA and EAS bulk 
transcriptome cohorts, as well as the CPTAC proteomic 
cohort (Fig.  2B–D). More importantly, immunohisto-
chemical staining further verified at the clinical sample 
scale that the density of MTHFD2 was increased in tumor 
regions of the solid pattern compared to the lepidic/aci-
nar pattern (Fig. 2E, Additional file 9: Fig. S3A). To our 
knowledge, overexpression of MTHFD2 promotes tumo-
rigenesis and malignant progression of various malig-
nancies by virtue of its dual functions in metabolism and 
epigenetic modification [44–46]. The overexpression of 
MTHFD2 was associated with a worse prognosis in the 
TCGA LUAD cohort (Additional file  9: Fig. S3B). Strik-
ingly, MTHFD2 raises the basal and IFN-γ-stimulated 
PD-L1 expression in both basal and IFN-γ-stimulating 
conditions, which could be the epitome of the linking of 
onco-metabolic genes and tumor immunoresistance [45]. 
Intriguingly, a strong positive correlation between the 
expression of MTHFD2 and UBE2S was observed in the 
TCGA cohort (Additional file  9: Fig. S3C), suggesting a 
possible link between ubiquitination modifications and 
metabolic reprogramming in LUADs.

What’s more, we noticed the enhancement of glu-
tathione metabolism and the enrichment of reactive 
oxygen species (ROS) pathway in tumor cells from solid 
samples (Fig. 2A, F; Additional file 2: Table S2). This sug-
gested that tumor cells in the solid type might confront a 
more intense oxidative stress reaction. Consistently, the 
apoptosis hallmark was significantly enriched in tumor 
cells from solid LUADs (Additional file  2: Table  S2). 
ROS are a complex class of molecules with both pro-
tumor and anti-tumor effects [47]. Excessive ROS can 
induce cell death via various approaches, such as apop-
tosis, necrosis and autophagy, thus limiting the progres-
sion of cancer [48]. Interestingly, we discovered that the 
gene C15orf48 (also known as modulator of cytochrome 
C oxidase during Inflammation; MOCCI), which may be 
involved in the production of reactive oxygen species, 
was significantly upregulated in tumor cells from solid 
LUADs (Fig. 1C). C15orf48 is located in the cytochrome 
C oxidase subunit (Complex IV) in mitochondria and 
has been reported to reduce mitochondrial membrane 
potential and ROS production during inflammation, 
resulting in cellular protection and attenuated immu-
noreaction [49]. The expression differences of C15orf48 
among LUAD subtypes were verified in the TCGA and 
EAS bulk transcriptome cohorts, as well as the CPTAC 
proteomic cohort (Fig.  2B–D). Survival analysis further 
demonstrated that high expression of C15orf48 was asso-
ciated with a poor prognosis in LUAD patients in the 
TCGA cohort (Fig. 2G).

We wondered whether subtype metabolic preferences 
affect antitumor immune function. Using a publicly avail-
able scRNA-seq dataset of LUAD patients [19], we inves-
tigated the correlations between cancer cell metabolic 
pathway activity and the ratio of exhausted CD8 + T 
cells (Fig.  2H, Methods). The results showed unequivo-
cally that the activation of metabolic pathways such as 
galactose metabolism, glycolysis/gluconeogenesis, and 
pentose phosphate pathway, was positively correlated 
with the ratio of exhausted CD8 + T cells. Most of these 
pathways were upregulated in tumor cells from solid 
samples except for vitamin B6 metabolism, which was 
relatively more active in acinar samples. Remarkably, 
through the Leloir pathway, galactose can be metabolized 
to produce G6P as an alternative fuel for glycolysis [50]. 
For the complementary of scRNA-seq, we quantified the 
enrichment scores of one-carbon pool by folate, pyrimi-
dine metabolism and galactose metabolism in the TCGA 
LUAD cohort with bulk RNA-seq data (Additional file 9: 
Fig. S3D–F; Additional file  2: Table  S2). The results 
showed that these metabolic pathways exhibited cascade 
enhancement with histological progression and reached 
their highest in the solid subtype, which is consistent 
with our previous findings.

In summary, the metabolic preferences of differ-
ent histologic subtypes were consistent with their cor-
responding biological behavioral traits, especially the 
upregulation of folate-mediated one-carbon metabo-
lism and the key gene MTHFD2 by tumor cells of solid 
LUADs to satisfy their cellular replication and transcrip-
tional requirements. More importantly, we also gained 
some observations on the influence of tumor metabolic 
preferences on anti-tumor immune responses, which 
might provide new insights for understanding the hetero-
geneity of LUAD subtypes and exploring combinatorial 
therapeutic strategies.

Compromised anti‑tumor effects in T cells from solid 
samples
We next investigated the landscape of the tumor immune 
microenvironment across distinct histologic subtypes. 
Immune cells (n = 81,136) were re-clustered and identi-
fied as T cells, NK cells, myeloid cells, mast cells, plas-
macytoid dendritic cells (pDCs), B cells, and plasma cells 
based on the expression of canonical markers (Additional 
file  10: Fig. S4A–D; Additional file  3: Table  S3). One of 
our primary interests was the variation in the compo-
sition and functional status of T/NK subsets associ-
ated with distinct histologic subtypes. Of the 33,946  T/
NK cells obtained after removal of doublets (Methods), 
4204 (12.4%) cells were from acinar samples and 18,974 
(55.9%) from solid samples. Re-clustering all of these cells 
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Fig. 3  Compromised anti-tumor effects in solid LUAD-derived T cells. A. Cluster-colored UMAP plot of T/NK cells. B. UMAP plots showing the 
expression of chosen canonical T/NK cell marker genes. C. Heatmap depicting the normalized expression of canonical T/NK cell marker genes 
among clusters. D. Boxplot showing cellular fractions of each T/NK cluster in normal (n = 5), acinar (n = 4) and solid (n = 4) samples. Box centerlines, 
median; box limits, the 25th and 75th percentiles; box whiskers, 1.5 × the interquartile range. Line segments of different lengths indicate which 
two groups were compared. Two-sided Wilcoxon rank-sum test. E–G. Violin and box plots showing the cytotoxic (E), exhausted (F) and hypoxic 
(G) signature scores for CD8 + T cells in the three subgroups. Comparisons were performed by two-sided Wilcoxon rank-sum test. H. Violin plots 
showing immune checkpoints expression of T cells from solid and acinar samples. I. Differentially enriched KEGG pathways between CD8 + T cells 
from solid and acinar samples revealed by GSVA
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revealed ten distinct subsets: four CD4 + T cell subsets 
(CD4-C1 to C3; CD3D + CD4 +) including one subset 
of regulatory T cell (Treg; FOXP3 +), three CD8 + T cell 
subsets (CD8-C1 to C3; CD3D + CD8A +), one cycling 
T cell subset (Cycling T; MKI67 + TOP2A +), and two 
subsets of NK cells (NK-C1 and C2, CD3D − TYROBP +) 
(Fig. 3A–C, and Additional file 10: Fig. S4E–G).

The proportion of the CD8-C1 subset increased 
incrementally from normal to acinar and solid samples 
(Fig. 3D). CD8-C1 highly expressed ZNF683 and ITGAE, 
represented a subpopulation of tissue-resident memory 
T cells (TRMs), which was reported as a considerable 
origin of tumor neoantigen specific T cells (Fig.  3B, C) 
[51, 52]. Besides, the elevated expression of exhaustion-
related markers (e.g., LAG3, PDCD1, HAVCR2 and 
ENTPD1) in CD8-C1 indicated that a considerable frac-
tion of these cells was induced to an exhausted pheno-
type in the TME (Fig.  3C, Additional file  10: Fig. S4G). 
Indeed, shared TCRs were frequently observed between 
ZNF683 + and exhausted T cells in lung tumors [53]. 
CD8-C2 infiltrated relatively less in tumors, and exhib-
ited an effector memory signature (high GZMK, IFNG 
and CCL4 but lack of GZMB) and the previously defined 
“precursor exhausted” T cell signature (high EOMES, 
NR4A2, and low TCF7) (Fig. 3C, Additional file 10: Fig. 
S4G) [52, 54]. CD8-C3 was designated as cytotoxic T 
cells based on their expression of GZMA, GZMB, GNLY 
and PRF1, and their relative abundance was reduced in 
tumors. Notably, we observed increased HIF1A expres-
sion in the exhausted CD8-C1 subpopulation (Fig.  3C). 
We further quantified the cytotoxicity, exhaustion, and 
hypoxia signatures to compare the functional status of 
CD8 + T cells from different origins (Fig.  3E–G, Addi-
tional file 4: Table S4) [25]. The results showed that the 
exhausted score and hypoxic score increased progres-
sively from normal to acinar and solid samples, while 
correspondingly, the cytotoxic score of CD8 + T cells 
from solid samples was lower than that of normal sam-
ples but still higher than that of acinar samples. This 
might suggest that, despite the considerable cytotoxic 
activity of solid LUAD-derived CD8 + T cells, the inten-
sification of exhaustion induction led to a compromised 
oncocidal effect, thus contributing to immune escape 
and poor prognosis of solid tumors. Moreover, multiple 
immune checkpoint molecules including LAG3, TIGIT 
and ENTPD1, were significantly upregulated in solid 
LUAD-derived CD8 + T cells (Fig. 3H, Additional file 4: 
Table S4). Meanwhile, consistent with our previous find-
ing of a more hypoxic and acidic TME in solid LUADs, 
the significantly elevated hypoxic score of solid LUAD-
derived CD8 + T cells might reflect the involvement of 
hypoxic mechanism in T cell dysfunction.

GSVA was further conducted to dissect the differ-
ences in pathway activities between CD8 + T cells of 
solid and acinar sample origins (Fig. 3I, Additional file 4: 
Table  S4). The results revealed that cytokine-cytokine 
receptor interaction was significantly activated in solid 
LUAD-derived CD8 + T cells. Correspondingly, various 
cytokines and chemokines, such as CCL4L2, CCL3L1, 
CCL3, CXCL13 and IFNG, were significantly upregu-
lated in solid LUAD-derived CD8 + T cells (Additional 
file  10: Fig. S4H, Additional file  4: Table  S4H). In par-
ticular, multiple metabolic pathways were upregulated 
in solid LUAD-derived CD8 + T cells (Fig. 3I, Additional 
file  4: Table  S4), some of which were also found to be 
upregulated in tumor cells from solid samples, such as 
glycolysis/gluconeogenesis, cysteine and methionine, 
taurine, hypotaurine, and pyruvate metabolism. This sug-
gested that the metabolic patterns favored by histologic 
subtypes might have a substantial impact on the metabo-
lism and function of tumor-infiltrating CD8 + T cells. We 
were gaining the recognition that cellular metabolism 
constituted an important modulator of T cell replication 
and function [55]. This prompted us to speculate that 
solid LUAD-derived T cells were forced to compete for 
nutrients and oxygen with malignant cells, which could 
result in metabolic deficiencies and diminished antitu-
mor effects [56]. In comparison, CD8 + T cells derived 
from acinar samples were significantly enriched in leuko-
cyte transendothelial migration, focal adhesion and T cell 
receptor signaling pathways (Fig. 3I).

It is widely acknowledged that CD4 + T cells play 
a prominent role in cancer immunosurveillance and 
immunotherapy [57]. For the three conventional 
CD4 + T cell populations, CD4-C1 was identified as 
effector memory CD4 + T cells based on their expression 
of ANXA1, CD40LG and GZMA, which infiltrated rela-
tively less in solid samples compared to acinar samples 
(Fig. 3B–D, Additional file 10: Fig. S4G). Of note, CD4-
C2 was designated as a subtype of follicular helper T cells 
by expressing CXCL13 and TOX2, as well as exhaustion 
markers including TIGIT, PDCD1, CTLA4 and MAF. 
This exhausted population, as well, upregulated HIF1A 
expression and accounted for a relatively higher propor-
tion of solid samples (Fig.  3C, D). CD4-C3 was marked 
by naïve T cell features such as CCR7, SELL and LEF 
and was relatively more abundant in solid samples. The 
infiltration percentage of Treg was elevated in tumors, 
but comparable in acinar and solid samples (Fig.  3D). 
The GSVA further revealed that pathways including gly-
colysis/gluconeogenesis, porphyrin, and chlorophyll 
metabolism, were significantly upregulated in solid 
LUAD-derived CD4 + T cells (Additional file 10: Fig. S4I). 
Dissimilarly, acinar LUAD-derived CD4 + T cells were 
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enriched in natural killer cell mediated cytotoxicity, anti-
gen processing and presentation, and allograft rejection.

To summarize, when compared to acinar LUADs, more 
T cells in solid LUADs were reprogramed to an exhausted 
phenotype, and importantly, the anti-tumor effects of T 
cells in solid LUADs were at least partially circumscribed 
by the highly nutrient- and oxygen-deprived TME. On 
the other hand, this also suggested that the therapeutic 
regimen combining immunotherapy and vascular nor-
malization therapy to improve the TME might be more 
beneficial for solid LUADs.

Immunosuppressive phenotype dominates myeloid cells 
in solid LUADs
Myeloid cells were further subdivided into monocytes/
macrophages and dendritic cells based on the expres-
sion of canonical markers (Additional file 11: Fig. S5A–
B). Sub-clustering of 36,443 monocytes/macrophages 
revealed nine subsets, including four subsets of alveolar 
macrophages (AMs; Macro-C1 and C6-C8: MACRO, 
FABP4), three subsets of monocyte-derived macrophages 
(Mo-Macs; Macro-C2 and C3: MAFB, CSF1R; Macro-
C4: MAF, SPP1), one subset of actively cycling mac-
rophage (Macro-C5: MKI67, TOP2A) and one subset of 
monocyte (VCAN, FCN1) (Fig. 4A, B, Additional file 11: 
Fig. S5C, D). AMs were dominated by the Macro-C1 
subpopulation, which was abundant in adjacent normal 
lungs and had the lowest proportion in solid samples 
(Fig. 4C). Macro-C6-C8 constituted only a minor fraction 
of AMs, with Macro-C8 being marked by metallothio-
nein genes, such as MT2A and MT1E, which might be 
vital in heavy metals binding and processing (Additional 
file 11: Fig. S5D) [58]. As for the Mo-Macs, the propor-
tions of Macro-C2-C4 were increased in tumors relative 
to normal samples (Fig. 4C). Macro-C4 was highlighted 
by high SPP1 expression and absent MHC II expression, 
which was regarded as a marker of tumor-associated 
macrophages (TAMs) and was involved in angiogenesis 
and metastasis promotion (Fig. 4B, C; Additional file 11: 
Fig. S5D) [59]. Macro-C2 exhibited a conspicuous gene 
signature of M2 polarization (including MAF, APOE, 
CCL18 and CCL13), while Macro-C3 was dominated 
by the M1 signature and highly expressed MHC II mol-
ecules (Fig. 4B, Additional file 11: Fig. S5D). Gene ontol-
ogy annotation of marker genes further revealed that 
Macro-C2 was associated with neutrophil activation 
and myeloid leukocyte migration (Additional file 11: Fig. 
S5E). While Macro-C3 was enriched in antigen process-
ing and presentation, response to IFN-γ and regulation 
of lymphocyte activation (Additional file 11: Fig. S5F). To 
compare the general functional characteristics of mac-
rophages between acinar and solid samples, we quantified 

the phenotypic polarization scores of all macrophages 
[26]. Intriguingly, we discovered that solid LUAD-derived 
macrophages had both significantly higher M1 and M2 
scores (Fig. 4D, E; Additional file 5: Table S5). Neverthe-
less, the “M2-M1” score was also significantly higher in 
solid LUAD-derived macrophages, implying that the 
immunosuppressive M2 phenotype was predominant in 
macrophages from solid samples (Fig.  4F). Indeed, we 
discovered that solid LUAD-derived monocytes/mac-
rophages increased expression of suppressive immune 
checkpoints including HAVCR2, ENTPD1 and VSIR 
(Fig. 4G, Additional file 5: Table S5). Beyond that, com-
parison of gene expression profiling revealed that genes 
implicated in immunosuppression (FOLR2, TMEM176B, 
CLEC10A) and chemotaxis (CXCL9, CXCL10, CCL13, 
CCL18) were upregulated in solid LUAD-derived mac-
rophages (Fig.  4H, Additional file  5: Table  S5). FOLR2 
encoded the macrophage-specific folate receptor β, 
which was responsible for folate transportation and was 
regarded as an attractive therapeutic target for TAMs 
[60]. The tumor-promoting cytokine CCL18 was also 
found to be intimately involved in the induction of the 
M2 phenotype in macrophages [61, 62]. Complementa-
rily, we dissected the functional characteristics of mac-
rophages in bulk data from the TCGA LUAD cohort and 
obtained consistent results. Those were, signals regulat-
ing macrophage and dendritic cell traffic into tumor, as 
well as enrichment scores for M1 phenotype and mye-
loid-derived immunosuppression signature increased 
incrementally with histologic progression (Additional 
file 11: Fig. S5G–I; Additional file 2: Table S2) [36].

Dendritic cells are critical in initiating and maintain-
ing anti-tumor T cell immunity. All 2129 dendritic cells 
were re-clustered and annotated as conventional den-
dritic cells, type I (cDC1s; CLEC9A); conventional den-
dritic cells, type II (cDC2s; CD1C); mature regulatory 
dendritic cells (mregDCs; LAMP3), and plasma den-
dritic cell (pDCs; LILR4) (Fig.  5A, B). Both cDC1 and 
pDC were slightly overrepresented in solid samples when 
compared to acinar samples, and the opposite was the 
case in cDC2 (Fig. 5C). mregDCs are DC cells in a spe-
cific differentiated state associated with tumor antigens, 
and their immunomodulatory program may be exploited 
by cancer cells to facilitate immune escape [63]. Although 
the proportion of mregDCs was comparable between the 
two subtypes, mregDCs in solid samples were induced to 
differentiate to a more immunosuppressive phenotype, 
which corresponded with the overexpression of immu-
noregulatory genes such as PD-L1, CD200, CMTM6, 
IDO1, SOCS1, SOCS2, EBI3 and IL4I1 (Fig.  5D, Addi-
tional file 5: Table S5). We further quantified the antigen-
presentation and the immunosuppressive signatures to 
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ascertain the functional difference between all infiltrating 
dendritic cells in the three subgroups (Fig. 5E, Additional 
file  5: Table  S5) [27]. Remarkably, solid LUAD-derived 
DCs have both the highest antigen-presentation score 
and immunosuppressive score. As previously reported, 
solid LUADs exhibited a higher rate of somatic muta-
tions, which implies a greater abundance of potential 

tumor neoantigens [6]. This might partially explain why 
solid LUAD-derived DCs exhibited increased antigen 
presentation activity. The tumor microenvironment of 
solid LUADs, on the other hand, might counteract the 
anti-tumor effects of DCs by inducing an immunosup-
pressive phenotype, yet the underlying mechanism of 
which remained unknown.

Fig. 4  M2 phenotype dominates solid LUAD-derived macrophages. A. Cluster-colored UMAP plot of monocytes and macrophages. B. Heatmap 
of normalized expression of monocyte/macrophage marker genes among clusters. C. Boxplot showing cellular fractions of each monocyte/
macrophage cluster in normal (n = 5), acinar (n = 4) and solid (n = 4) samples. Box centerlines, median; box limits, the 25th and 75th percentiles; box 
whiskers, 1.5 × the interquartile range. Line segments of different lengths indicate which two groups were compared. Two-sided Wilcoxon rank-sum 
test. D-F. Violin and box plots of M1 (D), M2 (E), and M1-M2 (F) signature scores for macrophages in the three subgroups. G. Violin plots showing 
immune checkpoints expression of monocytes/macrophages from solid and acinar samples. H. Volcano plot showing the upregulated genes in 
solid LUAD-derived macrophages
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Altogether, our results demonstrated that immuno-
suppressed myeloid phenotypes predominated in solid 
LUADs, which also suggested that myeloid-directed 
therapeutic interventions were somehow attractive for 
counteracting the immunosuppressive TME and elicit-
ing effective antitumor responses in solid LUADs.

Stromal status disparities in different histologic subtypes
Previous researches support that cancer-associated 
fibroblasts (CAFs) are implicated in cancer initiation, 
progression, extracellular matrix (ECM) remodeling, 
and treatment resistance [64, 65]. Here we addressed 
the discrepancies between solid LUAD- and aci-
nar LUAD-derived fibroblasts in terms of phenotype 

constitution and functional status. A total of 1507 fibro-
blasts were re-clustered and divided into seven sub-
sets including five subsets of fibroblasts (Fibro-C1-C5; 
COL1A1, COL1A2), one subset of pericyte (RGS5) 
and one subset of myofibroblast (ACTA2, MYH11) 
(Fig. 6A–C, Additional file 12: Fig. S6A–C). Acinar and 
solid samples contributed 585(38.87%) and 329(21.8%) 
fibroblasts, respectively (Fig. S6A). It was of particu-
lar interest that the Fibro-C2 subset, whose relative 
proportion decreased gradually from normal to acinar 
and then solid samples, was marked by low expres-
sion of fibroblast activation protein (FAP) and specifi-
cally overexpressed the transcription factor 21 (TCF21) 
(Fig.  6B, C, Additional file  12: Fig. S6B, C). Previous 
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Fig. 5  The immunosuppressive phenotype of solid LUAD-derived DCs. A UMAP plot colored by DC subtypes. B Heatmap of normalized expression 
of DC marker genes among subtypes. C. Boxplot showing cellular fractions of each DC subtype in normal (n = 5), acinar (n = 4) and solid (n = 4) 
samples. Box centerlines, median; box limits, the 25th and 75th percentiles; box whiskers, 1.5 × the interquartile range. Line segments of different 
lengths indicate which two groups were compared. Two-sided Wilcoxon rank-sum test. D. Violin plots of immunosuppressive molecules expression 
in mregDC from solid and acinar samples. E. Violin and box plots of antigen presentation (left) and immunosuppressive (right) signature scores for 
DCs in the three subgroups. Comparisons were performed by two-sided Wilcoxon rank-sum test
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Fig. 6  Stromal status disparities in different histologic subtypes. A. Cluster-colored UMAP plot of all fibroblasts. B. Boxplot showing cellular fractions 
of each fibroblast cluster in normal (n = 5), acinar (n = 4) and solid (n = 4) samples. Box centerlines, median; box limits, the 25th and 75th percentiles; 
box whiskers, 1.5 × the interquartile range. Line segments of different lengths indicate which two groups were compared. Two-sided Wilcoxon 
rank-sum test. C. Heatmap of normalized expression of fibroblast marker genes among clusters. D. Volcano plot showing the upregulated genes in 
solid LUAD-derived fibroblasts. E–F. Violin and box plots of fibrillar collagens (E) and EMT (F) signature scores for fibroblasts in the three subgroups. 
Comparisons were conducted using two-sided Wilcoxon rank-sum test. G. Cluster-colored UMAP plot of all endothelial cells. H. Boxplot showing 
cellular fractions of each endothelium cluster in normal (n = 5), acinar (n = 4) and solid (n = 4) samples. Box centerlines, median; box limits, the 25th 
and 75th percentiles; box whiskers, 1.5 × the interquartile range. Line segments of different lengths indicate which two groups were compared. 
Two-sided Wilcoxon rank-sum test. I. Heatmap of normalized expression of endothelial marker genes among clusters. J. Differentially enriched KEGG 
pathways between tumor endothelial cells from solid and acinar samples revealed by GSVA. K. Violin plots showing the expression of selected MHC 
molecules in endothelial cells



Page 16 of 21Li et al. Journal of Translational Medicine          (2022) 20:423 

study demonstrated that TCF21 was a master regula-
tor of CAF status, and its overexpression diminished 
the ability of CAF to contract collagen gels, promote 
tumor growth, invasion and chemotherapy resist-
ance [66]. The Fibro-C1 subset, which was highlighted 
by classic CAF markers (e.g., FAP, PDPN, MMP11) as 
well as EMT signature genes (e.g., CTHRC1, POSTN, 
IGFBP3), was enriched in tumors relative to nor-
mal samples (Fig.  6B, C, Additional file  12: Fig. S6C). 
Simultaneously, Fibro-C1 up-regulated the expression 
of various collagen fibers (e.g.; COL1A1, COL1A2, 
COL3A1, COL10A1, COL11A1). This corresponded to 
the result of gene ontology annotation of the specific 
markers of Fibro-C1, which revealed that these tumor-
enriched fibroblasts were possibly actively participated 
in the processes of collagen fibril organization and 
ECM remodeling (Additional file 12: Fig. S6D). Remod-
eling of the ECM by CAFs might result in a mechani-
cal barrier preventing the migration and infiltration of 
immune effector cells into the tumor parenchyma [67]. 
This notion led us to further compare the functional 
differences of fibroblasts between the two subtypes. 
Analysis of differentially expressed genes disclosed that 
CTHRC1 and IGFBP5, both of which played important 
roles in collagen production and fibrotic progression, 
were significantly upregulated in solid LUAD-derived 
fibroblasts (Fig.  6D). In addition, the immunomodula-
tory gene TDO2 was also found to be upregulated in 
solid LUAD-derived fibroblasts. We further quantified 
the fibrillar collagens transcriptional score of all fibro-
blasts based on the expression of main collagens (i.e., 
collagens I/ III/V, and fibronectin) that were assem-
bled into large mechanically resilient fibers (Additional 
file  6: Table  S6) [28]. Comparisons between different 
histologic subgroups demonstrated that the fibrillar 
collagens transcriptional score was significantly higher 
in tumor tissues than in adjacent normal lung tissues, 
and more importantly, higher in solid LUADs than in 
acinar LUADs, suggesting a more extensive intersti-
tial fibrosis in solid LUADs (Fig.  6E). Moreover, solid 
LUAD-derived fibroblasts had a significantly higher 
EMT score (Fig.  6F), which could contribute to the 
transition of malignant cells from an epithelial phe-
notype to a more migratory mesenchymal phenotype, 
thereby promoting distant tumor metastasis and treat-
ment failure. By applying ssGSEA to bulk RNA-seq data 
from the TCGA LUAD cohort, we subsequently quan-
tified and compared the enrichment scores of fibrillar 
collagen, matrix remodeling and EMT signatures [36] 
across histologic subtypes, and the results were consist-
ent with our previous findings (Additional file  12: Fig. 
S6E–G; Additional file 2: Table S2).

Endothelial cells in the TME not only serve as a physi-
cal barrier to tumor cell metastasis but also act as semi-
professional antigen-presenting cells involved in the 
interactions with immune cells (e. g., recruitment and 
activation of T cells) [68]. Consistent with previous find-
ings, endothelial cells were enriched in normal lungs 
on account of their hypervascular nature [69]. A total 
of 1422 endothelial cells, of which 294 (20.7%) and 163 
(11.5%) cells were separately from acinar and solid sam-
ples, were further re-clustered. The resulting sub-clusters 
obtained were assigned to known endothelial types in 
line with the expression of well-established marker genes 
(Fig.  6G–I and Additional file  13: Fig. S7A–C). When 
comparing the percentage composition of endothelial 
categories in different histologic subgroups, we found 
that tumor endothelial cells (tumor ECs) account for 
the majority of endothelial population in tumor sam-
ples, especially in solid samples. Inversely, lymphatic ECs 
and capillary ECs were relatively absent in solid samples 
(Fig. 6H). Notably, tumor ECs were featured by upregu-
lation of angiogenesis-related genes including collagens 
(e.g., COL4A1, COL4A2), PXDN, SPARC and HSPG2, 
as well as proliferation markers (e.g., MKI67, TOP2A) 
(Fig.  6I). These hyperproliferative endothelial cells did 
not hold the structure and function of normal blood ves-
sels, but might instead exacerbate the hypoxic situation 
in the microenvironment of solid LUADs [70]. To further 
elucidate the functional status of tumor endothelial cells, 
GSVA was conducted and pathway activities were com-
pared between solid and acinar samples. We uncovered 
that graft versus host disease, allograft rejection, anti-
gen processing and presentation pathways were signifi-
cantly enriched in acinar LUAD-derived endothelial cells 
(Fig. 6J). It was documented that increased antigen pres-
entation by endothelial cells assisted in T cell priming 
and tumor-specific immune activation [71]. Differently, 
solid LUAD-derived endothelial cells upregulated multi-
ple metabolic pathways such as glycine, serine and threo-
nine metabolism, linoleic acid metabolism. This consisted 
with previous findings that tumor endothelial cells were 
transcriptionally reprogrammed to regulate their meta-
bolic functions, which might be associated with the 
downregulation of their antigen presentation and homing 
immune cell recruitment functions, and ultimately con-
tributed to tumor escape from immune destruction [71, 
72]. In fact, we did find that multiple MHC class I and 
MHC class II molecules were under-expressed in solid 
LUAD-derived endothelial cells (Fig. 6K).

Taken together, these encouraging findings enlighten 
us that therapeutic regimen targeting stromal compo-
nents may enhance antitumor benefit by facilitating 



Page 17 of 21Li et al. Journal of Translational Medicine          (2022) 20:423 	

immune-tumor cells interactions in solid LUADs and 
hold promise to synergize with immunotherapeutic 
regimens.

Discussion
Researches dedicated to dissecting the heterogenous 
TME of distinct histologic patterns of LUADs are well 
underway. Here we performed a comparative analysis of 
the TME characteristics between solid and acinar LUAD 
samples primarily from a single-cell perspective, with 
the relevant results complemented by bulk transcrip-
tomic and proteomic datasets and validated by immu-
nohistochemistry. Our results suggested that the degree 
of acidity and hypoxia and the tumor metabolic prefer-
ences varied between histologic subtypes and might cor-
respondingly impinge on the metabolism and function of 
immune components. In addition, ubiquitination modifi-
cations might also be involved in the progression of his-
tologic patterns. Indeed, a prevalent state of restrained 
immune effector function was found in the solid histo-
logic subtype, and discrepancies in stromal cell function 
could also contribute to the specific immune phenotype 
of solid LUADs.

Metabolic remodeling fuels tumorigenesis and evolu-
tion. However, horizontally, metabolic heterogeneity exits 
amongst tumors as well as inside an individual tumor, 
and vertically, adaptive metabolic remodeling may arise 
along with malignant progression [73]. A concomitant 
concern is whether the progression of histologic patterns 
is accompanied by the transformation in metabolic pro-
files of LUADs. Here we did find a gradient of metabolic 
alterations and relatively specific metabolic preferences 
between histologic subtypes, these metabolic properties 
coincided with the malignant potential of the histologic 
subtypes and might have a direct or indirect impact on 
intra-tumoral immune function. Energetically, tumor 
cells from solid LUADs upregulated glycolytic activity, 
confronting immune cells, which also relied on glyco-
lysis for effector functions, with a scarcer energy source 
[56, 74]. On substance metabolism, augmented serine 
metabolism and pentose phosphate metabolic pathways 
were observed to supply biomolecules for the exuber-
ant cell replication of solid LUADs. Indeed, we observed 
a positive correlation between the metabolic activities 
of tumor glycolytic and pentose phosphate pathway and 
the proportion of exhausted CD8 + T cells through an 
independent scRNA-seq dataset of LUAD. Interestingly, 
unlike the utilization of oxidative phosphorylation by 
M2 macrophages, the predominant metabolic pattern 
of M1 macrophages is precisely the glycolytic and pen-
tose phosphate pathway [75]. Furthermore, both hypoxia 
and higher lactate levels exhibited a facilitative effect 
on macrophage polarization toward the M2 phenotype. 

Furthermore, both the hypoxia and lactate levels facili-
tated the polarization of macrophages toward the M2 
phenotype [76]. Hence, oxygen and nutrient depriva-
tion, as well as acidification could be crucial contributors 
to the predominance of T cell exhaustion and M2 mac-
rophage polarization in solid LUADs. Alongside tumor 
cells, immunosuppressive cell metabolism was also of 
concern, an example being the upregulation of IDO1 by 
solid LUAD-derived mregDCs, which attenuated effector 
T cell responses by depleting tryptophan and producing 
the immunosuppressive metabolite kynurenine [76].

Immune checkpoint blocker (ICB) therapies are cur-
rently held in high esteem, yet their overall response 
rate for monotherapy in lung cancer is barely satisfac-
tory [77]. Our study shows that solid LUADs exhibit 
higher exhausted transcriptional score in T cells rela-
tive to acinar LUADs, which raises the question of 
whether ICB can improve the dysfunctional state of 
T cells in solid LUADs and enhance their immuno-
surveillance and immunocidal effects on tumors. It is 
therefore of great interest to specify the association 
of histologic composition with the response and the 
survival benefit of perioperative ICB treatment for 
LUADs. There is promise in targeting tumor metabolic 
pathways and moderating metabolic competition in 
the TME to improve the efficacy of immunotherapy [9, 
76]. Study shows that tumors with low glycolysis rates 
are more sensitive to CTLA-4 blockade, while those 
tumors with higher glycolytic activities, for example, 
solid LUADs, may benefit more from the combina-
tional treatment with glycolytic inhibitor and CTLA-4 
blockade compared to other histologic subtypes of 
LUADs [78]. In addition, improved local supply of 
L-arginine to TME synergistically enhances the effi-
cacy of PD-L1 blockers via a T cell-dependent manner 
[79]. Remarkably, with respect to other histologic sub-
types, we find that folate-mediated one-carbon metab-
olism and its key gene, MTHFD2, are upregulated in 
tumor cells from the solid subtype. Intriguingly, the 
main contributor to the one-carbon unit, serine, is also 
observed to be metabolically enhanced in tumor cells 
from solid LUADs [80]. The incrementally increased 
expression of MTHFD2 with histologic progression 
is further substantiated at both transcriptional and 
translation levels by diverse experimental techni-
cal scales. MTHFD2, a folate cycling metabolizing 
enzyme, is considered an attractive metabolic target 
for tumors by virtue of its multiple roles in metabolic 
reprogramming and immune regulation [45, 81]. Actu-
ally, in the scenario of acute myeloid leukemia, specific 
MTHFD2 inhibitors potently and selectively repress 
cancer cell replication while protecting non-neo-
plastic lymphocytes [82]. To date, specific MTHFD2 
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inhibitors have shown impressive therapeutic efficacy 
in preclinical models of diverse cancer types, particu-
larly exhibiting promising antitumor activities in lung 
adenocarcinoma cell lines, either as a single agent or 
in synergy with pemetrexed [44, 82–84].Considering 
the disparities in tumor metabolism and the immune 
microenvironment in distinct histologic subtypes of 
LUADs, metabolic targets represented by MTHFD2 
hold promise for developing their application in histo-
logic subtype-directed combinatorial immunotherapy. 
Notwithstanding, more efforts on exploring and vali-
dating the efficacy and clinical application protocols of 
MTHFD2 inhibitors in lung cancer are warranted. We 
hold out the prospect of adopting MTHFD2 inhibi-
tor as monotherapy or in combination with immu-
notherapy for the treatment of tumors with elevated 
MTHFD2 expression, especially for solid LUADs.

Tavernari et  al. demonstrated on the spatial scale that 
regions of solid LUADs exhibited a geographic signature 
of immune exclusion, i.e., immune infiltration was signifi-
cantly declined from the immune-enriched tumor mar-
gins toward the tumor core, whereas suppressive immune 
markers such as FOXP3, TIM3 and CTLA4 were distinc-
tively elevated [10]. Notably, the reasons for the spatial 
distribution and functional differences of immune cells 
in the solid histologic region remain elusive. Here we 
propose the following two potential explanations. Firstly, 
the potential contribution of differences in the spatial dis-
tribution of oxygen and nutrients in the tumor regions 
of solid LUADs; and secondly, the obstruction by ECM 
components to the migration and movement of immune 
cells. In the case of the former, we introduce here the 
tumor model proposed by Lloyd et  al. whereby tumor 
cores tend to maximize their population density and 
exhibit static, less proliferative phenotypes, while tumor 
margins are characterized by aggressive proliferative 
phenotypes [85]. Intriguingly, this model fits highly with 
the spatial characteristics of the solid pattern of LUAD 
identified by Tavernari et  al. [10]. The harsh metabolic 
microenvironment created by vicious competition for 
limited resources in the tumor core may be detrimental 
to the survival and functional execution of immune cells. 
Indeed, Lambrechts et al. also suggested that the degree 
of hypoxia increases progressively from the tumor margin 
toward the core, whereas most immune cells are inclined 
to accumulate at the normoxic tumor margin [69]. In the 
case of the latter, CAFs and their remodeling of the ECM 
are key factors in structuring the immune infiltration bar-
rier [86]. Based on comparative analysis of transcriptional 
profiles of the identified fibroblasts, we find that the fibril-
lar collagen transcriptional level is significantly higher 
in solid LUAD-derived fibroblasts [28]. And bulk tran-
scriptome-based analysis further confirmed the elevated 

fibrillar collagen transcription and extracellular matrix 
remodeling activities in solid LUADs. In addition, it was 
noteworthy that solid LUADs are often accompanied by 
substantial intracellular and extracellular mucus produc-
tion and secretion [1]. This implies that therapeutic regi-
mens targeting CAFs or local ECM potentially promote 
immune infiltration into the tumor core of solid LUADs, 
thereby increasing the inter-contact between immune and 
tumor compartments.

Conclusions
Collectively, we herein proposed some potential entry 
points to disrupt the immune exclusion and immunosup-
pressive phenotype and to potentiate immunotherapeu-
tic efficacy for solid LUADs, yet the realization of these 
notions requires further investigation and validation at 
different experimental techniques scales, such as micro-
dissection and spatial omics techniques, as well as tumor 
models. Furthermore, considering the prospect of pos-
sible future applications of histologic subtype-directed 
LUAD treatment, the development of methods to deter-
mine the histologic composition or the presence of cer-
tain key components in the tumor prior to treatment is 
crucial.
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Additional file 7: Fig. S1. Primary classification of epitheliums, immune 
cells and stromal cells. A–B. Representative hematoxylin–eosin (HE) 
staining images of LUAD manifesting as acinar (A) and solid (B) growth 
pattern. The acinar pattern is predominantly glandular, round to oval in 
shape, with a central lumen surrounded by tumor cells. While the solid 
pattern consists of cytoplasm-rich polygonal tumor cells forming dense 
sheets and lacking any other recognizable patterns. The box regions in the 
upper panel are shown at higher magnification below. Scale bars, 200 μm 
(top panels) and 50 μm (lower panels). C. UMAP plots depicting all cells 
labeled as epitheliums, immune cells or stromal cells and split by sample 
types. D. UMAP plots of canonical markers for labeling general cell types. 
E. Heatmaps showing large-scale CNVs for individual epitheliums from 
tumor samples. Each row represented a cell and the columns represented 
chromosomal regions. Stromal cells were treated as references (top) and 
large-scale CNVs were observed in tumor cells (bottom).

Additional file 8: Fig. S2. Characteristics of epithelial cells from solid and 
acinar samples. A–B. Boxplots showing HIF1A and LDHA mRNA expression 
across LUAD histologic subtypes in the EAS (A) and the CPTAC cohorts 
(B). Box centerlines, median; box limits, the 25th and 75th percentiles; box 
whiskers, 1.5× the interquartile range. For all comparisons of molecular 
expression between histologic subtypes, the statistical significance was 
determined by two-sided Wilcoxon rank-sum test (*P < 0.05, **P < 0.01, 
***P < 0.001, ****P < 0.0001, n.s not significant). C–D. UBE2S and UBE2C 
mRNA expression in the the EAS cohort (C), and protein expression in 
the CPTAC cohort (D). Comparisons were performed using two-sided 
Wilcoxon rank-sum test (*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001, 
n.s not significant).

Additional file 9: Fig. S3. Metabolic differences between epithelial cells 
from solid and acinar samples. A. The average optical density of MTHFD2 
immunohistochemical staining in tumor regions from different histologic 
patterns as semi-quantified by the Image J software. In the box plot, the 
centre line represents the median, box edges show the 25th and 75th 
percentiles, and whiskers extend to 1.5× the interquartile range. The 
statistical significance was determined by two-sided Wilcoxon rank-sum 
test. B. Kaplan–Meier survival curves showing the prognostic difference 
between the low and high MTHFD2 expression groups in the TCGA LUAD 
cohort. C. Correlation between the expression of MTHFD2 and UBE2S in 
the TCGA LUAD cohort. P-value was determined by Pearson’s correlation 
test. D–F. Violin plots showing enrichment scores of one-carbon pool by 
folate (D), pyrimidine metabolism (E) and galactose metabolism (F) signa-
tures by histologic subtypes in the TCGA LUAD cohort. Global differences 
were measured by the Kruskal-Wallis test.

Additional file 10: Fig. S4. Primary immune cell types identification and 
T/NK cells analysis. A–C. UMAP plots of all immune cells colored by major 
immune types (A), sample origins (B) and histologic subgroups (C). D. 
UMAP plots of selected canonical markers for identifying major immune 
types. E–F. UMAP plots of T/NK cells colored by sample origins (E) and 
histologic subgroups (F). G. Dot plots showing the top marker genes for 
each T/NK cell cluster.H. Volcano plot showing differential expression 
genes between CD8+ T cells from solid and acinar samples. I. Differentially 
enriched KEGG pathways between CD4+ T cells from solid and acinar 
samples revealed by GSVA.

Additional file 11: Fig. S5. Myeloid cells analysis. A. UMAP plot of 
annotated myeloid cells. B. UMAP plots of selected canonical markers for 
annotating myeloid cells. C. UMAP plot of monocytes and macrophages 
colored by histologic subgroups. D. Dot plots showing the top marker 
genes for each monocyte/macrophage cluster. E. Gene ontology annota-
tion of marker genes for the Macro-C2 subset. F. Gene ontology annota-
tion of marker genes for the Macro-C3 subset. G–I. Violin plots showing 
enrichment scores of macrophage and DC traffic (G), M1 phenotype (H) 
and immune suppression by myeloid cells (I) signatures by histologic 

subtypes in the TCGA LUAD cohort. Global differences were measured by 
the Kruskal-Wallis test.

Additional file 12: Fig. S6. Fibroblasts analysis. A. UMAP plot of 
fibroblasts colored by histologic subgroups. B. UMAP plots showing the 
expression of selected canonical marker genes for fibroblasts. C. Dot plots 
showing the top marker genes for each fibroblast cluster. D. Gene ontol-
ogy annotation of marker genes for the Fibro-C1 subset. E–G. Violin plots 
showing enrichment scores of fibrillar collagens (E), matrix remodeling (F) 
and EMT (G) signatures by LUAD histologic subtypes in the TCGA cohort. 
Global differences were measured by the Kruskal-Wallis test.

Additional file 13: Fig. S7. Endothelial cells analysis. A. UMAP plot of 
endothelial cells colored by histologic subgroups. B. UMAP plots showing 
the expression of selected canonical marker genes for endothelial cells. C. 
Dot plots showing the top marker genes for each endothelium cluster.
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