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Elevated MR‑proANP plasma concentrations 
are associated with sepsis and predict mortality 
in critically ill patients
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Abstract 

Background and aims:  Mid-regional pro atrial natriuretic peptide (MR-proANP) is an established biomarker for heart 
failure, based on its key role in regulating homeostasis of water balance and blood pressure. The aim of the study was 
to determine the value of MR-proANP as a clinical biomarker in critical illness and/or sepsis. Upon admission to the 
medical intensive care unit (ICU), we investigated MR-proANP plasma concentrations in 217 critically ill patients (144 
with sepsis, 73 without sepsis). Results were compared with 65 healthy controls.

Results:  MR-proANP plasma levels were significantly elevated in critically ill patients, when compared to healthy 
controls. Notably, MR-proANP levels were significantly higher in ICU patients with sepsis. MR-proANP levels were not 
associated with metabolic comorbidities like diabetes or obesity. In critically ill patients, MR-proANP plasma concen-
trations correlated with inflammatory cytokines, markers of organ dysfunction and several adipocytokines, such as 
resistin, retinol-binding protein 4 (RBP4) and adiponectin. Importantly, high MR-proANP plasma levels were associ-
ated with mortality, as MR-proANP levels above 227.0 pmol/l indicated a particularly increased mortality risk in ICU 
patients. The association between MR-proANP and mortality was independent of single organ failure and inflamma-
tion markers.

Conclusion:  Our study emphasizes the role of circulating MR-proANP as a biomarker in critically ill patients, in 
which high MR-proANP indicates organ dysfunction, sepsis and mortality risk. The association between high MR-
proANP and inflammatory as well as adipose tissue-derived endocrine mediators warrants further pathophysiological 
investigations.
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Background
The natriuretic peptides of type A, B and C (ANP, atrial 
natriuretic peptide; BNP, brain natriuretic peptide; CNP, 
C-type natriuretic peptide) belong to a family of cardiac- 
and vascular-derived hormones. They exert diuretic, 

natriuretic and hypotensive actions and protect the 
organism from excessive fluid and high blood pressure. 
Through a variety of effects on vascular tone, intravascu-
lar volume and redistribution, cardiovascular remodelling 
and energy metabolism, natriuretic peptides play a key 
role in maintaining cardiovascular homeostasis, water 
balance and blood pressure [1–4]. In this context, atrial 
natriuretic peptides (ANP) are predominantly expressed 
in the right atrium of the heart and secreted during an 
atrial distension such as in cardiac dysfunction or heart 
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failure [1, 5, 6]. ANP represents more than 95% of natriu-
retic peptides in the blood circulation [7]. It is synthe-
sized and stored in the atrial cardiomyocyte granules as 
a prohormone with 126 amino acids (proANP 1–126) [8]. 
The prohormone consists of several peptides with anti-
hypertensive, natriuretic, diuretic and kaliuretic proper-
ties (e.g. proANP1–30—long-acting natriuretic peptide; 
proANP31–67—vasodilator; proANP79–98—kaliuretic 
peptide) [9]. ANP prohormone processing differs within 
the kidney leading to an additional addition of four amino 
acids to the N-terminus of ANP (e.g. proANP95–126). 
The mature atrial natriuretic peptide consists of amino 
acids 99–126 and comprises 98% of the circulating natriu-
retic peptides [10]. In response to increased tension of 
the atrial wall, the active hormone ANP is secreted by 
splitting of its precursor into an amino-terminal (NT-
proANP 1–98) and an active hormone (ANP 99–126) 
[7, 11–14]. As the active ANP has a very short half-life 
of less than 5 min and the NT-proANP is released in the 
same molar ratio as ANP with significantly longer half-life 
(60–120 min), NT-proANP is considered a more reliable 
biomarker than ANP itself [8, 15]. However, since NT-
proANP can be further cleaved into smaller amino acid 
fragments in vivo, the detection of mid-regional proANP 
(amino acids 53–90; MR-proANP) is the preferred detec-
tion site of this natriuretic peptide [10, 16–18].

ANP disrupts both network of mitogen-activated pro-
tein kinase (MAPK) and associated transcription factors, 
mainly NF-κB [5]. Atrial dilatation leads to the expres-
sion and secretion of preproatrial or A-type natriuretic 
peptide and finally atrial natriuretic peptide (ANP), 
which has similar biological properties as B-type natriu-
retic peptide (BNP). However, the formation of the pre-
produced BNP is induced by sodium and water retention 
and vasoconstrictions caused by the activation of RAAS 
and the sympathetic nervous system, as well as the action 
of vasopressin. These factors lead to increased ventricular 
pre- and post-stress and increased wall stress and BNP 
release. Furthermore, the BNP prohormone is cleaved 
to BNP and N-terminal proBNP (NT-proBNP). NT-
proBNP is biologically inactive and does not bind to the 
pGC-A receptor. However, the biological effects of ANP 
and BNP substrates are similar: induction of natriuresis, 
diuresis, vasodilatation, antifibrosis and anti-RAAS [5, 9].

ANP acts through the natriuretic peptide receptor A 
(NPR-A) and is removed from the bloodstream by the 
natriuretic peptide receptor C (NPR-C) [7, 19]. Binding 
to NPR-A activates the cyclic guanylyl monophosphate 
(cGMP) as second messenger in the target cells to medi-
ate a variety of systemic effects as previously described 
[19]. Interestingly, in knock-out mice lacking the NPR 1 
gene coding for NPR-A, not only high ANP concentrations, 
hypertension and cardiac hypertrophy, but also expression 

of pro-inflammatory markers are observed. In line, recent 
data suggest that ANP regulates inflammatory processes 
such as macrophage function, priming of neutrophils and 
the expression of pro-inflammatory markers [20, 21]. Thus, 
ANP also participates in innate immune reactions [2, 22]. 
Moreover, activation of intracellular cGMP induces lipoly-
sis and mobilization of free fatty acids in human adipocytes 
[23, 24]. This demonstrates the interaction of ANP with 
white and brown adipose tissue. Specifically, ANP increases 
the expression and secretion of adiponectin, an adipocy-
tokine with insulin-sensitizing properties, as observed in 
primary human adipocyte cultures, healthy subjects and 
patients with congestive heart failure [23, 25, 26]. In addi-
tion, the ANP/cGMP signalling pathway increases β-cell 
mass and insulin secretion in the pancreas [23]. With 
regard to ANP removal, it has been clearly shown that 
upregulation of NPR-C is associated with metabolic altera-
tions such as obesity and obesity-related metabolic disor-
ders like type 2 diabetes and metabolic syndrome [23, 27].

Based on this wide range of physiological functions of 
ANP and its associated alterations, ANP has been linked 
to inflammatory responses and metabolic alterations that 
occur during critical illness [9, 28, 29]. Critical illness and 
MR-proANP are associated with and affected by altera-
tions in secretory and metabolic functions of adipose 
tissue [30, 31]. In different cohorts of ICU patients, high 
MR-proANP plasma levels have been associated with 
disease severity and outcome of critical illness [8, 11]. In 
addition, elevated MR-proANP levels are described to be 
diagnostic for sepsis after burn injury [32]. In this study, 
we investigated the clinical and prognostic relevance of 
MR-proANP plasma concentrations in a large cohort of 
critically ill patients from a medical ICU including sepsis, 
pre-existing diabetes, obesity and organ dysfunction.

Methods
Study design and patient characteristics
Critically ill patients were included at admission to the 
medical ICU at the RWTH University Hospital Aachen, 
Germany. Patients, who were admitted for post-inter-
ventional observational stay or underwent an elective 
procedure, were excluded [33]. The cohort consisted 
of 217 critically ill patients (144 with sepsis, 73 without 
sepsis). Patients’ characteristics are shown in Table  1. 
The patients were categorized as sepsis and non-sepsis 
according to the Third International Consensus Defi-
nitions for Sepsis and Septic Shock (sepsis-3) [34], 
and were treated following the current guidelines for 
treatment of sepsis (Surviving Sepsis Campaign) [35]. 
Underlying disease etiologies of sepsis and non-sep-
sis patients are shown in Table  2. As a control group, 
we analysed healthy blood donors with normal blood 
counts, normal values of liver enzymes, glomerular 
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filtration rates, serum creatinine and C-reactive pro-
tein (CRP) concentration [36]. All healthy subjects 
had a negative serology for human immunodeficiency 
virus (HIV) [36]. In order to determine long-term out-
come, we contacted the patients, their relatives and/
or the general practitioner in approximately 6-months 

intervals after discharge from the hospital over a period 
of 3 years [36].

Measurements of MR‑proANP plasma levels
Before therapeutic interventions, blood samples were 
collected upon admission to the ICU, centrifuged, and 
plasma was stored at − 80  °C. Plasma MR-proANP 
concentrations (epitopes covering amino acids 53–90, 
equivalent to NT-proANP and active ANP [10] were 
determined using an automated immunofluorescent 
assay based on TRACE technology (Time-resolved 
Amplified Cryptate Emission, B.R.A.H.M.S Kryp-
tor compact, Hennigsdorf, Germany), according to 
manufacturer`s instructions (MR-proANP Kryptor, 
#819.050, B.R.A.H.M.S, Hennigsdorf, Germany). Meas-
urements of the adipocytokines and related proteins 
leptin, retinol-binding protein 4 (RBP4), adiponec-
tin, ghrelin, and resistin were included, as previously 
reported [37–41]. In addition, soluble urokinase-type 
plasminogen activator receptor (suPAR) and amino-
terminal pro C-type natriuretic peptide (NT-proCNP) 
concentrations as markers of disease severity and inflam-
matory response were also investigated as described pre-
viously [36, 42].

Statistical analysis
Owing to the skewed distribution of the param-
eters, data are given as median and range, and shown 

Table 1  Baseline patient characteristics and MR-proANP plasma concentrations

For quantitative variables, median and range (in parenthesis) are given

Parameter All patients Non-sepsis Sepsis

Number 217 73 144

Sex (male/female) 133/84 48/25 85/59

Age median (range) [years] 64 (18–90) 61 (18–85) 65 (20–90)

APACHE-II score median (range) 18 (2–43) 13.5 (2–33) 19 (4–43)

SOFA score median (range) 9 (0–19) 7.0 (0–17) 9.5 (2–19)

SAPS2 score median (range) 41 (0–73) 41.0 (13–72) 40.5 (0–73)

ICU days median (range) 7 (1–137) 6 (1–45) 9 (1–137)

Death during ICU n(%) 46 (21.2%) 9 (12.3%) 37 (25.7%)

Death overall (total) n(%) 86 (39.6%) 22 (30.1%) 64 (44.4%)

Mechanical ventilation n(%) 144 (66.4%) 46 (63%) 98 (67%)

Preexisting diabetes n(%) 65 (30.0%) 22 (30.1%) 43 (29.9%)

BMI median (range) [m2/kg] 26.0 (15.3–86.5) 25.7 (15.9–40.5) 26.0 (15.3–86.5)

WBC median (range) [×103/µl] 12.9 (0.1–208) 12.5 (1.8–29.6) 13.8 (0.1–208)

CRP median (range) [mg/dl] 103.0 (5–230) 17 (5–230) 163.5 (5–230)

IL-6 median (range) [pg/ml] 145.0 (2–28,000) 66.5 (1.5–5000) 240 (2–28,000)

Procalcitonin median (range) [pmol/l] 0.7 (0.03–207.5) 0.2 (0.03–100) 1.8 (0.03–207.5)

Creatinine median (range) [mg/dl] 1.3 (0.1–15) 1.0 (0.2–15) 1.6 (0.1–10.7)

INR median (range) 1.16 (0.92–13) 1.17 (0.95–6.73) 1.16 (0.92–13)

MR-proANP day 1 median (range) [pmol/l] 214.0 (2.1–3417.0) 147.2 (2.1–1625.0) 246.6 (7.8–3417.0)

Table 2  Disease etiology of  the  study population leading 
to ICU admission

Sepsis, n (%), 
n = 144

Non-sepsis, 
n (%), n = 73

Etiology of sepsis critical illness

 Site of infection 

  Pulmonary 73 (51%)

  Abdominal 26 (18%)

  Urogenital 11 (8%)

  Other 34 (23%)

Etiology of non-sepsis critical illness

  Cardio-pulmonary disorder 29 (40%)

  Acute pancreatitis 10 (14%)

  Acute liver failure 4 (5.5%)

  Decompensated liver cirrhosis 9 (12%)

  Severe gastrointestinal hemorrhage 4 (5.5%)

  Non-sepsis other 17 (23%)
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graphically by box-and-whiskers plots. The degree of 
association between two variables was assessed by 
the Spearman rank correlation test. Comparisons of 
parameters between two different groups were con-
ducted with the Mann–Whitney U-test. All values, 
including outside values as well as far out values, were 
included. P-values less than 0.05 were considered as 
statistically significant. Receiver operating characteris-
tic (ROC) curve analysis was carried out to determine 
the diagnostic sensitivity and specificity of MR-proANP 
in critically ill patients. The ROC curve analysis and the 
derived area under the curve (AUC) statistic provide 
a global and standardized appreciation of the accu-
racy of a marker or a composite score for predicting an 
event. ROC curves were generated by plotting sensitiv-
ity against 1-specificity [42]. The prognostic value of 
the variables was tested by univariate and multivariate 
analyses in the Cox regression model. Survival curves 
were generated by Kaplan–Meier analyses with an MR-
proANP cut-off level calculated via the Youden Index 
[42]. All analyses were performed with IBM SPSS Sta-
tistics (SPSS; Chicago, IL, USA).

Results
MR‑proANP plasma levels are significantly elevated 
in critically ill patients as compared with healthy controls
Based on the wide range of physiological functions of 
ANP and its associated alterations, ANP has been linked 
to both inflammatory and metabolic responses that 
typically occur during critical illness [9, 28, 29]. In our 
study, we found that MR-proANP plasma levels were 
significantly elevated in a large cohort of 217 critically ill 
patients (median 214.0 pmol/l, range 2.1–3417.0 pmol/l; 
Table  1) at admission to the ICU as compared with 
65 healthy controls (median 18.5  pmol/l, range 3.5–
61.7 pmol/l, p < 0.001; Fig. 1).

MR‑proANP plasma levels are particularly elevated 
in critically ill patients with sepsis
High MR-proANP plasma levels in critically ill patients 
had been previously reported to be associated with sepsis 
[8, 11]. Within our cohort of 217 critically ill patients, 144 
fulfilled sepsis criteria, while 73 were admitted to the ICU 
due to other causes of critical illness (Table  2). Plasma 
concentrations of MR-proANP were significantly ele-
vated in patients with sepsis (median 246.6 pmol/l, range 
7.8–3417.0 pmol/l) as compared to ICU patients without 
sepsis (median 147.2  pmol/l, range 2.1–1625.0  pmol/l, 
p < 0.001; Fig. 2a and Table 2). We analysed the diagnostic 
value of MR-proANP for sepsis in comparison to classi-
cal markers of inflammation and bacterial infection by 
using ROC curve analyses. Whereas CRP achieved AUC 
statistics of 0.847 and white blood cell count of 0.585, 
MR-proANP only reached an AUC of 0.656 (Fig.  2b). 
Among the septic or non-septic critically ill patients, 
there was no association between MR-proANP plasma 
concentrations and different disease etiologies leading to 
ICU admission (data not shown).

MR‑proANP levels in critically ill patients are closely 
correlated to biomarkers of inflammation, organ 
dysfunction and clinical scores
Mice lacking a functional NPR 1 gene encoding NPR-A 
exhibit hypertension and marked cardiac hypertrophy 
with interstitial fibrosis, in association with enhanced 
activation of pro-inflammatory cytokines, probably via 
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Fig. 1  MR-proANP levels in critically ill patients MR-proANP plasma 
concentrations are significantly elevated in critically ill patients 
compared with healthy controls. p value (U-test) is given

Fig. 2  MR-proANP levels are elevated in critically ill patients with sepsis and correlate with inflammatory markers a ICU patients with sepsis 
displayed significantly elevated MR-proANP levels compared to patients without sepsis. b Receiver operating characteristic (ROC) curve analyses 
comparing the diagnostic power in predicting sepsis of MR-proANP (black line, area under the curve (AUC) 0.656) with classical markers of 
inflammation and bacterial infection, C-reactive protein (CRP, grey line, AUC 0.847) and white blood cell count (leukocytes, dotted grey line, AUC 
0.585). c–d MR-proANP correlates with experimental markers of inflammation in critical illness like soluble urokinase-type plasminogen activator 
receptor (suPAR, C) and N-terminal pro C-type natriuretic peptide (NT-proCNP, D). e At ICU admission, MR-proANP levels are significantly elevated 
in critically ill patients with high initial Acute Physiology and Chronic Health Evaluation (APACHE II) score (> 10) in comparison to patients with low 
APACHE-II scores (≤ 10). p-values (U-test or Spearman rank correlation) are given

(See figure on next page.)
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nuclear factor kappa mediated signalling pathway [43, 
44]. To determine the factors possibly promoting ele-
vated MR-proANP plasma levels in critically ill patients, 
correlation analyses with extensive sets of laboratory 
parameters were performed. At admission to the ICU, 
plasma MR-proANP concentrations in the total cohort 
and the subgroups of sepsis and non-sepsis patients were 
closely correlated with classical markers of inflamma-
tion and bacterial infection, such as C-reactive protein 
(r = 0.286, p < 0.001), procalcitonin (r = 0.378, p < 0.001), 
and experimental markers of inflammation such as solu-
ble urokinase plasminogen activator receptor (suPAR, 
r = 0.493, p < 0.001, Fig.  2c), and NT-proCNP (r = 0.683, 
p < 0.001, Fig. 2d, Table 3).

With regard to organ function, we could reveal strong 
associations with renal and hepatic function for the 
total study cohort and the subgroups of sepsis and non-
sepsis patients. Specifically, we could demonstrate an 
inverse association with renal function as displayed by 
a highly significant correlations with the glomerular fil-
tration rate of cystatin C (r = − 0.675, p < 0.001), cystatin 
C (r = 0.675, p < 0.001), creatinine (r = 0.629, p < 0.001) 
and urea (r = 0.623, p < 0.001) serum concentrations 
(Table  3), indicating renal clearance of MR-proANP 
[45]. Interestingly, MR-proANP levels inversely corre-
lated with parameters reflecting the liver’s biosynthetic 
and functional capacity, namely albumin (r = − 0.190, 
p = 0.045), pseudocholinesterase activity (r = − 0.339, 
p < 0.001), antithrombin III (r = − 0.216, p = 0.015), gluta-
mate dehydrogenase (r = − 0.151, p = 0.037) and alanine 
aminotransferase (r = − 0.172, p = 0.012) (Table  3). MR-
proANP levels also correlated with the amino-terminal 
brain natriuretic peptide (NT-proBNP) (Table 3).

Increased MR-proANP levels have been associated 
with adverse clinical outcome [46]. In fact, MR-proANP 
plasma levels correlated positively with established 
clinical disease severity scores (Table  3). Moreover, 
critically ill patients with a high (acute physiology and 
chronic health II (APACHE-II) score above 10 showed 
significantly higher MR-proANP levels at ICU admis-
sion (median 239.7  pmol/l, range 2.1–1871.0  pmol/l) in 
comparison to ICU patients admitted with an APACHE-
II score of 10 or less (median 143.0  pmol/l, range 2.1–
3417.0 pmol/l, p = 0.004, Fig. 2e).

For the total cohort of critically ill patients a strong 
association of MR-proANP plasma concentrations and 
established clinical scores like sequential organ fail-
ure assessment (SOFA; r = 0.223, p = 0.011), simplified 
acute physiology score 2 (SAPS2; r = 0.341, p = 0.006), 
and acute physiology and chronic health II (APACHE II; 
r = 0.260, p < 0.001) scores could be shown, corroborat-
ing that MR-proANP levels are closely linked to disease 
severity in critical illness (Table 3).

Measures of hemodynamic instability such as need 
for volume substitution and vasopressor therapy 
showed a significant inverse correlation of fluid therapy 
with plasma MR-proANP levels (r = − 0.233, p = 0.001), 
but not with vasopressor administration (Table 3).

MR‑proANP plasma levels in critically ill patients are 
not associated with diabetes and obesity
Prior studies have shown an inverse association with 
natriuretic peptides and metabolic syndrome, fasting 
glucose, insulin resistance and diabetes development 

Table 3  Correlations with  MR-proANP plasma 
concentrations at ICU admission

Spearman rank correlation test, only significant results are shown

Parameters ICU patients

R p

Disease severity/clinical scoring/therapy

 APACHE II 0.260 < 0.001

 SOFA 0.223 0.011

 SAPS 0.341 0.006

 Fluid substitution − 0.233 0.001

Markers of inflammation

 White blood cell count − 0.148 0.029

 C-reactive protein 0.286 < 0.001

 Procalcitonin 0.378 < 0.001

 suPAR 0.493 < 0.001

 NT-proCNP 0.683 < 0.001

Markers of organ function

 NT-proBNP 0.740 < 0.001

 Urea 0.623 < 0.001

 Creatinine 0.629 < 0.001

 GFR-cystatin C − 0.675 < 0.001

 Cystatin C 0.675 < 0.001

 Lipase − 0.191 0.012

 Pancreatic amylase − 0.317 0.006

 Alanine aminotransferase − 0.172 0.012

 Glutamate dehydrogenase − 0.151 0.037

 Pseudocholinesterase activity − 0.339 < 0.001

 Albumin −0.190 0.045

 Total protein − 0.263 < 0.001

 INR 0.207 0.003

 aPTT 0.324 < 0.001

 Antithrombin III − 0.216 0.015

Adipocytokines/metabolic markers

 Adiponectin 0.434 0.001

 Resistin 0.349 0.008

 RBP4 0.306 0.012

 HOMA-β 0.332 0.007

 Parathyroid hormone 0.299 0.014

 Calcium − 0.288 < 0.001

 Phosphorus 0.241 0.001
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[45, 47]. We therefore assessed whether metabolic 
comorbidities, specifically pre-existing obesity or diabe-
tes, might have an influence on MR-proANP levels also 
in patients with critical illness. However, neither pre-
existing type 2 diabetes (n = 65, median 226.6  pmol/l, 
range 2.1–1871.0  pmol/l, p = 0.196; Fig.  3a) nor obesity 
(n = 36, median 248.1 pmol/l, range 17.5–1319.0 pmol/l, 
p = 0.126; Fig. 3b), as defined by a body mass index (BMI) 
above 30  kg/m2, were associated with MR-proANP 
plasma concentrations. Moreover, by Spearman rank cor-
relation analysis, no correlation between MR-proANP 
and serum glucose levels, glycosylated hemoglobin A1c 

(HbA1c) or BMI was present (data not shown). In addi-
tion, MR-proANP did not show any correlations with 
other key markers of glucose metabolism, such as insulin, 
C-peptide or the homeostasis model assessment-insulin 
resistance (HOMA-IR) in ICU patients (data not shown). 
However, β-cell function (HOMA-β) correlated with 
MR-proANP (r = 3.332, p = 0.007, Table 3).

Adipose tissue inflammation attributes to dysregu-
lated production and release of inflammatory cytokines 
and adipocytokines, including interleukin-6 (IL-6), 
tumor necrosis factor-α (TNF-α) as well as leptin, resis-
tin and adiponectin [48]. We investigated the potential 
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association between MR-proANP and adipocytokine 
responses in critically ill patients. In agreement with the 
proposed pro-inflammatory association of MR-proANP, 
we observed significant correlations between MR-
proANP and a broad range of adipocytokines includ-
ing resistin (r = 0.349, p = 0.008, Fig.  3c), adiponectin 
(r = 0.434, p = 0.001, Fig.  3d), and RBP4 (r = 0.306, 
p = 0.012, Table 3).

Elevated MR‑proANP plasma levels are associated 
with mortality in critically ill patients
Circulating natriuretic peptides like NT-proCNP have 
been previously suggested as biomarkers for disease 
severity as well as short- and long-term survival in vari-
ous conditions of critical illness [42]. We assessed long-
term survival in 206 out of 217 patients by contacting the 
patients, their relatives or their general practitioner dur-
ing the first three years after ICU discharge. MR-proANP 
levels at ICU admission were significantly elevated in 
patients that subsequently died (n = 86, median 309.0, 
range 2.1–3417.0) compared with survivors (n = 120, 
median 171.1, range 2.1–1625.0; p < 0.001, Fig. 4a).

By univariate analysis, including markers of inflamma-
tion/infection (CRP, p = 0.111; lactate, p = 0.198), hepatic 
(bilirubin, p = 0.161) and renal (creatinine, p = 0.427) 
function at admission were not significantly associated 
with mortality, while MR-proANP showed highest prog-
nostic value (p = 0.013) for ICU mortality. In multivariate 
Cox regression analyses (including the above mentioned 
parameters in the model) MR-proANP remained an 
independent and the only significant prognostic param-
eter (p = 0.012) to predict overall ICU mortality. In this 
respect, MR-proANP levels showed comparable prog-
nostic accuracy like established multifactorial scores such 
as APACHE II (AUC = 0.654 for MR-proANP, 0.638 for 
APACHE II score changes in ROC analyses). This find-
ing was corroborated by Kaplan–Meier survival curves 
analyses, demonstrating that patients with MR-proANP 
plasma levels of the lower quartile (< 25%, corresponding 
to 91.3 pmol/l) had the best survival rates, while patients 
with admission MR-proANP levels of the upper quartile 
(> 75%, corresponding to 506.6  pmol/l) had the highest 
long-term mortality (Fig. 4b). Using the calculated opti-
mal cut-off for MR-proANP of 227.0  pmol/l, patients 
with high MR-proANP demonstrated a high mortality 
rate, as depicted by Kaplan–Meier survival curve analysis 
(Fig. 4c).

Discussion
The expression and secretion of the atrial natriuretic 
polypeptide (ANP) hormone has been mainly studied 
in the context of cardiac diseases [49]. In particular, 

increases in ANP or MR-proANP concentrations in 
blood circulation were often considered to be depend-
ent on the prevalence of cardiac insufficiency and clas-
sical cardiac risk factors such as diabetes and renal 
failure [50]. Furthermore, ANP has been linked to both 
inflammatory and metabolic responses that typically 
occur during critical illness [9, 28, 29].

However, ANP is expressed and secreted by the cells 
of the heart atria and BNP, mainly in the ventricles 
that is therefore less sensitive to intraventricular pres-
sure increase and hemodynamic stress than BNP. NT-
proBNP is currently recognized as the clinical gold 
standard for the diagnosis of acute destabilized heart 
failure in patients with dyspnea [51]. In critically ill 
patients, elevated plasma concentrations of natriu-
retic peptides are found in severe hemodynamic dis-
turbances such as cardiogenic or septic shock due to 
ventricular dysfunction and the release of proinflam-
matory cytokines [5, 9]. In accordance to the positive 
correlation between MR-proANP and NT-pro BNP 
in our study, dramatically increased proinflammatory 
cytokines in critically ill patients may also contribute to 
ANP and BNP secretion from the heart.

In our study, we demonstrated that MR-proANP is 
elevated in critically ill patients already at admission to 
the ICU as compared with healthy controls, in agree-
ment with prior studies [8, 11, 32]. Moreover, using 
correlation analyses our study revealed significant 
associations between MR-proANP and established bio-
markers reflecting inflammation, metabolic alterations, 
and organ dysfunction in medical ICU patients.

Although MR-proANP levels were further elevated in 
critically ill patients with sepsis, their diagnostic power 
for sepsis was inferior to routinely used inflammatory 
markers such as CRP or procalcitonin. In line with our 
findings, it has been reported that MR-proANP is nei-
ther a direct sepsis marker nor a predictor of bacterae-
mia [32, 52, 53]. Interestingly, in ventilator-associated 
pneumonia and lower respiratory tract infections, 
implementing MR-proANP improved survival predic-
tion of clinical severity scores, especially when used 
in combination with procalcitonin (PCT) [54, 55]. In 
septic shock patients, MR-proANP was significantly 
associated with 28-day mortality [56]. Moreover, MR-
proANP was associated with cardiorenal dysfunction 
and an increased risk of terminal kidney disease and 
mortality [57]. In this context, MR-proANP showed 
a high accuracy for predicting survival in critical ill 
patients in our study.

Several studies have shown that obese individuals dis-
play lower circulating natriuretic peptide concentrations, 
indicating that obesity or BMI may be confounding fac-
tors for clinical and prognostic utility of MR-proANP 
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[58–60]. In our cohort, we found that MR-proANP is 
strongly correlated with adipocytokines such as adi-
ponectin, RBP4 and resistin, which are important media-
tors of insulin resistance and metabolic alterations [36, 
42]. Interestingly, MR-proANP did only correlate with 
markers reflecting adipose tissue inflammation, but not 
with patient’s BMI or pre-existing obesity. Critically ill 
patients show dramatic metabolic and inflammatory 

dysfunctions, including dysregulated adipocytokines 
[30, 31]. Within this context, ANP-binding to the natriu-
retic peptide receptor A activates the cyclic guanylyl 
monophosphate (cGMP) to mediate a variety of systemic 
effects such as lipolysis and free fatty acid mobilization 
in human adipocytes [19, 23, 24], which may provoke 
adipocytokine secretion from adipose tissue. The effects 
of ANP on adipose tissue might sustain inflammatory 
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responses, possibly supporting systemic inflammation in 
critical illness and sepsis. Our findings demonstrate the 
potential diagnostic and prognostic value of MR-proANP 
in critically ill patients with sepsis and may contribute to 
implement MR-proANP as a potential novel biomarker 
in critical disease.

Conclusion
Our study emphasizes the role of circulating MR-proANP 
as a potential novel biomarker in critically ill patients, in 
which high MR-proANP plasma concentrations indicate 
organ dysfunction, sepsis, disease severity and mortal-
ity risk. The association between high MR-proANP and 
inflammatory as well as adipose tissue-derived endocrine 
mediators warrants further pathophysiological investiga-
tions. Knowledge of these interactions will enhance the 
understanding of the pathogenic role of natriuretic pep-
tides in critical illness.
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