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Abstract

In recent decades, emerging data have highlighted the critical role of extracellular vesicles (EVs), especially (exosomes)
Exos, in the progression and development of several cancer types. These nano-sized vesicles are released by differ-
ent cell lineages within the cancer niche and maintain a suitable platform for the interchange of various signaling
molecules in a paracrine manner. Based on several studies, Exos can transfer oncogenic factors to other cells, and alter
the activity of immune cells, and tumor microenvironment, leading to the expansion of tumor cells and metastasis

to the remote sites. It has been indicated that the cell-to-cell crosstalk is so complicated and a wide array of factors are
involved in this process. How and by which mechanisms Exos can regulate the behavior of tumor cells and non-can-
cer cells is at the center of debate. Here, we scrutinize the molecular mechanisms involved in the oncogenic behavior
of Exos released by different cell lineages of tumor parenchyma. Besides, tumoricidal properties of Exos from various

stem cell (SC) types are discussed in detail.
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Introduction

Cancer diseases have been debilitating conditions in
human medicine in the last decades with high-rate mor-
bidity and mortality [1]. In clinical settings, surgical
approaches, chemotherapy, radiation, and neo-adjuvant
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therapies are still effective strategies for early cancer
treatment [2]. Despite recent advances in cancer thera-
nostics, tumor heterogeneity increases the probability
of drug resistance, leading to treatment failure and can-
cer recurrence [3]. During the last decades, the advent
and development of stem cell-related technologies have
led to prominent progress in the treatment and alle-
viation of several pathological conditions [4]. Different
stem cell types, including embryonic stem cells (ESCs),
induced pluripotent stem cells (iPSCs), and adult stem
cells exhibit differentiation capacity to several line-
ages, making them as valid cell source for restoration of
injured cells [5]. Among different stem cell types, adult
mesenchymal stem cells (MSCs) have been extensively
applied in various diseases with eminent regenerative
outcomes. However, data confirmed that small fractions
of transplanted MSCs are alive after direct introduction
into the injured sites or a very low cell population can be
recruited into the targeted sites after systemic admin-
istration [6, 7]. In light of these outcomes, it is believed
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that MSC therapeutic properties are mainly associated
with the paracrine capacity and release of diverse sign-
aling molecules such as cytokines, interleukins (ILs),
growth factors, etc. via extracellular vesicles (EVs) into
the extracellular matrix and biofluids [8]. Besides these
facts, the direct injection of stem cells is associated with
a short lifespan and survival rate, off-target delivery, infu-
sion toxicity, activation of allogeneic immune cells, and
various malignancies [5]. Meanwhile, the isolation and
expansion of stem cells are laborious and expensive and
the possibility of genetic and epigenetic instabilities, and
loss of stemness are the main challenges in the clini-
cal setting [9]. These features increase the application of
stem cell secretome as an alternate to whole-cell-based
therapies in clinics with at least biosafety concerns [10].
Exos with lipid bilayer membrane and nano-sized
dimensions (30—150 nm) have the potential to carry sev-
eral signaling molecules between the cells in a paracrine
manner [11, 12]. Exos can easily be distributed in several
biofluids such as blood, urine, saliva, and other biofluids,
reflecting the metabolic status of parent cells [13]. A long
with these comments, the origin and metabolic status
of parent cells can pre-determine exosomal cargo under
different conditions such as cancers [14, 15]. Emerging
data have revealed the critical role of Exos in the dynamic
growth of cancer cells. These magic bullets can orches-
trate cell-to-cell crosstalk within the tumor microenvi-
ronment (TME) to regulate tumor mass expansion and
cancer cell survival. Such functions can control the devel-
opment of cancer stem cells (CSCs), TME remodeling,
angiogenesis, and invasion of remote sites [16]. Unlike
oncogenic properties, Exos can also exert tumoricidal
effects on cancer cell lineages [17, 18]. These features
make the Exos suitable alternates for tumoricidal thera-
pies. Using smart loading techniques and surface modifi-
cations, specific therapeutics can be loaded onto the Exos
with appropriate on-target effects [19]. To be specific,
Exo-drug delivery can reduce side effects and off-target
toxicity following direct administration of chemothera-
peutics [20]. In this regard, engineered Exos can intelli-
gently deliver the therapeutic cargo to the targeted sites
and diminish the possibility of drug resistance issues
(Table 1) [21]. The ability to cross several natural barriers
such as blood-brain-barrier etc. makes the Exos supe-
rior to synthetic nanoparticles in terms of drug delivery
purposes [22]. As above-mentioned, Exos can harbor
several signaling molecules that are identical to the par-
ent cells. The Exo molecular signature can be used as a
platform for early-stage detection of anaplastic changes,
progression, and follow-up of the therapeutic protocols
(Fig. 1) [23]. For example, CSC-derived Exos exert pro-
oncogenic effects on the non-CSC lineages and normal
cells. Monitoring these Exos and their contents can give
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us invaluable data about the dynamic growth of tumor
cells within the tumor mass [24]. Here, the tumorigenic
and tumoricidal properties of Exos will be discussed in
different cancer types focusing on the possible molecular
mechanisms. Recent advances in the application of stem
cells Exos in cancer therapy were also highlighted as cell-
free therapeutic approaches in cancer therapy.

Exo biogenesis

Exos are produced by the activity of the endosomal
system via engaging several signaling molecules [54].
The phenomenon of Exo biogenesis is promoted by the
engulfment of recently internalized Exos via endocyto-
sis inside the early endosomes or fusion of trans-Golgi
network vesicles with later endosomes or multivesicu-
lar bodies (MVBs) (Fig. 1) [55]. The endosomal system
is promoted by the maturation of early endosomes into
later endosomes and MVBs. Inside the later endosomes
and especially MVBs, invagination of the vesicular mem-
brane leads to the formation of numerous intraluminal
vesicles (ILVs) [56]. This phenomenon is regulated by the
participation of several proteins and factors that help to
simultaneous sequestration of signaling molecules into
the lumen of ILVs [57]. Molecular investigations have
revealed the crucial role of endosomal sorting complex
required for transport (ESCRT)-dependent and ESCRT-
independent complexes in the formation of ILVs and
cargo sorting [58]. The ESCRT complex is composed of
four subunits, I, II, and III, with auxiliary factors includ-
ing vacuolar protein sorting 4 (VPS4), vesicle traffick-
ing 1 (VTA1), and ALG-2-interacting Protein X (ALIX).
The close interaction of these factors leads to the sort-
ing of ubiquitinated molecules into the ILVs [59, 60].
The sorting of non-ubiquitinated cargos is mediated via
a non-conventional ESCRT-dependent complex which is
composed of Syndecan-Syntenin-Alix-ESCRTIII [55, 61].
Besides these factors, tetraspanins (CD63, CD81, and
CD9), and sphingomyelinase 2 enzymes (nSMase 2) are
involved in the sorting of non-ubiquitinated molecules
into the ILVs [62-64]. To be specific, tetraspanins are
located in the endosomal membrane microdomains with
key roles in the invagination of membrane and sorting of
special proteins and intracellular factors into MVBs [64,
65]. Neutral sphingomyelinase 2 (nSMase 2)-enriched
microdomains via conversion of endosomal membrane
sphingomyelin to ceramide, induction of negative cur-
vature of and formation of cone-shaped structure lead
lateral separation vesicular membrane and formation of
ILVs [66]. Inside the cytosol, the activity of different Ras-
associated binding (Rab) GTPase types orchestrates the
intracellular transport of endosomes [67]. Depending
on the activation of specific Rabs, MVBs can be directed
toward lysosomal degradation and release of cargo into
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Table 1 The exosomal cargo mediating drug resistance in different types of cancers
Biomarkers Cancer type Target molecule (s) Drug Reference
miRs miR-21 esophageal squamous cell carcinoma  STAT3 cisplatin [25]
miR-378-3p & miR378d Breast cancer EZH2/STAT3 doxorubicin & paclitaxel [26]
miR-205 Breast cancer E2F1 tamoxifen [27]
miR-4443 non-small cell lung carcinoma FSP1 cisplatin (28]
miR-3173-5p Pancreatic ductal adenocarcinoma ACSL4 gemcitabine [29]
miR-21-5p Breast cancer S100A6 doxorubicin [30]
miR-301b-3p Gastric cancer TXNIP cisplatin/ vincristine [31]
IncRNAs  SNHG7 Lung adenocarcinoma PI3K/AKT docetaxel (32]
CCAL colorectal cancer {3-catenin oxaliplatin [33]
H19 non-small cell lung cancer miR-615-3p/ATG7 erlotinib [34]
Linc00969 Breast cancer - trastuzumab [35]
UCA1 non-small cell lung cancer miR-143/FOSL2 gefitinib [36]
FOXD3-AS1 Lung cancer PI3K/Akt 5-fluorouracil (37]
HOTAIR glioblastoma miR-519a-3p/RRM1 temozolomide [38]
PICSAR cutaneous squamous cell carcinoma miR-485-5p/REV3L cisplatin (39]
circRNAs  circWDR62 glioma miR-370-3p/MGMT temozolomide [40]
circDLGAP4 Neuroblastoma miR-143/HK2 doxorubicin [41]
hsa_circ0014235 non-small cell lung cancer miR-520a-5p/CDK4 cisplatin [42]
circVMP1 non-small cell lung cancer mMiR-524-5p-METTL3/SOX2  cisplatin [43]
circUsP7 non-small cell lung cancer mMiR-934/SHP2 anti-PD1 [44]
circSYT15 cervical cancer miR-503-5p/RSF1 cisplatin [45]
circ-PVT1 gastric cancer miR-30a-5p/YAP1 cisplatin [46]
Proteins MMP14 Pancreatic ductal adenocarcinoma - gemcitabine [47]
HSP gp96 Breast Cancer p53 paclitaxel [48]
EGFR non-small cell lung cancer PI3K/AKT and MAPK osimertinib [49]
FOSL1 colorectal cancer [TGB4 oxaliplatin [50]
MIF glioma PI3K/AKT temozolomide [51]
TPX2 non-small cell lung cancer WNT/B-catenin docetaxel [52]
CD44 Breast Cancer - doxorubicin [53]

the host cells. In alternative pathways, MVBs can be
guided toward the Golgi apparatus or fuse with the
cell membrane to release the content into extracellular
matrix (ECM) [68]. The activation of Rab9 can contrib-
ute to endosomal trafficking to the Golgi apparatus while
Rab7 increases the lysosomal degradation via inter-endo-
some-lysosome connection [69]. It should not be forgot-
ten that the activation of similar Rab type in normal or
cancer cells yields different outcomes in terms of MVBs
destination. For instance, Rab7 activation in cancer
cells enhances ILV secretion into the ECM [70]. Other
GTPases such as Rab27a and Rab27b promote physi-
cal connection, tethering, and fusion of MVBs with cell
membranes [71, 72]. Other Rabs such as Rab3, Rabll,
and Rab35 are involved in endosomal recycling and ILV
cargo secretion [73, 74]. Along with the activation of
the Rabs, the soluble NSF Attachment Protein Recep-
tor (SNARE) complex (SYX-5, YKT6, vesicle-associated
membrane protein (VAMP)3/7, SNAP23) strengthens

the fusion of MVBs with the plasma membrane [55]
(Fig. 1). Upon the release of ILVs into ECM, these nano-
particles are hereafter Exos.

Oncogenic and anti-oncogenic properties of Exos
Oncogenic properties of Exos

Exos and TME

Some studies have indicated the transfer of differ-
ent oncogenic products in the lumen of Exos and
their influences on tumorigenesis via engaging several
mechanisms [75]. For example, proteins related to the
Ras superfamily of GTPases, and mRNAs of H-ras and
K-ras, along with several oncomiRNAs were detected
in prostate cancer cell Exos [76]. It is also possible that
nucleus and mitochondria DNA are sorted into Exos
inside the cancer cells in the levels of these elements
were higher in cancer Exos than that of normal cells
[77]. TME remodeling and stimulation of several anti-
tumor activities such as polarization of macrophages
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Fig. 1 Biogenesis of exosomes (Exos). The endosomal system is actively involved in the generation of Exos. The internalized Exos are sorted

into early endosomes. In the next steps, these endosomes mature into late endosomes and MVBs where new nano-sized vesicles, ILVs, are
generated via the invagination of the endosomal membrane. These particles are named Exos upon their release into the ECM. MVBs can

direct lysosomal degradation to directly fuse with the cell membrane to release their contents into the ECM. Abbreviations: MHC1: major
histocompatibility complex 1, CD: Cluster of differentiation, EGFR: Epidermal Growth Factor Receptor, HSP: Heat shock proteins, HIF-1a:
Hypoxia-inducible Factor 10, GAPDH: Glyceraldehyde-3-phosphate dehydrogenase, TSG101: Tumor susceptibility gene 101, ARF-1: ADP-ribosylation
factor 1, PI3K: Phosphoinositide 3-kinases, Rab: Ras-associated binding, SNARE: soluble N- ethylmaleimide- sensitive fusion attachment protein
receptor, MVB: Multivesicular Body, ESCRT: Endosomal sorting complexes required for transport, STAM: Signaling transducing adaptor molecule,

V/PS4: Vacuolar protein sorting 4, ALIX: ALG-2-interacting protein X

toward M2 type are induced in the presence of miRNA-
21A bearing cancer cell Exos. In lung cancer cells, this
miRNA can directly target the programmed cell death
protein 4 and inactivate myeloid-derived suppres-
sor cells (MDSCs) [78]. Exos can play a certain role in
TME for cell-to-cell intercommunication via a parac-
rine manner and regulation of tumor cell metastasis,
angiogenesis, and immune cell function [16]. Of note,
it should not be forgotten that the production and
release of Exos from cancer cells is higher compared to
normal cells [79]. Therefore, one can hypothesize that
the role of paracrine interaction between the cells is
more prominent compared to normal cell counterparts.
As a common belief, tumor cell Exos are uptaken by
neighboring tumor cells, CSCs, endothelial cells (ECs),
and immune cells [80]. The existence of specific cargo
inside the Exos can lead to stimulation of certain sign-
aling pathways inside the tumor cells. For example, it

was indicated that signaling cascades such as JAK/
STAT3, KIT/ERK/BCL2, KIT/ERK/Akt/mTOR, KIT/
PI3K/Akt/mTOR, HGF/MET/RAF1/MEK, HGF/MET/
PI3K/Akt/mTOR and PDCD1/mTOR are the targeted
molecular pathways with different cargo associated
with tumorigenesis [81]. Based on molecular investiga-
tions, genomics (miRNAs, IncRNAs, etc.) and several
factors can initiate the mechanisms associated with
carcinogenesis inside the cancer cells (Table 2). Inside
the tumor parenchyma, TME with specific physico-
chemical properties exists for the regulation of cancer
cell dynamic growth [82]. TME is composed of hetero-
geneous cells (tumor cells, stromal cells, ECs, epithelial
cells, MSCs, fibroblasts, and immune cells), ECM com-
ponents, vascular units, and secretory ingredients [82,
83]. The orchestrated and mutual cross-talk between
cancer cells with TME can lead to tumor development,
expansion, and metastasis [83]. Commensurate with
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Table 2 Exosome cargoes effective on the promotion of cancers
Biomarker Source Molecular level effect Phenotypic effect Reference
miR miR-519a-3p Gastric Cancer MAPK/ERK pathway Angiogenesis & Metastasis [98]
miR-934 Colorectal Cancer PTEN/ PI3K/AKT Metastasis [99]
miR-146a Breast Cancer Wnt/BCatenin Invasion & Metastasis [100]
miR-128-3p Colorectal Cancer TGF-B/SMAD & Jak/STAT3 EMT [101]
miR-3473b lung cancer NF-kB colonization [102]
miR-345-5p Colorectal related CAFs CDKNTA tumor cell progression & metastasis [103]
miR-20a-5p CAFs Wnt/B-catenin promotes hepatocellular carcinoma [104]
miR-221-3p M2-MQ SOCS3/JAK2/STAT3 osteosarcoma metastasis [105]
miR193a-5p TAM TIMP2 renal cancer progression [106]
miR-3157-3p non-small cell lung cancer TIMP/KLF2 angiogenesis [107]
IncRNA  SNHG16 breast cancer TGFB/SMAD induction of CD73+y&1 Tregs [108]
SNHG10 colorectal cancer INHBC & TGFf3 inhibit cytotoxicity in NKCs [109]
SNHG1 Hypoxic breast cancer Jak2 proliferation & angiogenesis [110]
PARTI Esophageal cancer miR302a-3p/CDC25A angiogenesis [111]
CDKN2B-AS1 thyroid cancer miR-122-5p/ PAHA1 Migration & Invasion [112]
TTN-AST gastric cancer miR-499a-5p/ZEB1/CDX2 growth & metastasis [113]
AP000439.2 clear cell renal cell carcinoma STAT3 tumor progression [114]
PCAT1 Colorectal Cancer miR-329-3p/Netrin-1-CD146 Metastasis [115]
LINC00313 non-small cell lung cancer miR-135a-3p/STAT6 M2-MQ differentiation [116]
NEAT1 Hepatoblastoma miR-132/MMP9 induce BMSCs to myofibroblasts [117]
circRNA circ_FMN2 Colorectal cancer miR-338-3p/MSI1 Cancer progression [118]
circPACRGL Colorectal cancer miR-142-3p/miR-506 3p-TGF-B1 Cancer progression [119]
circCCAR1 Hepatocellular carcinoma miR-127-5p/WTAP dysfunction of CD8+T cells [120]
circRNA100338 Hepatocellular Carcinoma - Promote metastasis 21
circTGFBR2 Hepatocellular Carcinoma miR-205-5p/ATG5 Cancer progression [122]
circDennd1b  Pituitary Adenoma miR-145 5p/ONECUT2 Cancer progression [123]
circ_0051799  Lung adenocarcinoma miR-214-3p/IGF2BP3 /JAK/STAT Cancer proliferation and metastasis [124]
circ_0005615  Colorectal cancer miR-873-5p/FOSL2 Cancer progression [125]
hsa_circ/FNGR2 Ovarian cancer miR-378/ST5 Metastasis [126]
Protein DNAJB11 Pancreatic ductal adenocarcinoma EGFR/MAPK Cancer development [127]
B7-H3 (CD276) Colorectal cancer AKT1/mTOR/VEGFA Angiogenesis & Metastasis [128]
DPP4 Colon Cancer Twist1/Smad Angiogenesis [129]
ENO1 Hepatocellular Carcinoma FAK/Src-p38MAPK & integrin a6B4 Cancer growth and metastasis [130]
CD44 Gastric Cancer YAP/CPT1A Metastasis [131]
GDF15 Colorectal cancer Bcl-2/caspase-3 Muscle atrophy [132]
ITGB1 Rectal cancer NFkB Activation of lung fibroblasts [133]
MLF1 Intrahepatic cholangiocarcinoa EGFR/AKT & Wnt/B-catenin tumor cells' proliferation and metas-  [134]
tasis
MUC13 Esophageal cancer GLANT14, MUC3A, MUCT, MUC12, Cancer development [135]
and MUC4/ O-glycan process
RNF126 Nasopharyngeal carcinoma PTEN/PI3K/AKT Cancer growth and metastasis [136]

Abbreviation: miR Micro-RNA, MAPK Mitogen-activated protein kinase, ERK Extracellular signal-regulated kinase, PTEN Phosphatase and tensin homolog, PI3K
Phosphoinositide 3-kinases, AKT Protein kinase B, WNT Wingless-related integration site, TGF-B Transforming growth factor-@, SMAD Suppressor of Mothers against
Decapentaplegic, JAK Janus kinases, STAT Signal transducers and activators of transcription, NF-kB Nuclear factor kappa-light-chain-enhancer of activated B cells,
CDKN1A Cyclin dependent kinase inhibitor 1A, SOCS Suppressor of cytokine signaling, TIMP Tissue inhibitor of metalloproteinases, KLF Kruppel-like factor, INHBC
Inhibin subunit betac, CDC25A Cell division cycle 25A, P4HAT Prolyl 4-hydroxylase subunit alpha 1, ZEB1 Zinc finger E-box binding homeobox 1, CDX2 caudal type
homeobox 2, MMP9 Matrix metallopeptidase 9, MSIT Musashi RNA binding protein 1, WTAP WT1 associated protein, ATG5 Autophagy related 5, ONECUT2 One cut
homeobox 2, IGF2BP3 Insulin like growth factor 2 mRNA binding protein 3, FOS Like 2, ST5 Suppression of tumorigenicity 5, EGFR Epidermal growth factor receptor,
mTOR Mammalian target of rapamycin, VEGFA Vascular endothelial growth factor A, FAK Focal adhesion kinase, YAP1 Yes1 associated transcriptional regulator, CPT1A
Carnitine palmitoyltransferase 1A, BCL-2 B-cell lymphoma 2, MUC Mucin
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these comments, the organization, and alignment of
TME components are critical to tumor cell function
[84]. Whether and how Exos can affect the physico-
chemical properties of TME, non-cancer cells, and can-
cer cells is at the center of the debate. Emerging data
have indicated that Exos can educate cells inside the
tumor parenchyma and alter the physicochemical prop-
erties of TME. Tumor cell-derived Exos can change
the function of TME cells and vice versa. The mutual
interaction between the cancer cells and non-cancer
stromal cells can dynamically alter the physicochemical
properties of TME [79]. Noteworthy, inside the solid
tumor parenchyma, the existence of hypoxic condi-
tions increases the local levels of lactic acid, and ECM
acidosis [85]. Under such conditions, cancer cells can
exhibit rapid proliferation by engaging a mechanism
that is so-called metabolic reprogramming [86]. Exos
can increase the resistance of vulnerable cancer cells
and non-cancer stromal cells to lower pH values via the
transfer of mitochondrial particles to restore the pro-
duction of ATP in these cells [80]. Unlike solid tumors,
TME is different in hematologic cancers. Tumor cells
can interact with the bone marrow microenvironment
and prolonged interaction can lead to the acquisition of
a cancerous niche [87]. The role of Exos in the progres-
sion of leukemia, invasion, angiogenesis, and inhibi-
tion of hematopoiesis has been addressed [88]. Under
hypoxic conditions, Exos can foster tumorigenic prop-
erties via the regulation of EMT, invasion, survival rate,
and maintenance of stemness features. Molecular anal-
yses have confirmed that the density of hypoxia-Induc-
ible factor-1 alpha (HIF-1a) is high in hypoxic cancer
cell Exos [82]. Exos can alter the number of TME cells
like T lymphocytes, NK cells, T regulatory lympho-
cytes, dendritic cells (DCs), MSCs, ECs, and MDSCs
[89]. In a study conducted by Hou et al.,, they found
that chondrosarcoma cell Exos promote the polariza-
tion of macrophages towards M2 type in response to
hypoxia, ultimately leading to enhanced metastasis rate
[90]. In a similar experiment, it was shown that hypoxic
lung cancer Exos with luminal miRNA-21 affects IRF1
and increases M2 type macrophages [91]. It is thought
that hypoxic conditions can alter the cargo type, bio-
genesis and secretion of Exos from cancer cells [92].
The levels of ceramides are increased by the activity
of ceramide enzymes in response to hypoxia [93]. Of
note, the type of molecules sequestrated into hypoxic
ILVs is also changed compared to the normoxic condi-
tions. Along with the expression of HIF-1a, miRNA-
210, -21-3p, 125b-5p, 181d-5p levels are increased in
released Exos in a HIF-1la-dependent manner [94-96].
Interestingly, the size of Exos is reduced under hypoxic
conditions because the lack of coordination between
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the different parts of endosomal system [97]. Taken
together, hypoxia is influencing factor in invasion, and
metastasis of tumors toward remote site via the release
of Exos with specific cargo from host cancer cells.

Fibroblasts and other tumor-associated cells
Cancer-associated fibroblasts (CAFs) are specific fibro-
blast types within the TME in several tumors [137]. CAFs
do not solely originate from activated tumor fibroblasts.
Different cells inside the TME such as MSCs, mono-
cytes, adipocytes, smooth muscle cells, pericytes, and
CSCs can commit into CAFs [138]. This biological activ-
ity is promoted by mechanisms called epithelial-mesen-
chymal transition (EMT) and endothelial-mesenchymal
transition (EndMT) [139]. The process of transforma-
tion of normal fibroblasts to CAFs is stimulated via the
modulation of several signaling pathways like transform-
ing growth factor beta (TGFP1)/suppressor of mothers
against decapentaplegic (SMAD), stromal-derived fac-
tor 1 alpha (SDF-1a)/C-X-C chemokine receptor type 4
(CXCR4), IL-1B/NF-kB, IL-6/JAK/ ROCK/STAT3, Wnt,
and HIF-1a. Depending on the malignancy rate and type
of cancer, specific signaling pathways can be involved in
the production of CAFs from normal fibroblasts [140,
141] (Fig. 2).

It is postulated that the activity of non-cancer stro-
mal cells is controlled by the CAFs. CAFs can regulate
tumor cell proliferation, resistance to chemotherapeu-
tics, metastasis, and apoptotic changes [140, 142-144].
Studies have shown that the activity of factors associated
with Exo biogenesis in CAFs is higher as compared to
normal fibroblasts [145]. CAF-derived Exos can regu-
late cancer cell proliferation, vascularization, and blood
supply for tumor niches [146]. In ovarian cancers, CAFs
produce Exos with low-levels of miR-29¢-3p and meta-
static behavior [137]. As such, CAFs can control the
progression and expansion of colorectal cancer via the
alteration of CDKN1A and SNX2 signaling pathways via
exosomal miR-345-5p [103, 142]. The existence of miR-
345-5p in CAF Exos can down-regulated LIMA1 lead-
ing to the activation of the Wnt/p-catenin pathway and
hepatic carcinoma cell proliferation [104]. CAFs can also
change the metabolism of cancer cells via the produc-
tion of Exos with specific cargoes. For instance, exosomal
IncRNA, namely LINC01614, stimulates the metabolism
of glutamine, and thus cancer cell function is dependent
on this amino acid [147]. In another work done by Yang
and co-workers, CAF exosomal circular RNA, named
circEIF3K, increased colorectal cancer progression in
a hypoxia-dependent manner via the modulation of
miR-214/PDL1 [148]. Like circEIF3K, CAFs can release
Exos with other circular RNAs such as circZFR with the
potential to alter Stat3/NF-kB molecular pathway and
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homeobox

enhance hepatocellular carcinoma cancer growth and
resistance to chemotherapy [149].

TME cells

MSCs are TME cellular components with self-renewal
and multi-lineage differentiation capacity [150].
Although the immune-modulatory properties of MSCs

have been previously addressed [81], MSCs participate
in TME remodeling via the production of Exos [150].
For example, MSC Exos can induce angiogenesis, pro-
liferation, apoptosis, metastasis, dormancy, drug resist-
ance, and immune cell suppression via the alteration
of certain effectors such as mTOR, AKT, PKC, MAPK,
JNK, p53, NFE2L2 and ERK1/2 [150-153]. Of course,
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the function and tumorigenic behavior of MSCs within
the TME can be regulated in a paracrine manner via
cancer cell Exos. In a study conducted by Gyukity-
Sebestyén et al., they claimed that melanoma cell Exos
up-regulate PD-1 and phenotype acquisition of MSCs,
leading to increased cell survival signals and tumor pro-
gression [81]. The active and mutual cross-talk between
bone marrow MSCs and tumor cells can result in the
progression of leukemia [154, 155]. Of course, it should
not be forgotten that MSC Exos can also exert tumori-
cidal effects. How and by which mechanisms the tumo-
rigenic and/or tumoricidal properties of MSC Exos are
prominent needs further investigation.

Different mechanisms are involved in immunity
against tumor cells along with the activity of natural
killer (NK) cells [156]. Tumor-associated antigens are
captured by antigen-presenting cells (APCs) like mac-
rophages, T lymphocytes, etc. and further presenta-
tion of these antigens to effector immune cells results
in tumor cell cytotoxicity [157, 158]. It has been elu-
cidated that TME Exos can reduce the function of
immune cells such as NK cells, DCs, and B and T lym-
phocytes via the regulation of TGF-p TGF I -6, TNE-
o, CTLA4, PD1 [158]. Under these conditions, Exos
can increase the polarization of macrophages toward
the M2 type [159, 160]. It has been indicated that mac-
rophages have a dual function inside the TME. The
M1 macrophages exhibit tumoricidal effects while M2
macrophages can help the tumor cells to proliferate and
metastasize [83]. Within the TME, the largest fraction
of macrophages is the M2 type while in the early stages
of tumor formation, M1 macrophages are dominant
and they commit to the M2 type over time [161]. This
phenomenon is promoted in part via the production of
IL-6-loaded Exos via cancer cells that dictate specific
phenotypes for tumor-associated macrophages (TAMs)
[162, 163]. Such mechanism has been indicated in
pancreatic cancer cell Exos. These Exos harbor FGD5-
AS1 and IL-6 with the potential to increase tumor cell
metastasis and survival via the promotion of M2 TAMs
via the STAT3/NF-«kB pathway [162]. M2 TAM Exos
with IncMMPA can increase the glucose metabolism
within the TME of hepatocellular carcinoma [163]. M2
TAM Exosomal miR-221-3p can increase osteosar-
coma cell metastasis via the modulation of the SOCS3/
JAK2/STAT3 pathway [105]. In line with the induction
of tumor cell metastasis and proliferation, M2 TAM
Exos can increase vasculogenesis, known also vasculo-
genic mimicry (VM), within the tumor parenchyma by
increasing vascular density and blood supply. M2 TAM
Exos containing miR193a-5p can increase tumor pro-
gression in VM-dependent mechanisms via the TIMP2
pathway [106] (Fig. 3).
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Despite the tumoricidal properties of T lymphocytes,
TME Exos can suppress the activity of these cells against
tumor cells via the transfer of several signaling molecules
such as miRNAs, circular RNAs, IncRNAs, TGF-p, PDL1,
and PGE,. TGF-B can inhibit the commitment toward
Thl and Th17 phenotypes. Exosomal miRNA, PDLI,
and TGF-f induce the activity of T,,, lymphocytes. On
the other hand, Exos can stimulate T cell apoptosis and
exhaustion via FasL, TRAIL, TIM3, LAG3, and miRNA
[13, 120]. Exosomal PGE2, CD39, and CD73 can alter the
metabolic state of T cells, and the function of T lympho-
cytes is inhibited indirectly via PDL1, TGEp, and PGE,
after suppression of DCs [164]. Hepatocellular carcinoma
Exos with circCCAR1 can promote inactivation of CD8*
lymphocytes via the stimulation of PDL1 [120]. Along
with these changes, the phosphorylation of hepatocyte
growth factor receptor substrate (HRS) can limit the
recruitment of CD8' lymphocytes [165]. The increase
of the Th17 subset within the tumor niche is related to
tumor mass expansion. The release of Exos containing
IncRNA CRNDE-h from colorectal cancer cells promotes
the number of Th17 cells and thus cancer mass devel-
opment [166]. Tumor cell Exo miR-208b and SNHG16
can affect the function of T,, lymphocytes and DCs
within the TME. Along with these changes, the num-
ber of recruited CD4" T lymphocytes and local IFN-y is
reduced [83]. These miRNAs can increase the number
of CD73+Y61 T, lymphocytes via the modulation of
PDCD4 and TGFB/SMAD pathways [108, 167] (Fig. 3).

Like T lymphocytes, the critical roles of NK cells
should not be neglected in different malignancies. These
cells and frontline cells promote tumoricidal effects via
functional receptors [13]. The physical contact of NK
cells with tumor cells leads to whole-cell lysis although
the production of various cytokines can affect the anti-
tumor activity of MK cells [158, 168]. Like other non-
cancer stromal cells, tumor cell Exos can impair the
function of NK cells via stimulation/inhibition of specific
receptors within the cancerous niche, resulting in anti-
tumor activity suppression [13]. In this scenario, hepato-
cellular carcinoma cells can decrease the local contents
of IFN-y and TNF-a via exosomal circUHRF1 and thus
NK cell activity [169]. The stimulation of NK cell TGFp/
SMAD pathway by renal cell carcinoma Exos decreases
the anti-tumor sensitivity following NKG2D suppres-
sion and induces tumor immune escape [83, 158, 170].
It was suggested that the attachment of certain exosomal
factors such as ProNGF and Sortilin to surface recep-
tor p75NTR increases the apoptotic changes in NK cells
within the parenchyma of lung tissue cancers [170].
Likewise, colorectal cancer Exos with IncRNA SNHG10
can increase the NK cytotoxicity via up-regulation of
INHBC from the TGF- pathway [109]. The interaction
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of exosomal miRNA-221-5p and miRNA-186-5p with
certain mRNAs (DAP10, and CD96), and perforin genes
has been approved in bladder cancers [158]. Along with
these comments, the TGF-f signaling pathway is one of
the main targets for tumor cell Exos to control the activ-
ity of NK cells. In support of this notion, acute lympho-
cytic leukemia cell Exos can diminish the anti-tumor
activity, proliferation, cytotoxicity, and inhibition of cyto-
toxic granules of NK cells via the TGF- signaling path-
way [168] (Fig. 3).

MDSC:s are heterogeneous and immature bone marrow
progenitor cells with morphologies similar to neutrophils
and monocytes [89, 171, 172]. It is suggested that MDSCs
can be committed into M1 and M2 macrophages [173].
The dynamic growth and differentiation of MDSCs in

1, HDGF: Hepatoma-derived growth factor, EMT: Epithelial-mesenchymal transition, EndMT: Endothelial-mesenchymal transition,

TME are regulated by several cytokines such as G-CSF,
M-CSE, SCF, VEGE, and unsaturated fatty acids, IFN-y,
IL-1pB, TNF-a, IL-4, -6, -13 by the modulation of NF-«B,
STAT1, and STAT6 signaling pathways [174]. The activity
of MDSCs can lead to suppression of CD8" lymphocytes,
stimulation of T, cells, increase of Th17 lymphocytes,
orientation of macrophages toward M2 type, and inhi-
bition of B lymphocytes and NK cells [171, 172]. MDSC
Exos harbor several factors (SI00A8/A9, HSP72, CD47,
TSP1, TGF-B, and PGE,), miRNAs (miRNA-21, -9, and
-181a) to target certain signaling molecules such as
STAT3, RORa, SOCS3 and PIAS3 inside the immune
cells [83, 172, 175]. In response to exosomal miRNA-21,
and miRNA-29a, MDSCs can promote the growth of
tumor cells after the modulation of ROR-A/PTEN and
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Prkarla signaling pathways [89]. Noteworthy, CAF exo-
somal miR-21 and IL-6 can increase the differentiation
of MDSCS toward monocyte-macrophage lineage via the
modulation of STAT3 [25, 172] (Fig. 3).

Effects of Exos on tumor cell invasion and metastasis

The metastasis is a complex biological phenomenon with
sequential steps that help the tumor cells to separate from
primary sites and migrate to close and remote sites. Upon
reaching the new microenvironments, these cells can
proliferate and produce ectopic foci [176]. To increase
the possibility of metastasis, the suppression of immune
cells and cancer cell resistance are critical features for
the development of a pre-metastatic niche. As above-
mentioned T, lymphocytes are the main cell elements
in the promotion of tumor cell metastasis to remote sites
[177]. Emerging data confirmed the influence of tumor
cell Exos in the formation of the pre-metastatic niches.
In terms of dynamic trafficking, it should be noted that
Exos can be easily distributed inside TME and separate
from each other due to net negative charge at their sur-
face [80]. These features mitigate in situ Exo agglutina-
tion inside the TME and increase the transfer into remote
sites. On the other hand, certain cargo types potentiate
Exos to alter the physicochemical behavior of TME, and
metastatic behavior of tumor cells via the alteration of
targeted signaling pathways, induction of angiogenesis,
and immune cell suppression [178]. Some tumor cells are
supposed to pass the tissue natural barrier, i.e. blood—
brain barrier (BBB), and lung-blood barrier, in addition
to blood—tumor barrier (BTB) [179, 180]. Due to specific
physicochemical properties, and the existence of cer-
tain ligands (integrins) and internalization mechanisms,
Exos can, in part, circumvent these obstacles and trans-
fer the cytokines, and growth factors into the TME and
remote sites. Exos can change the composition of ECM
by the alteration of specific molecular pathways in favor
of tumor cell survival and proliferation [180, 181]. Of
note, the type and amount of exosomal integrins can pre-
determine the on-target tissues and place of metastatic
foci [84]. Tumor cell Exos exhibit the prominent capacity
to cross the BBB interface. For instance, the transfer of
lung cancer cell Exos from BBB increases the apoptotic
astrocytes inside the brain parenchyma. Besides, because
of specific immunosuppressive agents and inflammatory
cytokines, these Exos can prepare the brain microenvi-
ronment for the development of metastatic sites [179]
(Fig. 3).

Like tumor cells, CAFs actively participate in the
formation of pre-metastatic via the release of several
chemokines, growth factors, synthesis of certain ECM
components, and matrix metalloproteinases (MMPs)
[182]. Colorectal cancer cells produce HSPC111 (c-Myc
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target gene)-enriched Exos that facilitate the develop-
ment of metastatic foci in other tissues by the change of
lipid metabolism [178]. CAF Exos can reduce the activity
of the mitochondrial electron transport chain and induce
the glycolysis pathway in tumor cells, making these cells
resistant to a lack of O, and nutrients [183]. To increase
the metastatic behavior of tumor cells, their migration
capacity should be stimulated. Tumor cell Exos with spe-
cific cytokines TGF-B, HIF-1a, B-Catenin, and Caveo-
lin-1 can increase the motility of neighboring cells within
the TME [184]. Upon reaching the target sites, migrat-
ing tumor cells hide and undergo dormancy. Dormant
tumor cells educate the resident immune cells to acquire
tumor-supporting phenotype to mimic pre-metastatic
TME [79]. It was well-established that Exos can affect
the dormant tumor cells and their subsequent biological
properties [185]. At the primary site, Exos can weaken
intercellular communication via the disassociation of
adhesion molecules. For example, colorectal tumor
cell Exos with luminal ADAM-17 content disassociates
E-cadherin in juxtaposed cells and loosens cell-to-cell
attachment, leading to enhanced tumor cell migration
and the possibility of metastasis to hepatic tissue [176].
The loss of vascular EC-to-EC connection is thought to
be another mechanism for the metastasis of tumor cells
to remote sites. Exosomal miRNAs such as miR-105 pro-
duced by breast tumor cells weaken the tight junction of
vascular cells and diminish the integrity of basal mem-
brane, leading to the permeability of blood and lymphatic
vessel and increase of metastasis to remote sites [79, 83].

The modulation of EMT and balance between the epi-
thelial and mesenchymal phenotypes is another mecha-
nism in the development of the pre-metastatic niche.
By the promotion of EMT, the levels of E-cadherin are
reduced while the cellular content of vimentin, N-cad-
herin, and fibronectin is increased. Besides to induction
of cell resistance to apoptotic changes, these features
weaken the connection of tumor cells with the underlying
basal membrane and increase the possibility of metas-
tasis [186, 187]. CAF and tumor cell Exos with specific
cargo types can stimulate the process of EMT via target-
ing certain effectors Snail, Slug, Zeb1/2, Twist, etc. [186,
188, 189]. Along with EMT, the stimulation of EndMT
and differentiation of CSCs into ECs has been indicated
by CAF Exos that lead to blood supply into the TME and
metastasis [190] (Fig. 4).

Exos and tumor angiogenesis

Angiogenesis is the process of de novo blood ves-
sels from parent vessels to support tumor cell survival,
growth, and metastasis [85]. It has been shown that
Exos can harbor pro-angiogenesis factors and stimu-
late TME vascularization [85, 110]. Exos can affect
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specific effectors associated with angiogenesis such as
Akt, PTEN, B-Catenin, TSGA10, and ANGPT?2 [85]. The
uptake of colorectal tumor cell Exos containing B7-H3
molecule by human ECs led to tubulogenic behavior via
the activation of Akt/mTOR and the VEGFA molecular
pathways [128]. Likewise, lung cancer cell miR-3157-
3p-enriched Exos up-regulates VEGF, MMP2, and 9 and
Occludin [107]. It is believed that hypoxic tumor cells can
produce Exos with angiogenic potential [107]. Prolonged
hypoxic conditions increase the accumulation of HIF-1a
and angiogenesis via the release of exosomal Wnt4a and
activation of f-Catenin [83, 85]. In light of hypoxia, the

Exos with higher levels of IncRNA SNHGI1 and mir-
216b-5p are released form breast cancer cells and the
uptake of these Exos promotes angiogenesis in human
ECs via Janus kinase 2 (JAK2) [110]. In a similar study,
data confirmed that hypoxic pancreatic cancer cells pro-
duce Exos with high levels of miR-30b-5p. This factor can
stimulate angiogenesis via the inhibition of Gap Junction
Protein Alpha 1 (GJA1) [191]. Likewise, thyroid cancer
cells can control the angiogenesis in a paracrine man-
ner via the release of Exos enriched in IncRNA FGD5-
AS1. This factor targets miR-6838-5p and VAV2 related
to actin re-organization and cytoskeletal remodeling
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[192]. Along with the direct effect of tumor cell Exos and
endothelial lineage, the uptake of these nanoparticles
by M2-type macrophages can lead to the promotion of
angiogenesis. It has been found that tumor cell Exos can
recruit neutrophils and increase M2-type polarization of
macrophages to support ECs [79] (Fig. 3).

Exos and tumor cell resistance

Chemo-resistance is one of the major challenges that
reduce the efficiency of therapeutic protocols [23]. Exos
with specific cargoes [P-gp, Survivin, DNMT1, Annexin
A3, ATP7A, ATP7B, MRP1, p-STAT3) and miRNAs
(miRNA-222-3p, -214, -100-5p, -567, -155-3p, -21, -433,
-21-3p, -1246, -223, -365, -19b, -20a, -32-5p, -501, -447-
5p, -99a-5p, -125b-5p, -210 & and -155] can increase
tumor cell resistance via engaging different mechanisms
such as DNA repair, apoptosis inhibition, alteration of
drug targets, and efflux, up-regulation of MDR and onco-
genes, down-regulating of tumor suppressor genes, EMT
induction, autophagy stimulation [23, 193]. The transfer
of Exos from resistant cells to sensitive cells is an effective
way to treatment failure. In this regard, CAF Exos can
educate the neighboring cells to resist chemotherapeu-
tics [194]. Of note, in response to chemotherapy, tumor
cells produce Exos containing ANXA6 that induces
stemness phenotype in cancer cells via the regulation of
ONECUT?2. Along with these changes, exosomal levels
of miR-378a-3p and miR-378d are increased in breast
tumor cells after chemotherapy, resulting in cancer resist-
ance via the EZH2/STAT3 pathway [26]. It seems that the
levels of resistance factors are higher in Exos from resist-
ant tumor cells compared to non-resistant counterparts.
Tamoxifen-resistant breast tumor cells release Exos with
higher luminal miRNA-205 which increases resistance
to these drugs in other cells by targeting E2F1 [26]. In a
similar work, it was indicated that doxorubicin-resistant
neuroblastoma cells with prominent glycolysis activ-
ity produce Exos with higher circDLGAP4 contents that
induce resistance in sensitive cells by targeting Hexoki-
nase 2 [41].

As mentioned earlier, the reduction of therapeutic
agents inside the tumor cells is another anti-tumoricidal
property [23]. In this scenario, tumor cells can elimi-
nate internalized chemotherapeutics via the activation
of transport pumps. It is suggested that ABC trans-
membrane transporters (ABCB1, P-gp, MDR1, ABCCs,
ABCG2, and MXR) can contribute to the efflux of vari-
ous drugs from tumor cells [195]. Exos can regulate the
expression and activity of cell membrane transporters.
For instance, Exos containing P-gp promotes the trans-
fer of drug resistance in recipient tumor cells. MSC Exos
with miR-301-3p stimulates multidrug resistance of gas-
tric tumor cells by inhibiting thioredoxin-interacting
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protein TXNIP [31]. Immune escape, angiogenesis,
and the creation of CAFs are other mechanisms associ-
ated with tumor cell resistant [23]. As above-mentioned,
MDSCs increase the chemo-resistance of tumor cells by
different mechanisms, such as inhibition of macrophage
polarization towards M1 type, promotion of angiogen-
esis, interaction with IL6, and increasing the secretion
of SI00A8/A9 [172]. The transfer of specific factors from
CAFs to tumor cells makes them cells resistant to chemo-
therapeutics. Following gemcitabine treatment, pancre-
atic ductal adenocarcinoma CAFs can internalize the
Exos with ACLS4, followed by induction of gemcitabine
resistance in cancer cells via miR-3173-5p [29]. Besides,
the transfer of MMP-14 via Exos from resistant pancre-
atic ductal adenocarcinoma cells to sensitive tumor cells
increases their survival [47]. A recent study showed that
acute myeloid leukemia cell Exos induce drug resistance
by upregulating S100A4 (calcium-binding protein) in
other cells [196]. The critical role of exosomal miR-21-5b
and S100A6 has been documented in other tumor cell

types [30] (Fig. 3).

Anti-oncogenic properties Exos

Besides their oncogenic roles, Exos can exert inhibitory
effects on inhibiting tumor cell growth, progression,
migration, and invasion via genetic cargo with tumor-
suppressing capacities like miRNAs, pro-apoptotic fac-
tors, and anti-inflammatory cytokines [197]. In contrast
to the resistant tumor cells and CSCs Exos, normal cells
and non-resistant cancer cell Exos can expedite the
immune system reactivity and anti-tumor properties
[198]. The activation of DCs by hepatocellular carcinoma
cell Exos increase the number of recruited T lymphocytes
in TME with simultaneous elevation of IFN-y. Under such
conditions, leukocytosis and increased cytotoxic T lym-
phocytes (CTLs) are prominent [199]. Interestingly, brain
microvascular ECs Exos with high levels of ECRG4 can
suppress the inflammation and angiogenesis inside the
glioma tumor parenchyma by inhibiting the P38-MAPK
signaling pathway [200]. In an experiment conducted by
Wang et al., they showed that exosomal miRNA-363-5p
can target the PDGFB pathway and can inhibit breast
cancer tumor cell proliferation and migration [201]. It
was suggested that some tumor-specific antigens (such
as Her2/Neo, Martl, TRP, and gp100) can be transferred
by Exos, leading to the promotion of the immune system
against cancer cells [202]. Multiple myeloma Exos IL15/
IL15R complex can initiate the proliferation and expan-
sion of NK cells. In activated NK cells, the continuous
production of IFN-y occurs via the stimulation of the
TLR2/HSP70/NF-«kB pathway. To be specific, tumor cell
Exos can frustrate NK cells and increase cytolytic and
migration properties in an HSP70-dependent manner
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[203]. The inhibition of PD-1 in CD8* lymphocytes was
reported after exposure to miR-15a-5p containing hepa-
tocellular carcinoma cell Exos. PD-1L-expressing tumor
cells can easily escape from the immune system [204].
In pulmonary cancer, the release of GPC5 (belonging to
heparan sulfate proteoglycan) containing Exos contrib-
utes to the reduction of angiogenic potential in lymphatic
ECs via suppression of PTK2, and endothelial migration.
These features are associated with the expression of the
CTDSP1 gene and activation of the AhR-PRNT signaling
pathway [205].

MSC and immune cell Exos
MSC Exos with various miRNAs and tumor suppressor
profiles are suggested biological weapons against sev-
eral cancer types [151]. In this regard, Xu et al. claimed
that bone marrow MSC Exos containing miR-16-5p can
inhibit the ITGA2, resulting in the reduction of colo-
rectal cancer cell proliferation, migration, and invasion.
Meanwhile, the number of apoptotic tumor cells also
increased [206]. In another study, it was indicated that
miRNA-let-7c and miRNA-34a containing MSC Exos
can effectively reduce the dynamic growth and metastasis
of resistant prostate and breast tumor cells, respectively
[153, 207]. It seems that several tumorigenic mechanisms
can be controlled via MSC Exos in different cell types.
Signaling pathways such as LIMK1/Wnt/p-Catenin [208],
EMT, TGEF-B [209], ZNF367 [17], KLF7/AKT/HIF-1a
[210], and Galectin-3 [211] can be modulated via exo-
somal miRNAs and cargo. These features indicate the
anti-tumor activity of MSC Exos with a wide range of
functions. Inside the TME, antigen-presenting proper-
ties of DCs can be stimulated after exposure to tumor cell
Exos. Although DC Exo with notable levels of MHC-],
and -II, CD86, CD80, and HSP can promote T lympho-
cytes and CD8™ cells [14]. Molecular investigations have
revealed that the levels of sphingomyelin and phosphati-
dyl inositol are high in DC Exos, resulting in enhanced
stability and circulation time compared to Exo types
[212]. The process of antigen presentation from DCs to
immune cells is orchestrated via several mechanisms.
Naive DC Exos may be internalized by T lymphocytes
or cross-dressed and coated with DC membrane com-
ponents before uptake by T lymphocytes. Some authori-
ties have documented the internalization of DC Exos by
tumor cells and the addition of tumor-specific antigens
with stronger immunological properties [213]. Decora-
tion of DC Exos with specific integrin types aMP2 and
ICAM1 can increase the on-target potential effects [212].
Along with DCs, B, and T lymphocytes (CD4" and
CDS8™" subsets) exhibit anti-tumor activities [203]. T
cell Exos, especially CD8* lymphocyte Exos, are potent
destructive agents after activation by DCs. The Exos can
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directly attack tumor cells, eliminate TME MSCs, and
activate other T lymphocytes. The inhibition of PDL-1
on the surface of tumor cells is also done via the release
of PD-1" Exos via specific miRNAs such as miR-16p [14,
214]. Likewise, NK cell Exos can exert tumoricidal effects
via the stimulation of apoptosis-related factors such as
certain Caspases [160, 215]. The existence of HSP70,
and granzyme B in NK cell Exos increases the possibil-
ity of apoptosis in tumor cells [203]. NK cell and M1
macrophage Exos with specific cargo, miR-30-3p, and
miR-16-5p respectively can reduce the proliferation and
invasion of esophageal squamous carcinoma cells and
gastric tumor cells via the modulation of PD-L1 [216,
217] (Fig. 5).

Application of stem cell Exos in cancer therapy

MSC Exos

Exos can be isolated from MSCs of different tissues
[218]. Of note, there are controversies in the applica-
tion of MSCs for cancer therapy purposes. On one hand,
MSCs increase TME remodeling and can foster tumor
cell dynamic growth, metastasis, and EMT via the sup-
pression of immune system function [219]. On the other
hand, various MSC anti-tumor properties have been
shown in several in vitro and in vivo conditions [179, 220,
221]. Data confirmed that MSC Exos possess appropri-
ate biocompatibility, healing capacity, and low-rate tox-
icity, making them valid tools for therapeutic purposes.
The tumoricidal properties of MSC Exos are associated
with immune system function, regulation of cell-to-cell
interaction, induction of apoptotic changes, inhibition of
angiogenesis and tumor cell proliferation, and modula-
tion of drug resistance [222-224]. The anti-angiogenesis
potential of MSC Exos in the context of tumor paren-
chyma leads to the reduction of VEGEF, inhibition of
NF-kB [225], and mTOR/HIF1A/VEGF axis [226]. The
interaction of MSC Exos with CSCs promotes MET, loss
of stemness features, and increase of non-CSC pheno-
type within the parenchyma, resulting in the reduction
of tumor cell resistance [227]. In the presence of MSC
Exos, NK cells and CD8" T lymphocytes proliferate and
these changes coincide with the inhibition of T, cells
and polarization of macrophage to M2 phenotype [228].
As above-mentioned MSC Exos increase the chemo-
sensitivity of tumor cells by improving anti-drug resist-
ance. It was found that adipose tissue MSC Exos sensitize
breast cancer cells to cisplatin [229]. The combination of
photobiomodulation with MSC Exos is suggested as an
effective therapeutic protocol in cancer patients [229]. In
line with several studies, data have confirmed the eligibil-
ity of MSC Exos as valid bioshuttles for delivery of anti-
tumor factors, increasing drug sensitivity, and targeted
delivery purposes [20]. Compared to transplant cells, the
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trap of administrated Exos is less in hepatic, splenic, and
pulmonary tissues which increases the lifespan, circula-
tion time, and affinity to tumor sites [230]. The tumori-
cidal properties of umbilical cord MSC Exos have been
indicated in cancer of renal, endometrial, and breast tis-
sues [231]. Bone marrow MSC Exos with miRNA-16 can
suppress the VEGF factor and thus the angiogenesis and
vascular density [232]. Besides, the existence of various
anti-tumor factors has been indicated inside these Exos
[233]. The anti-tumor potential of MSC Exos is closely
associated with cargo type, tissue source, and dose and
injection interval. In line with the claim, the anti-tumor
properties of umbilical cord MSCs is more than bone
marrow MSCs and their Exos [150, 234]. Of course, it
should not be forgotten that cancer cell type, malignancy
degree, and heterogeneity of TME can affect the function
of MSC Exos [235, 236]. In general, the effects of different
sources of MSC Exos on various cancers remain unclear
(Table 3).

CSCs Exos
CSC Exos can be a suitable target for cancer treatment
because of their active interaction with TME and control

of several mechanisms associated with anaplastic condi-
tions [251]. By sophisticated manipulation, CSC Exos can
be used for the disruption of CSCs and non-CSC cancer
cells, inhibition of resistance mechanisms, and transmis-
sion of stemness features to other cells [252]. The avail-
able protocols target certain factors or pathways such as
the Notch axis that are eminent in CSCs [253]. Due to
distinct physicochemical properties, chemotherapeutics,
siRNAs, and immunomodulatory agents can be loaded
onto CSC Exos to increase on-target delivery efficiency
and reduce off-target side-effects [252, 254]. The con-
version of EMT and compelling CSCs to commit to the
non-CSC phenotype can lead to tumor cell sensitivity to
conventional therapeutic protocols [227]. This approach
can be achieved by using certain factors such as all-trans
retinoic acid in leukemia cells [255]. The inhibition of
paracrine activity, especially Exo biogenesis, in CSCs has
been thought of as a promising therapeutic tool [231,
256]. For this purpose, specific endosomal factors such
as ESCRT, sphingomyelinase, GTPase proteins, etc. can
be regulated to reduce Exo biogenesis and abscission. For
example, using sphingomyelinase inhibitor, GW4869,
and Rab27a siRNA, Exo biogenesis and release were
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diminished respectively in CSCs [252, 257]. The expo-
sure of cancer cells to dimethyl amiloride can block the
acidification step inside the endosomes [258, 259]. The
application of a genetic approach for the suppression or
down-regulation of genes responsible for Exo biogenesis,
i.e. ESCRT-III protein CHMP4B, is another anti-tumor
medication [260]. The advent of nanoparticle technology
can help to control Exo biogenesis, formation, and abscis-
sion. For instance, gold nanoparticles exhibit anti-Exo
activity via the regulation of lipid metabolism [256]. CSC
Exos can be manipulated to intensify the immune system
response against tumor cells or suppress the immuno-
suppressive signals. Emerging evidence support the fact
CSC Exos are eligible immunogenic tools for developing
cancer vaccines to enhance anti-tumor immune-reactiv-
ity [261]. In this regard, the isolation of patient CSC Exos
enables us to fabricate personalized vaccines for specific
tumor types in the clinical setting. To select appropri-
ate therapeutic strategies, a more profound knowledge
related to CSC Exo bioactivities and challenges is impera-
tive and warrants further research (Table 4).

Clinical application of SC Exos in cancers
SC Exos possess unique features that make them suitable
for therapeutic purposes in cancer treatment.

SC Exos as the natural delivery platform

The unwanted impact of chemotherapy protocols on
non-targeted tissues and organs is a challenging issue in
cancer patients [278]. To achieve anti-tumor features, it is
essential to use elevated doses of drugs despite the possi-
bility of high toxicity for non-target cells [20]. The release
of chemotherapeutics using Exos has been thought of as a
more efficient approach to circumvent these side effects.
SC Exos are valid delivery tools with suitable interaction
between the homogenous and heterogeneous cell types
[279, 280]. Compared to synthetic nanoparticles such as
liposomes, Exos are non-immunogenic with a specific
life span [279]. Due to the dynamic distribution of Exos
and different uptake systems, these nanoparticles can be
used in personalized medicine. These features make pos-
sible the load of several therapeutics onto the exosomal
lumen and decoration with specific ligands (integrins) to
increase on-target delivery and make them cross natural
barriers such as BBB [22, 281]. The existence of a lipid
bilayer around the therapeutic compounds keeps them
away from degradation inside the TME [281]. Besides,
these features, the load of chemotherapeutics inside Exos
reduces the efficient dose and thus possible side effects
[282, 283]. The target molecules can be loaded onto the
Exos by using several strategies. In passive cargo loading,
the compounds are trapped using a diffusion process like
incubation, but the loading efficiency is low [284, 285].

Page 17 of 30

Compared to passive methods, in active cargo loading the
compounds are actively injected into the Exo lumen using
techniques such as ultrasound and electroporation. These
approaches can exert reversible injury to the exosomal
membrane. However, the load of the drug, retainability,
and stability are high in this method compared to passive
drug loading [285, 286]. In an alternative approach, the
parent SC is manipulated genetically before Exo isolation
or co-cultured with the target molecules, leading to the
sequestration of therapeutic compounds onto the Exos in
the conditioned medium [284, 285]. Of course, the appli-
cation of these methods depends on the type of cargo.
In the case of drug loading using electroporation or
ultrasound approaches, the aggregation of proteins and
genetic materials is so high that can increase the possibil-
ity of Exo membrane injury and delivery efficiency [284].
Emerging data have indicated a load of small molecules,
mRNAs, and proteins with tumoricidal properties onto
Exos for therapeutic purposes [202]. Further studies are
mandatory to find suitable loading techniques with mini-
mum damage to the Exo structure. The identification of
valid anti-tumor cargoes with possible translation capac-
ity to clinical settings is at the center of the debate.

SC Exos for targeted cancer therapy

Recently, scientific society has concentrated on finding
novel and sophisticated methods for the direction of SC
Exos toward anaplastic sites to yield better therapeutic
outcomes [287]. Tumor cells are at the center of targeted
therapy by aiming certain factors required for dynamic
growth, proliferation, and survival which are not overac-
tive in normal healthy cells [288]. Compared to conven-
tional therapies which target all dividing cells, targeted
therapy compounds specifically aim for certain effectors
in tumor cells. Using engineering tools, it is possible to
develop specific Exo types with higher on-target delivery
approaches. For instance, tumor-targeting proteins, pep-
tides, or antibodies can increase the delivery efficiency in
tumor cells compared to normal cells [221, 289]. Despite
the superiority of Exo-based approaches compared to
whole-cell-based therapies, cancer therapy resistance
was reported in a study after the application of bone mar-
row MSC Exos [290]. Under such conditions, TME was
remodeled and chemoresistance capacity was induced.
However, the modulatory effects of bone marrow MSC
Exos on CSCs have been approved by targeting specific
intracellular signaling pathways or membrane-bound fac-
tors [184, 291].

Several documents have revealed the suitable tumor-
homing capacity of MSC Exos [292]. It was suggested
that MSC Exos can easily cross the BTB, and respond
to gradient density of chemotactic factors [293]. This
property can be intensified by the decoration of specific



Page 18 of 30

(2024) 22:130

Abbasi-Malati et al. Cell Communication and Signaling

o7l

[SzcvLal

[€L¢'d]

[cLc=69C 71l

pajelisiulupe usaqg aney | 01 03,01 woly bujbuel
sajpied Bululeluod suondaful ‘suonebisaaul [estulaid buung

SOWOSOXd

apeib-edjuld Jo Aujigerai pue Aljiginpoidal syi Bupueyud -
'ss9201d uon>NPoId SWOSOX3 Y1 buizipiepuels -

HENIE]

2WOSOXa pue [enualod 18z 'az1s 3jd1iied ‘UoJLIIUSIUOD Bulpn|dul
SOWOSOX3 JO satadold a|qipnpoidas pue a1eindde Jo Siskjeuy -

weiboid bunsay

|013U0d Aljenb s|ges|y e sopn|aul 1eYl Wi1sAs Bunelsado paso)d
paUl|UIealIS B YlM paulquiod sainpadold buiesado pazipiepuels -
9dUeINSSe

Aujenb 1oy sanbiuydal sjgedijdal pue ajgepuadap bulysijgeisy -

UOI1EZI|11N 150D JUSIDLYJS IO SMO|[e

WNIP3W 93.4-UNISS pauyap A|SNoiobL e apIsBuo|e SSU0SOXa
SY1Dads 9y ases|ai 1Byl saul| [|92 Paysi|gelss-|lom buikojdw] -
IR 9DBJINS D|CB|IBAR SZIUIXeW 1By}

sa1bojouya1 Aojdwis 01 A1essadau S1 1l ‘'uonoNPOoId SWOSOXS 10}
pasn sjj92 Juspuadap-abeioydue Jo 2NN 9yl dn 3|eds of -
Buln1oeJNUBL SUIOSOXS

9|eds-abJe| ul saunpadoid pazipiepuels pue ‘1ndino buiseanu -

SOUWIOSOX

SOWOSOXd DY} UIYIM

pauleluod peojAed d1nadesayl ayl pue ‘pasnjul st 1 Moy 19D
-ued Jo adA3 ay3 uo buipuadap Jayip pjnod Juawaiinbal buisop
9y "pa1ebnsaul BUIRq ||1S SI IUSWIRSIY J9DURD SAINDIYS 10§
SOX3-DS JO 96BSOP 9|qe1NS 1SOW 943 JO UOIIRUIULISISP Sy

uol1ez|312eIRYD Ul S3IYNDYIP pue

‘SpOL19W UoI1RIedas 1USDLYJaUl ‘SUOIIPUOD 31N ND JO 32IN0S |32 Ul
S3OUIAYYIP BUIPN|DUI 'SI0108) [RISASS 0} NP SAYD1E] JUISYIP WO
pasnpoid sawosoxe Jo Alpuenb pue Alijenb syi ur Aous1sisuody|

sisoubelp 195Ued Paseg-aU0SOXa Ul 9buajjeyd Juedyiubis v

SOWOSOXd 2y} Bulziadeseyd Ayndyid -
si9yiewolq dy1ads Joj paaN -

ssado.d

Bunnidenuew ay1 dn buieds yum parenosse Auxajdwod ay] -
1500

1uswdojansp ybiy pue sawosoxe Jo Indino uondnpoid pauwi -
UOI1B|0SI SWOSOXS JO $5920.d BullNSuo-awil pue xo|dwo) -
SpPOY12W uolesyund pue Uo[e|os SU0SOX3 JO Alljige|eds -

sanUNdw 10 S3PDISIA JB[N|[92.11XS 1210 AU JO UOISN|aUl 9y}

puisoq

uoneweA yaieg-ol-yoleg

sobied) xa|dwo) Jo sishjleuy

|0J1u0d Ajen)

uonedylnd pue bulnidejnuew a|eds-abie

[97] asuea pue a1eledas AjPAISN|IX3 1eY3 Spoyiaul Jo Juawdopnsg Bunnuaraid a)1ym sawosoxa Ajuo bulie|osi 10y A1AID3I9S Yybiy Aupyipads
uonesnps pue ‘buniodal Jusiedsuel) pue pazipiepuels -
uoleIqI[eD JUSWINIISU| - SIaylewolq dy
SpPOYIaW Uoed  -3ds JO ¥DB| PUP 'UOIIEZIISIDRIEYD Ul S3NNDUJIP 'SPOYIaW uoleledas
[¥97]  -yund pue uopejos| aUW0osoxa ul sayseoidde wiopun bBulysijgeiss - JUSIDLY2UI 01 DNP S NS |CBI[2) PUE JUIISISUOD UIRIGO O3 AjIgY Aujigipnpoiday
SIDIADP DIPINPOIDIW pUE ‘s3INYND (€ 'sI010eaI0lg -
Aydeiborewolyd
UOISN|2xa-3zIs pue ‘uonebnyuiusdesin 'spoyiswl paseg-Aluyjeou
-NWIWI Se yans ‘spoyrawl uonedsylind pazijepads Jo asn ay3 bul
-pnjaul 'spoyiaw buissadoid wiessumop Jo uoieziuindo -
#qey umop Buyoouy ‘ajduexa 104 'sisausbolq awos
-0x3 1gIYul 18y} SaUb Jo ANAIDe 33 Jo uoissaiddns snosueynulls -
101084 yamoub pue
'S|9A3] USBAXO ‘syuaiInu Jo AMjIqe|ieAR ay3 JO JudWisSN(pe 35193l -
:Aq SOUI0SOX3 JO uone|os| bupnp syuauod
[897-+97] aseaja 2y Buisealdul pue SUORIPUOD 31NN 192 buiziwpdO  -WOD pajuemun JaY3o JO SUGaP 4ejnjj9d YIM UOIIRUIUIRIUOD JO XSy Aund pue pjaIA
obued
[r97-797] spoyiaw uoledyiind pue uone|os paziplepueis buidojaas( - SNOLIEA Ul 3NS31 JUSUWIUOIIAUSOIDIU 3Y3 pue sadA} |9 Jualayig AisusboialsH
J9Y Bulwodiang uondudsaqg Buibusjeyd

BUINSS [BDIUID BYI Ul SOWOSOX JO BUILIODISAO pue sabuajiey) ¥ ajqer



Page 19 of 30

(2024) 22:130

Abbasi-Malati et al. Cell Communication and Signaling

SOUWOSOX® JO Alljeuonouny pue Abojoydiow ayy

109e AeW S3|2AD pajeadal se 's9|2Ad MeYI—9zaa1) Y3 BUIZILIUIA -
sasodind uoneasasaid 1oy

|03A16 suajAyiaA|od Jo siebns oyl s;uabe buizijigels bulkojdug -

spouad
PaPUSIXD JIAO SIWOSOXD JO AYjeUOdUN) pue A3jigeis oY) bunnsug
S9WOSOXa JO 3xeydn Jejn||ad pue ‘syusy

[£/2'161] BuizijiydoAT - -uod ‘Aluenb ‘uonNguUisIp az1s ay3 1oedwl Ued sUOIPUOD 26eIOIS uoneAlasaid wia1-buod
QUIDIPaWOURU puUE ‘salpogiue (NB]) -ulingolb SISe1SE1aW JadURD Hulpn|dul
-OUNWIWI ‘S9UI0SOXD PaALap-19]91e|d ‘sBnIp DNAIOQUIOIYL JO 95N - ‘S9SeasIp UIe1Iad JO JuaWdO[@AIP ay3 01 9INGLIUOD UBD SDUIOSOXD
:AQ UOIID3[U] SWOSOXD WO SISOGUIOIY] JO %S Y} PIZILUIUIN P3ALISP-PINYOIQ Ul 92Ue[eqUII DI1RISOSWOY PUR SISOGQUIOIY | SISPIOSIP D11PISOWSY PUR SISOGUIOIL] JO XSy
sapoiedoueu Jo sjensiew a|gredwodolq Ul wayi burens
-deoua Ag Wa1sAs |el|210puUa0|No1Ia) 343 WO SOUWOSOX BulpjaIys - UIeal1spool|q eyl woy
uolepelbap sopo1ed ub1aio) S1eaPd (SJY) WISAS [eI]9YI0pUS0|NdNal 3y -
J11PWAZUS 151594 01 21 BULISaUIBUS JO S|eLIS1eW 9A1D104d YUM 1l SURJGUUSW SWIOSOXD Y1 4eaiq sWia1sAs ydwiA| pue poolq ax||
Bu1e0d AQ SURIGUID [BUUOSOX 9Y1 JO 92Ual|IsaJ Y3 Bupueyud - SpINY A|IPOQ Ul SWSIUBYD3W UMOPYeaIq JI1eWAZUS 95I9AI( -
:S9WOSOX JO :Aq uoiubodai pidel yim Apog sy Ui uon
[S9z'/61]  9duUBINPUD pue A1ljIgeIS 8yl J215|0q 01 salba1eis as1aAlp Bulkojdw3  -einp paliwi| 03 anp [enuaiod dnadelayl sauWosoxa bujulelisuod OAIA Ul 3JI7-J|eH 1IoYS
31Is A1IAIIDR 3Y3 1B UO[IRJIUSDUOD JIay3 Buiziundo ‘seale jowny
9515a1d 01Ul 0X3-5DS JO AISAIDP 10241P Y1 JOJ SMO||e UOI1D3[Ul [eD0T -
S9sEISPIDW puUe SIS Jowny 3jdiinw Jo uond3(ul snosueINdgns pue
1uswieal) patabiey 1oy buimojie ‘Apog ay3 INoyHBNoIY3 0x3-5DS JO ‘leJowin-eJiul ‘[eauolladeliul ‘SNOUSARIIUL SPN|DUI JUSUIeSI)
[9/7]  uonnquisip peaidsapim ay3 S31e[1D8) UOIIeIISIUILUPE SNOUSARIIU| - J32UBD Ul SOXI-DS 40§ UONEBIISIUIWIPE JO S3IN0J SANDRYS 1S0W Y| UOI1BJISIUIWIPE JO 21N0Y
19y BujwodianQ uondudsag buibuajieyd

(panunuod) ¥ ajqelL



Abbasi-Malati et al. Cell Communication and Signaling (2024) 22:130

ligands against tumor cell receptors on the Exo surface
[294]. MSC exosomal integrin a4f1l can easily interact
with VCAM-1 on the tumor cells, leading to the increase
of Exo uptake in TME [220]. In general, SC Exos facili-
tates a promising tumor-targeted therapy by offering
more efficient and less harmful outcomes.

SC Exos as diagnostic tools

FDA has approved several Exo-based diagnostic kits
for clinical settings [295]. Like several Exo types, CSCs
Exos are potential diagnostic tools. As expected, these
particles can harbor specific biomolecules associated
with stemness, metastasis, tumor initiation, and resist-
ance. The real-time changes in the metabolic profile
of parent cells can be precisely monitored using Exos
(Fig. 6) [252]. By monitoring specific biomarkers, it is
possible to predict and evaluate the efficiency of thera-
peutic protocols [296]. Regarding the fact that Exos
can easily distribute in different biofluids they are
valid non-invasive tools for the detection of anaplas-
tic changes with suitable sensitivity and specificity. It
should not be neglected that Exos are stable in ECM
with heterogeneous compounds. Therefore, serial and
consequential sampling enables us for precise and in-
time detection of tumorigenesis [136]. Compared to
Exo examination, conventional tissue sampling gives
information related to a single time point and makes it
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difficult to make accurate decisions [296]. Despite the
promising roles of circulating tumor DNA in accurate
clinical detection, these molecules are released into
the circulation from cells with apoptotic or necrotic
changes [297, 298]. While tumor cell Exos are continu-
ously released into the blood at all phases of tumor cell
development and growth with valid data about alive
cancer cells [297, 299]. Circulating tumor cells and
DNAs at certain numbers and concentrations can be
used as prognostic and predictive markers. Any fluctu-
ation in these features can weaken the tumor detection
rate.

As described previously, due to a lack of high-quality
isolation and purification protocols, and batch-to-batch
variation the bulk application of Exos has been limited in
cancer patients (Fig. 6) [269]. The lack of exclusive cancer
biomarkers and discrimination of cancerous and normal
Exos make precise detection challengeable [269, 300].
In line with these descriptions, further investigations
are mandatory for the detection of suitable Exo sources
for monitoring the dynamic growth of tumor cells, and
propagation. The combination of tumor cell Exos with
conventional approaches can increase the sensitivity and
specificity of diagnostic tools [301]. Even though, CSC
Exos can reflect real genetic signatures and are unparal-
leled biological tools for precise cancer detection and
therapy.

Advantages and Disadvantages of Exosome Therapy
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Fig. 6 Advantages and disadvantages related to application of Exos in terms of cancers
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Table 5 List of clinical trials based on Exos in cancer patients accessed on 18, January 2024

Study Title ClinicalTrials.gov ID Status Study Type  Phase
KrasG12D siRNA-loaded MSC Exos (iExos) for treating patients with pancreatic NCT03608631 Active, not recruiting  Interventional |
cancer with KrasG12D mutation
CDK-002-loaded Exos (exoSTING) in subjects with Advanced and metastatic NCT04592484 Completed Interventional land Il
neck squamous cell cancer, triple negative breast cancer, anaplastic thyroid
carcinoma, and cutaneous squamous cell carcinoma
Clinical trials and future perspectives C5Cs Cancer stem cells
The safety and efficacy of SC Exos have been investi- CTDSP Cterminal domain small phosphatase 1
; . o CTLA4 Cytotoxic T-lymphocyte associated protein 4
gated for the treatment of various cancers in preclini-  c7is Cytotoxic T lymphocytes
cal studies (Table 5). However, there are few clinical = CXCR C-X-C Motif Chemokine Receptor
. . . DCs Dendritic cells
trials in this regard. For example, researchers at the o
E2F1 E2F transcription factor 1
MD Anderson Cancer Center (NCTO03608631) are ecwm Extracellular Matrix
conducting a phase 1 study to assess the appropri- ECs Endothelial cells
. EMT Epithelial-mesenchymal transition
ate dosage and potential adverse effects of MSC Exo [, = Endothelial hymal transiti
: G12D _: : . . . n ndothelial-mesenchymal transition
with Kras siRNA in patients with pancreatic can-  Frg Extracellular signal-requlated kinase
cer [302]. By launching another phase 1 clinical trial — ESCRT Endosom.a\sorting complexes required for transport
(NCT04592484), Codiak Biosciences aims to explore £Cs Embryonic stem cells
. EVs Extracellular vesicles
the efficacy and safety of exoSTINGS, engineered Exos,  Exos Exosomes
in treating multiple solid tumors. Data confirmed that ECM Extracellular matrix
manipulating SC Exos through engineering approaches -2 Enhancer of zeste homolog 2
p ‘g g g ‘g ‘PP FasL Fas ligand
holds promise for future therapeutic applications [303].  G.csF Granulocyte colony-stimulating factor
The future perspectives of SC Exos in cancer treat-  GJA! Gap Junction Protein Alpha 1
gp100 Glycoprotein Gp 100

ment have garnered significant interest in the scien-
tific and medical communities. Exos can successfully

Her2/Neo (ERBB2)
HGF

combat drug resistance and ameliorate the frequently HIF-la
. . . . HRS
encountered side effects associated with conventional |
treatments [304]. Recent advancements in engineered |-y
Exo technologies provide exciting opportunities for ILs
targeted therapies by modifying surface receptors and -
g€ P Y ying sur p iPSCs
loading specific molecules. Despite these features, jax
more investigations are required to overcome the JINK
L . ) KIT
challenges of standardizing isolation techniques and | .
unraveling the intricate mechanisms behind the anti- |
tumor effects exerted by Exos. To be specific, SC Exos  LIMKI
are essential elements in personalized medicine strat- mgﬁf
egies for cancer patients, offering improved effective-  m-csr
ness alongside limited toxicity. Nonetheless, we have  MDR
. . . ) MDSCs
just started along this path, and to continue, meticu- -

lously planned prospective randomized clinical trials
are necessary.

MET (HGF receptor)
miR

MMPs
MSCs
Abbreviations E&B)S
ACLS4 Acyl-CoA synthetase long chain family member 4
- f NFE2L2
ADAM-17 A disintegrin and metalloprotease 17 NF-kB
AKT Protein kinase B
ALIX ALG-2-interacting protein X NK
ANGPT2 Angiopoietin-2 NKGID
ANXA6 Annexin A6
. ) nSMase 2
APCs Antigen-presenting cells
) ) PD-1
BBB Blood-brain barrier
: PDCD1
BTB Blood-tumor barrier PDGFB
CAFs Cancer-associated fibroblasts

Erb-B2 receptor tyrosine kinase 2
Hepatocyte growth factor

Hypoxia-inducible Factor 1a

Hepatocyte growth factor receptor substrate
Heat shock protein

Interferon y

Interleukins

Intraluminal vesicles

Induced pluripotent stem cells

Janus kinases

C-Jun N-terminal kinases

Receptor tyrosine kinase

Kruppel-like factor 7

LIM domain and actin-binding protein 1

LIM domain kinase 1

Mitogen-activated protein kinase
Melanoma-associated antigen recognized by T cells
Macrophage colony-stimulating factor
Multiple drug resistance;

Myeloid-derived suppressor cells
Mitogen-activated protein kinase kinase
Hepatocyte growth factor receptor
MicroRNA

Matrix metalloproteinases

Mesenchymal stem cells

Mammalian target of rapamycin
Multivesicular bodies

Nuclear factor erythroid 2-related factor 2 (NRF2)
Nuclear factor kappa-light-chain-enhancer of activated
B cells

Natural killer cells

Natural killer group 2D

Neural sphingomyelinase 2 enzymes
Programmed death-1

Programmed cell death protein 1
Platelet-derived growth factor subunit B
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PGE2 Prostaglandin E2
PI3K Phosphoinositide 3-kinases

PIAS3 E3 SUMO-protein ligase

Prkarla Protein kinase A regulatory subunit la

PTEN Phosphatase and tensin homolog

PTK2 Protein tyrosine kinase 2

Rab Ras-associated binding

RAF1 Rapidly Accelerated Fibrosarcoma

ROCK Rho-associated protein kinase

RORa RAR-related orphan receptor alpha

S100A8/A9 $100 calcium-binding proteins A8 and A9

SMAD Suppressor of mothers against decapentaplegic

Stem cell SCs

SCF Stem cell factor

SDF-1a Stromal-derived factor 1 alpha

Snail Zinc finger protein SNAI

SNAP23 Synaptosomal-associated protein 23

SNARE Soluble N- ethylmaleimide- sensitive fusion attach-
ment protein receptor

SOCS3 Suppressor of cytokine signaling 3

STAT Signal transducers and activators of transcription

SYX-5 Syntaxin 5

TAMs Tissue associated macrophages

TGF-B Transforming growth factor-$3

Th1 Type 1T helper

Th17 Type 17 T helper

TIM3 T cell immunoglobulin and mucin domain-containing
protein 3

TIMP2 Tissue inhibitor of metalloproteinases 2

TLR2 Toll-like receptor 2

TME Tumor microenvironment

TNF-a Tumor necrosis factor alpha

TRAIL TNF-related apoptosis inducing ligand

Treg Regulatory T cell

TRP Transient receptor potential channel

TSGA10 Testis-specific gene antigen 10

TSP1 Thrombospondin 1

TXNIP Thioredoxin-interacting protein

VAMP3/7 Vesicle-associated membrane protein 3

VEGF Vascular Endothelial Growth Factor

VM Vasculogenic mimicry

VPS4 Vacuolar protein sorting 4

VTA1 Vacuolar protein sorting-associated protein

VAMP Vesicle-associated membrane protein

WNT Wingless-related integration site

YKT6 N-ethylmaleimide-sensitive factor attachment protein
receptor

Zeb Zinc finger E-box-binding homeobox
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