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Abstract 

Background  Head and neck cancer (HNC) is one of the most frequent malignancies in Asian males with a poor prog-
nosis. Apart from well-known prognostic indicators, markers of tumor hypoxia can help us predict response to treat-
ment and survival.

Methods  A review of the literature on the present evidence and potential clinical importance of tumor hypoxia 
in head and neck cancer was carried out. The data obtained from the literature search is presented as a narrative 
review.

Results  The literature shows possible associations between prognosis and low tumor oxygenation. Intermediate 
hypoxia biomarkers like HIF-1, GLUT-1, miRNA, and lactate, can help in predicting the response to therapy and survival 
as their altered expression is related to prognosis.

Conclusions  Hypoxia is common in HNC and can be detected by use of biomarkers. The tumors that show expres-
sion of hypoxia biomarkers have poor prognosis except for patients with human papilloma virus-associated or VHL-
associated cancers. Therapeutic targeting of hypoxia is emerging; however, it is still in its nascent stage, with increas-
ing clinical trials hypoxia is set to emerge as an attractive therapeutic target in HNC.
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Introduction
Head and neck cancer (HNC) is a formidable oncological 
challenge. HNC comprises a diverse group of malignan-
cies affecting the oral cavity, pharynx, pyriform sinus, lar-
ynx, and adjacent structures. Despite numerous advances 
in diagnosis and introduction of newer therapeutic 
modalities, the prognosis for HNC patients remains sub-
optimal, underscoring the need to unravel the complex 
molecular underpinnings of this aggressive disease [1].

In recent years, increasing consideration has been given 
to understand the role of the tumor microenvironment 

in shaping cancer behavior and treatment response [2]. 
Among the various factors influencing tumor progres-
sion, hypoxia has emerged as a pivotal player in driv-
ing the pathobiology of HNC. Tumor hypoxia is defined 
as non-physiological low oxygen tension in the tumor 
relative to the surrounding tissue. Regardless of size or 
histology, more than half of all solid tumors show het-
erogeneous regions of hypoxia. A functional definition 
may be that the “tumor hypoxia starts when hypoxia-
inducible factor (HIF) subunits become stabilized due to 
limited oxygen availability compared to oxygen demand” 
[3, 4]. Factors like physical pressure of oxygen, utilization 
of oxygen by cells, perfusion and diffusion, angiogenesis, 
and the distance of vessels from the tissue as in the case 
of edema can determine the hypoxia. Systemic diseases 
like anemia and chronic obstructive or restrictive lung 
disease can also influence oxygenation and thus hypoxia.
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This comprehensive research review aims to dissect the 
multifaceted role of hypoxia in the context of HNC. By 
exploring the hypoxia biomarkers like HIF-1, GLUT-1, 
miRNA, and lactate, we seek to unravel the mechanisms 
through which hypoxia shapes the aggressive phenotype 
of HNC. Additionally, this review delves into the poten-
tial implications of hypoxia on therapeutic resistance, 
prognosis, and overall treatment outcomes [5].

The review will also discuss the implications of hypoxia 
in different subtypes of HNC, particularly focusing on 
human papillomavirus (HPV)-associated or von Hippel-
Lindau (VHL)-associated cancers, which show different 
prognostic patterns despite expressing hypoxia biomark-
ers. The potential therapeutic targeting of hypoxia path-
ways and its emerging status as an attractive therapeutic 
approach will also be examined [2].

Methods
A PubMed search was performed using the keywords 
tumor hypoxia, nitric oxide, and intermediate biomarkers 
like HIF-1 alpha, CA-9, HIF1 beta, VEGF, lactate; other 
factors like smoking, anemia, and miRNA and head and 
neck cancer; or head and neck squamous cell carcinoma. 
Articles discussing the mechanism of hypoxia in HNC, 
treatment strategies, biomarker, and prognosis were 
included. Cell line studies and reviews were excluded.

Results
A total of 161 articles were found, of which 75 were found 
to be relevant after exclusion. Understanding the asso-
ciation between tumor hypoxia and clinical outcomes in 
head and neck cancer is highly relevant for guiding treat-
ment decisions and improving personalized therapeutic 
approaches. However, there is a research gap in the com-
prehensive evaluation of intermediate hypoxia biomark-
ers and their clinical significance in HNC [6]. Articles 
were reviewed for clinical and scientific evidence and 
were divided by subtopics that are used as subheadings 
and discussed.

General conditions influencing tumor hypoxia
Anemia
Anemia plays an important role in tumor hypoxia; it is 
defined as a “hemoglobin (Hb) level less than 12.0  g/dl 
in females and less than 13.8  g/dl in males.” Acute ane-
mia occurs when the RBC count falls abruptly, most 
commonly due to hemolysis or acute bleeding. Chronic 
anemia, on the other hand, is generally a gradual decline 
in erythrocytes, and the causes include iron or other 
nutritional deficiencies, chronic disease, drug-induced, 
and others. In oral cancer, the association between ane-
mia and tumor hypoxia is well documented. Anemia 
can aggravate hypoxia in the tumor microenvironment, 

contributing to increased tumor growth and therapeutic 
resistance. Furthermore, hypoxia is linked to a higher risk 
of regional lymph node metastasis, and hence, the impor-
tance of anemia and tumor hypoxia in clinical outcomes 
in oral cancer cannot be over-emphasized. Hb greater 
than 12  g/dl is reported as an independent prognostic 
factor [7–9]. Anemia impairs tissue and tumor oxygena-
tion leading to hypoxia which in turn reduces the efficacy 
of radiotherapy and chemotherapy as they depend on 
the production of nascent oxygen to produce maximum 
response [10–12]. It has been reported that Hb levels 
between 12 and 14 g/dl are optimal for tumor oxygena-
tion even though there is no correlation between Hb level 
and pO2 [13].

Contrary to the above, some of the researchers sug-
gest that a blood transfusion leads to a worsening of the 
prognosis [14, 15] or at least the blood transfusion has 
no effect on the survival of HNC patients before or after 
radiation. This contradiction is explained by hypothesiz-
ing that the endothelial growth factors may leak from 
aging red blood cells, thus promoting the growth of 
tumors and negatively affecting immunological control.

Erythropoietin (EPO), a glycoprotein, regulates eryth-
rocyte production. Erythropoietin and its receptor are 
found to be expressed in 95% of HNC. A positive corre-
lation between erythropoietin and erythropoietin recep-
tor expression, HIF-1alpha, and CA-9 has been reported. 
However, no correlation of erythropoietin or its receptors 
with Hb  was observed [16]. As the optimal results are 
obtained between Hb levels of 12–14gm/dL, this could 
explain why EPO fails to improve the outcome as the 
Hb often rises above the optimum level and this leads to 
increased resistance to the flow of blood. Except for cer-
vical cancer, no association has been found between the 
Hb levels and the intermediate markers like CA-9, HIF 1, 
and 2 in other cancers including HNC [12]. The Hb lev-
els alone cannot be used as a surrogate for oxygen levels 
in the tissue as other factors like blood flow, Hb satura-
tion, and dissociation can also contribute to hypoxia in 
patients [11].

The importance of hemoglobin levels as a prognostic 
indicator provides compelling evidence for the need to 
treat anemia in HNC patients to reverse tumor hypoxia; 
however, the evidence suggests that optimal levels 
between 12 and 14 gm/dL be maintained.

Smoking
Smoking is one of the main risk factors and the source 
of carbon monoxide (CO) in patients with HNC. CO 
has a very high affinity to bind with Hb, higher than 
O2, and this leads to the formation of carboxyhemo-
globin (HbCO) [17]. Formation of HbCO leads to the 
dissociation of oxygen and reduced oxygenation of the 
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tissues producing hypoxia-like condition and stimulating 
a hypoxia cascade. It is reported that the level of HbCO 
in smokers can rise to 12% (compared to 4.6% in non-
smokers) and can lead to a 25–50% reduction in O2 avail-
able to the tumor [17, 18].

Furthermore, CO itself can stimulate the expression 
of hypoxia-inducible factor-1 alpha (HIF-1), a transcrip-
tion factor involved in the cellular response to hypoxia. 
HIF-1 controls the production of genes involved in angi-
ogenesis, glucose metabolism, and apoptosis, and its 
overexpression leads to tumor growth and therapeutic 
resistance. As a result, the link between CO and blood 
flow in smoking may lead to tumor hypoxia and a poor 
prognosis.

Alcohol
Apart from smoking consumption of alcohol or alcohol 
alone or combined with smoking is a risk factor for HNC. 
Alcohol may potentiate the effect of smoking by acting 
as a solvent and thereby when consumed together has a 
multiplicative effect on carcinogenesis. Till date, stud-
ies have failed to establish a direct relationship between 
alcohol with hypoxia; however, indirect evidence points 
to activation of HIF-1 via oxidative stress as seen in the 
liver in animal models [19, 20]. Acetaldehyde, a known 
carcinogen, is produced in the liver and mucosa by 
alcohol dehydrogenase (ADH). ADH can directly cause 
DNA damage while alcohol facilitates its entry into the 
mucosa by altering the physiology [21]. Despite the fact 

that there is no direct evidence of alcohol-producing 
hypoxia, but may do so by its metabolites [22] or its 
effect on lipid metabolism [23], and hence, it can activate 
hypoxia cascade through HIF 1 and 2 or HIF independ-
ent mechanism.

Human papillomavirus (HPV)
The relationship of HPV with hypoxia is controversial as 
the results of studies are contradictory. HPV-16 has been 
shown to induce HIF-1 alpha expression in HNC [24, 25] 
while other studies failed to find any relationship. How-
ever, it has been shown that patients who are HPV-nega-
tive and HIF-1 alpha-positive have the worst prognosis as 
though HPV-positive tumors are fast growing, they have 
excellent response to treatment [26].

Various studies on hypoxia and HPV have shown an 
inverse relation with angiogenic factors like high angio-
genic factors in the presence of HPV [27], higher rates 
of oxidative phosphorylation in HPV-positive, and 
high glycolysis in HPV-negative tumors [28]. Impaired 
DNA repair mechanism in the presence of HPV while 
intact repair in the absence of HPV [29]; a higher rate of 
immune cells in positive and reduced immunogenicity 
in the absence of HPV [30]; and p53 suppression in the 
presence of HPV while mutations in absence of it, besides 
other established mechanisms of hypoxia-like HIF-1, 
GLUT 1, and CA-9. The pathway of hypoxia induced by 
tobacco smoking, alcohol, and HPV is given in Fig. 1.

Fig. 1    Hypoxia pathway in the presence of smoking, alcohol and HPV in HNSCC (Modified from Bredell MG, Ernst J, El-Kochairi I, Dahlem Y, 
Ikenberg K, Schumann DM. Current relevance of hypoxia in head and neck cancer. Oncotarget. 2016 Aug 2;7(31):50781-50804. doi: 10.18632/
oncotarget.9549. PMID: 27434126; PMCID: PMC5226620. Open access CC By 4.0)
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Immune system
Cigarette smoke has also been implicated to work 
through modulating the immune system and inflamma-
tion in patients with oral cancer [31]. Hypoxia has been 
shown to influence the immune defense mechanism in 
cancer by promoting the growth of regulatory T cells 
and myeloid-derived suppressor cells, both of which have 
been found to reduce antitumor immunity, is one such 
mechanism. Hypoxia can also alter the phenotypic and 
function of dendritic cells and macrophages, leading to 
reduce antigen presentation and cytokine production. 
Tumor cells can create immunological checkpoint mole-
cules such as PD-L1 and CTLA-4 in response to hypoxia, 
which limits T cell activation and proliferation. Hypoxia 
can also activate signaling pathways that can promote 
tumor growth and survival while inhibiting immune 
response by boosting immunosuppressive molecules and 
lowering immune-activating molecules [32].

Biomarkers of hypoxia
In the presence of hypoxia, cells exhibit changes, 
increased angiogenesis and altered cell growth, and 
increased survival. This response is mainly brought about 
through HIF [33].

Hypoxia‑inducible factor (HIF)
HIF 1-alpha is the most widely characterized dimeric 
protein expressed in the cytoplasm with alpha and beta 
subunits [34] with a very short half-life. Under normoxic 
conditions, HIF1-alpha is expressed, along with prolyl 
hydroxylase (PHDs), that binds to HIF1-alpha leading 
to hydroxylation of 2 proline residues and acetylation of 
lysine residue. This increases the affinity of HIF-1 alpha 
for the von-Hippel Lindau gene (pVHL) product, leading 
to its proteasomal degradation [35]. As a consequence, in 
the presence of oxygen, HIF1-alpha is rapidly degraded 
and hence deactivated.

Hypoxia reduces the activity of PHDs, and conse-
quently, HIF1-alpha translocates to the nucleus. Stabi-
lization of HIF-1 alpha takes place by dimerizing with 
HIF1-beta, leading to activation of hypoxia cascade 
and activation of genes involved in maintaining oxygen 
homeostasis [36]. Recently, HIF-1α, C1772T and G1790A 
polymorphisms have been found to be associated with 
HNC [37]. In HNC cell lines HIF-2 alpha has been found 
to act through epidermal growth factor receptors, acti-
vating downstream signaling pathway [38]. It also alters 
the expression of VEGF, EPO, CA-9, glucose transporter 
(GLUT-1), and plasminogen activator inhibitor-1 (PAI-
1). While expression of HIF-1 is controlled by nitric oxide 
[39, 40]. It is also controlled by cytokines and growth fac-
tors such as TGF-beta [41], reactive oxygen species, and 
insulin [42] besides hypoxia.

The expression of HIF 1 alpha is an early event in car-
cinogenesis [43]. HIF-1a is expressed in nearly 30% of 
tumors, while HIF-2alpha is expressed in 14%. A strong 
correlation exists between the expression of HIF-1 and 2. 
Other than hypoxia use of tobacco and alcohol has also 
been shown to influence expression of HIF [44, 45].

Generally, HIF-1 alpha expression is associated with 
poor prognosis in cancer patients [46]. In tongue can-
cer, HIF 1alpha expression is found to be an independ-
ent prognostic factor [47]. Coexpression with CA-9 
has been reported to have poor outcomes in HNC [48]. 
However, HIF-1 and HIF-2 alpha expression by immuno-
chemistry in patients undergoing surgery for HNC has 
been found to be associated with better disease-free and 
overall survival [49]. A higher 5-year survival and longer 
disease-free survival is reported by others [50, 51]. These 
results suggest that the effect of HIF expression on cancer 
survival is not clear and may depend on co-expression, 
molecular subtypes, and the therapies chosen to treat 
these patients; further studies hopefully will clear the 
association.

Glucose transporter 1 (GLUT1)
Glucose transporter 1 (GLUT1) is a membrane trans-
porter of glucose encoded by the solute carrier family 2 
(SLCO2A1). GLUT1 transports glucose across the cell 
membrane down its concentration gradient. HIF-1 regu-
lates the glucose transporter switch to open or close by 
binding and dissolution to GLUT-1. Expression of GLUT 
1 has been studied in HNC and its expression has not 
been found to be associated with age, gender, TNM stage, 
or subsite, though this was significantly higher than pre-
cancerous normal tissue [52]. A meta-analysis of bio-
markers of hypoxia published in 2015 reported a single 
study evaluating outcomes in HNC using GLUT-1 as a 
marker and reported a significant lowering of hazard if 
GLUT-1 was expressed [53, 54].

Vascular endothelial growth factor (VEGF)
VEGF is a hypoxia-responsive gene that plays a key 
role in the development of tumor neovascularization 
[55]. In HNC, increased VEGF in tumor cells is associ-
ated with poor prognosis. This poor prognosis is attrib-
uted to higher clinical and nodal stages and the presence 
of metastasis [56]. An inverse relationship is observed 
with oxygen concentration, wherein the lowing of oxy-
gen leads to an increase in VEGF expression [57–59]. 
In EGFR-mutant lung cancer, hypoxia has been shown 
to activate the VEGF pathway and a dual blockade is 
being suggested as a promising therapeutic activity [60]. 
A combination of anti-angiogenic therapy with radia-
tion has also been shown to improve response [61]. The 
result of anti-angiogenic therapy is contrary to the belief 
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that producing tumor hypoxia leads to therapeutic resist-
ance and poor prognosis; however, the results have been 
promising and suggest an alternate pathway of action 
that may be independent of hypoxia.

TP53
TP53 gene encodes p53 are a tumor suppressor pro-
tein. TP53 is most commonly found to be mutated in 
HNC [62] and is associated with tobacco use. One of its 
numerous activators is oxidative stress. In gastric and 
oesophageal cancer, it is demonstrated that mutation 
of TP53 leads to hypoxia and activation of the hypoxia 
cascade [63]. However, both HIF-1 and TP53 failed to 
show any correlation with tumor hypoxia using F-fluo-
romisonidazole (F-FMISO) PET in HNC [64]. However, 
in p16-positive tumors, the PET findings correlate with 
hypoxia biomarkers [65]. These contrasting results in 
HPV-positive tumors suggest that the blockade of TP53 
may have a different pathway than mutant TP53 [66]. It 
is proposed that in HPV-negative tumors the action of 
TP53 may not be through activation of hypoxia cascade. 
In a cohort of supraglottic laryngeal carcinoma, no cor-
relation of HIF-1 was found with TP53 expression [67]. 
TP53 does show an association with hypoxia in HPV-
positive tumors; however, no association is demonstrated 
in HPV-negative tumors. Hence, at present, it is debat-
able that TP53 is a biomarker for hypoxia, and it appears 
to be associated with smoking or alcohol use in HNC and 
may be a surrogate [68].

MicroRNAs
MicroRNA(miRNAs) are short noncoding RNAs that 
post-transcriptionally regulate target messenger RNAs 
[69]. Chen et al. reported 7 miRNAs to be associated with 
hypoxia, of which 3; miR-223, miR-34b, and miR-210 
were upregulated while 4, miR-100, miR-99a, miR-125b, 
and miR-375 were downregulated [70]. Extracellu-
lar vehicles containing miR 192 and 215 have also been 
implicated in HNC through hypoxia-induced fibroblast 
development [71].

miR-21 is the most researched miRNA that has been 
found to be upregulated in various cancers [72], in HNC, 
and it has been shown to induce cancer-associated fibro-
blast activation and is proposed as an attractive target 
[73]. The action is proposed to be mediated by inhibiting 
the expression of FIH protein as MiR21 directly binds to 
FIH mRNA preventing its transcription in HNC. miR-31 
and miR-184 also exhibit similar modes of action and can 
inhibit epithelial-mesenchymal transition in HNC, thus 
preventing the tumor spread in the presence of hypoxia 
and improving prognosis [74].

miR-210 is induced by hypoxia in cells [75]. Its 
expression correlates with HIF-1 alpha, and CA-9 the 

biomarkers of tumor hypoxia in HNC [76] and other 
cancers like pancreatic cancer, [77] anaplastic thyroid 
cancer [78] miR210, in head neck paragangliomas associ-
ated with VHL gene mutation has been found to be acti-
vated along with HIF-1 [79]; however, it has been found 
to be independent of SDH mutation [80]. Other genes 
that have been found to be targeted by miR210 are PLK1, 
MCT1, and MCT4 [81, 82].

The research on miRNA and its association with 
hypoxia is still ongoing in HNC and several future devel-
opments are expected. Till date, miR 210 appears to be 
the most significant of all miRNAs found to be associated 
with hypoxia. The pathways of hypoxia and its effect on 
prognosis are detailed in Fig. 2.

Hypoxia‑targeted therapies
Generally, the hypoxia target therapies reported in litera-
ture either target HIF-1 or VEGF. HIF-directed therapies 
have focused on decreasing HIF-alpha mRNA, HIF pro-
tein synthesis, increasing its degradation or dimerization, 
or its transport across the nuclear membrane [83]. Tri-
chostatin A (TSA), a histone deacetylase inhibitor, when 
tested in a cell line led to a decrease in cell proliferation 
and invasion besides reducing the basal level of HIF pro-
tein [84]. Glucosamine hydrochloride (GS-HCl) has also 
been found to reduce the proliferation of the HNC cell 
line [85]. PT2399, a selective HIF-2 antagonist has been 
found to suppress carcinogenesis in renal cell carcinoma 
(RCC) cell lines [86].

The approaches being utilized in clinical trials include 
blocking of transcription using GL331 [87], anthracy-
clines [88], steroids [89], topoisomerase inhibitors [90], 
microtubule binding agents [91], and aminoflavone [92]. 
The second approach is to reduce stability or inhibit 
dimerization of HIF using histone deacetylase (HDAC) 
inhibitors, drugs being tested include Panobinostat [93], 
MPT0G157 [94], Vorinostat [95], romidepsin [96], belin-
ostat [97], and chidamide [98].

Targeting the PAS domains of HIF-1α and HIF-2α leads 
to inhibition of heterodimerization, and this is being 
tested using numerous compounds like PT2399, PT2977, 
acriflavine, Kaempferol, PD98059, and PT2385 [99]. 
Other drugs targeting multiple or differing mechanisms 
being tested are calcium channel blockers [100], PX-478 
[101] bortezomib, a proteasome inhibitor [102].

VEGF‑targeted therapies
Anti-angiogenic agents have been tried for the treat-
ment of oral cancer [103, 104]. The most commonly used 
agent is bevacizumab an anti-VEGF monoclonal anti-
body. Most of the clinical data is from the single-arm 
studies that show median progression-free survival of 
2–4  months in the metastatic setting [105] and 2-year 
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PFS of 60–70% in locally advanced tumors in combina-
tion with other therapeutic strategies [106–108]. A single 
randomized controlled study in locally advanced HNC 
showed it to be poor compared to standard of care [109].

Various tyrosine kinase inhibitors (TKI) have also 
been tried with limited success, and these sorafenib and 
sunitinib have been the main compounds tested in clini-
cal trials in HNC [110]. Axitinib and pazopanib are also 
being tested in clinical trials in HNC [111]; however, so 
far, there is no recommendation for their regular use in 
guidelines.

Conclusions
Hypoxia is a common factor in head and neck cancers 
and shows a cascade of response with intermediate bio-
markers like HIF-1, HIF2, GLUT, and CA-9. The etiology 
of hypoxia appears to be multifactorial with angiogene-
sis and apoptosis playing an important role. Apart from 
HIF-1, VEGF appears to be an attractive therapeutic tar-
get; however, till date, there is no evidence of improve-
ment in survival with the addition of these strategies to 
the standard of care. More basic studies looking into the 
mechanism of hypoxia and clinical trials exploring newer 
therapeutic compounds are needed to integrate hypoxia 
targeting in standard therapeutic strategies to treat HNC.
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