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Abstract

Background: Colon cancer is a worldwide leading cause of cancer-related mortality, and the prognosis of colon
cancer is still needed to be improved. This study aimed to construct a prognostic model for predicting the
prognosis of colon cancer.

Methods: The gene expression profile data of colon cancer were obtained from the TCGA, GSE44861, and
GSE44076 datasets. The WGCNA module genes and common differentially expressed genes (DEGs) were used to screen
out the prognosis-associated DEGs, which were used to construct a prognostic model. The performance of the
prognostic model was assessed and validated in the TCGA training and microarray validation sets (GSE38832 and
GSE17538). At last, the model and prognosis-associated clinical factors were used for the construction of the nomogram.

Results: Five colon cancer-related WGCNA modules (including 1160 genes) and 1153 DEGs between tumor and normal
tissues were identified, inclusive of 556 overlapping DEGs. Stepwise Cox regression analyses identified there were 14
prognosis-associated DEGs, of which 12 DEGs were included in the optimized prognostic gene signature. This prognostic
model presented a high forecast ability for the prognosis of colon cancer both in the TCGA training dataset and the
validation datasets (GSE38832 and GSE17538; AUC > 0.8). In addition, patients’ age, T classification, recurrence status, and
prognostic risk score were associated with the prognosis of TCGA patients with colon cancer. The nomogram was
constructed using the above factors, and the predictive 3- and 5-year survival probabilities had high compliance with the
actual survival proportions.

Conclusions: The 12-gene signature prognostic model had a high predictive ability for the prognosis of colon cancer.
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Introduction
As one of the most common gastrointestinal malignant
diseases, colon cancer is a worldwide leading cause of
cancer-related mortality [1, 2]. Of the 36 cancers esti-
mated globally in 2018, the number of new cases and re-
lated deaths of colon cancer ranked fourth, with
estimated new cases of approximately 1,100,000 [2]. The

current standard therapeutic strategy for colon cancer is
the combination of surgery and adjuvant chemotherapy
or radiation therapy [3]. However, the prognosis of pa-
tients with colon cancer varies by multiple factors, in-
cluding the clinical histological subtypes, age, genetic
profiles, and treatment responses [4–8]. Also, the unsat-
isfactory prognostic outcomes still exist due to the com-
plex pathogenesis that involves a variety of molecular or
genetic factors [3, 9–12]. Therefore, the identification of
prognostic biomarkers for colon cancer is still necessary.
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The advances of biomarkers identified by high-
throughput genome sequencing and bioinformatics ana-
lysis have attracted a great amount of interest in the last
two decades. Computational bioinformatics analysis
identifies potential biomarkers by deducing the associ-
ation with disease status and progression. Most import-
ant of all, some of them are verifiable and reliable in
clinical trials [13, 14]. For instance, Dalerba et al. [15]
emphasized that the lack of the caudal-related homoeo-
box transcription factor 2 (CDX2) is associated with a
poor prognosis in patients with stage II/III colon cancers
using bioinformatics analysis. Besides, the association
between the loss of CDX2 expression and poor disease-
free survival in two Denmark cohorts of patients with
colon cancer was validated by Hansen et al. [13]. These
results showed that computational bioinformatics tools
are of great value for identifying and providing potential
prognostic biomarkers before the implements of clinical
or preclinical experiments.
In the past decades, a lot of data mining analysis of

mRNA, microRNA, long non-coding RNA, and DNA
methylation have been performed on human cancers, in-
cluding colon cancer [16–19]. As the biomarkers identi-
fied by the above techniques are of diagnostic and
prognostic values in cancers and the revolution of se-
quencing technologies and bioinformatics tools facili-
tates the identification of more potential biomarkers
related to disease progression [20–23], the more poten-
tial biomarkers identified, the more recognition and op-
tions for the diagnosis and treatment of colon cancer.
This current study aimed to identify a potential prog-

nostic biomarker or gene signature using bioinformatics
analysis. An integrated bioinformatics analysis was per-
formed using The Cancer Genome Atlas (TCGA) and
microarray datasets in the gene expression omnibus
(GEO) database. The differentially expressed genes
(DEGs) between the colon tumor and non-tumor control
tissues and prognosis-associated genes were identified and
used for the construction of a gene signature with prog-
nostic predictive power. The possibility of using the prog-
nostic model as a biomarker for colon cancer was
validated using different cohorts. This study may provide
a clinical reference for predicting the survival probability
of patients with different clinical subtypes.

Materials and methods
Data extraction
The public colon cancer gene expression profiles data
were preliminarily extracted from the National Center
for Biotechnology Information (NCBI) GEO repository
(https://www.ncbi.nlm.nih.gov/geo/) using the search
words “colon cancer”. Datasets selected if they met the
following inclusion criteria: (1) human gene expression
profiles data, and (2) inclusive of ≥ 100 tissue samples,

with or without control samples; and (3) for datasets
without control samples, the clinical prognosis informa-
tion of the tumor samples were included. Four datasets
were selected according to the above criteria, including
GSE44861 (Affymetrix-GPL3921 [HT_HG-U133A] plat-
form, 56 tumor samples and 55 normal samples),
GSE44076 (Affymetrix-GPL13667 [HG-U219] platform,
98 tumor samples and 148 normal samples), GSE17538
(Affymetrix-GPL570 [HG-U133_Plus_2] platform, 238
tumor samples), and GSE38832 (Affymetrix-GPL570
[HG-U133_Plus_2] platform, 122 tumor samples). The
first two datasets with control samples were for the iden-
tification of DEGs using the weighted gene co-
expression network analysis (WGCNA) and MetaDE
analysis. The last two datasets with the clinical stage and
survival data and without control samples were used for
the construction of the prognostic prediction model.
Besides, the RNA-seq data of colon cancer and the

corresponding clinical information were downloaded
from TCGA (https://gdc-portal.nci.nih.gov/). After sam-
ple selection, 473 samples including 432 tumor samples
with clinical information and 41 normal samples were
retained in this study. A workflow of this study is shown
in Fig. 1.

Screening of colon cancer-related gene module
WGCNA has been widely applied to identify the gene
module associated with diseases and extract potential
therapeutic targets [24]. WGCNA software (version 1.61;
https://cran.r-project.org/web/packages/WGCNA/index.
html) [25] in R3.4.1 was used to screen the colon
cancer-related stable gene modules with the following
criteria: min size ≥ 150 and cutHeight = 0.99. The
TCGA data were utilized as the training set, and the
GSE44861 and GSE44076 datasets were used as the val-
idation sets for the identification of stable gene co-
expression modules. The preservation and correlation
properties of the above WGCNA modules were ana-
lyzed, and modules with a preservation Z-score of > 5.0
and correlation p value of < 0.05 were defined as colon
cancer-related stable gene modules.

DEG identification by meta-analysis
The common DEGs across the TCGA, GSE44861, and
GSE44076 datasets were identified using the MetaDE.ES
methods in the R MetaDE package (https://cran.r-
project.org/web/packages/MetaDE/) [26, 27]. Briefly, the
heterogeneity test of gene expression profiles from dif-
ferent platforms was first conducted according to the
statistical tau2, Q value, and Q pval. The common DEGs
were screened out according to the following criteria:
tau2 = 0, p < 0.05, Q pval > 0.05, false discovery rate
(FDR) < 0.05, and log2fold change (FC) had the same dif-
ferential expression direction across the three datasets

Fang et al. World Journal of Surgical Oncology           (2021) 19:13 Page 2 of 14

https://www.ncbi.nlm.nih.gov/geo/
https://gdc-portal.nci.nih.gov/
https://cran.r-project.org/web/packages/WGCNA/index.html
https://cran.r-project.org/web/packages/WGCNA/index.html
https://cran.r-project.org/web/packages/MetaDE/
https://cran.r-project.org/web/packages/MetaDE/


(> 0 or < 0). The overlapping genes between the above
WGCNA module genes and the common DEGs across
the three datasets were retained and used for further
functional enrichment analysis and the construction of
the prognostic prediction model.

Functional enrichment analysis
To investigate the biological functions associated with
the above overlapping genes (DEGs), functional enrich-
ment analyses were performed. The Gene Ontology bio-
logical processes and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways associated with these DEGs
were identified using the DAVID online tool (version
6.8; https://david.ncifcrf.gov/) [28, 29]. Significant en-
richment was considered when p value < 0.05.

Construction and evaluation of prognostic prediction
model
Before the construction of the prognostic prediction
model, the prognosis-associated DEGs were identified

using the univariate and multivariate Cox regression ana-
lysis in the R survival package (version 2.4, https://cran.r-
project.org/web/packages/survival/index.html) [30]. The
prognosis-associated DEGs in the TCGA training set (n =
432) were identified when log-rank p value < 0.05. Then,
the optimal prognostic gene signature was identified using
the L1-penalized least absolute shrinkage and selection
operator (LASSO) Cox-proportional hazards (Cox-PH)
model (lamba = 1000) in the penalized package (version
0.9-50, http://bioconductor.org/packages/penalized/) [31,
32]. Subsequently, the prognosis risk score of each sample
was calculated using the following gene signature model:
risk score = ∑βgene × Expgene, where β represents the
LASSO coefficient and Exp denotes the expression level.
All the samples in the TCGA training set were divided
into the high- and low-risk groups according to the me-
dian risk score. The Kaplan-Meier (K-M) curve analysis in
the R survival package (version 2.41-1) and the receiver
operating characteristic (ROC) curve were used to assess
the association of the risk score with the overall survival in

Fig. 1 Workflow of this study. COAD, colon adenocarcinoma. DEG, differentially expressed genes. WGCNA, weighted gene co-expression network
analysis. TCGA, The Cancer Genome Atlas. NCBI, National Center for Biotechnology Information. GEO, gene expression omnibus
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patients with colon cancer. Similarly, the samples in the
validation sets (GSE17538 and GSE38832) were separately
divided into the high- and low-risk groups according to
the above prognostic model. The performance of the
above gene signature model in predicting the prognosis of
colon cancer was validated in the validation sets
(GSE17538 and GSE38832) using the K-M survival test
and ROC curves.

Identification of clinical factors associated with the
prognosis of colon cancer
The clinical factors associated with the prognosis of
colon cancer were identified in the TCGA training set
using the univariate and multivariate Cox regression
analysis of the survival package (version 2.41-1) in
R3.4.1. The threshold was log-rank p value < 0.05. Also,
the K-M survival test was used to validate the perform-
ance of the gene signature model in predicting the prog-
nosis of patients with different clinical subtypes.

Nomogram survival model analysis
The final nomogram was established using the “rms”
package (Version 5.1-2; https://cran.r-project.org/web/
packages/rms/index.html) in R3.4.0 to estimate the indi-
vidualized survival probability for patients with colon
cancer. The prognosis-associated clinical factors and the
gene signature model were used for the construction of
the nomogram. Each factor in the nomogram was as-
cribed points according to its weight. The total point of
each sample was calculated and the 3- and 5-year sur-
vival probabilities of each sample were predicted
accordingly.

Screening of DEGs between the high- and low-risk groups
At last, the DEGs between the samples in the high- and
low-risk groups were identified to investigate the differ-
ent gene expression profiles and features between pa-
tients with different survival probabilities. The DEGs
between the high- and low-risk groups in the training
set were screened using the limma package (Version
3.34.7, https://bioconductor.org/packages/release/bioc/
html/limma.html) [33], with the thresholds of FDR <
0.05 and |log2FC| > 0.5.

Results
Extraction of WGCNA modules related to colon cancer
The correlation analysis of RNA-seq data showed there
were significant positive correlations (expression correl-
ation coefficient > 0.700 and p < 1e−200) and connectivi-
ties (p < 1e−06) across the TCGA, GSE44861, and
GSE44076 datasets (Figure S1A). Before the identifica-
tion of the WGCNA modules analysis, the scale-free
topology criterion was identified: the soft threshold
power = 7 when the scale-free topology model fit R2 was

maximized (R2 = 0.9; Figure S1B). Then, 8 WGCNA
modules were identified in the training dataset according
to the criteria: soft threshold power = 7, min size ≥ 150,
and cutHeight = 0.99 (Fig. 2a). The same module div-
ision was identified in the two validation datasets
(GSE44861 and GSE44076; Fig. 2a).
Subsequently, 5 robust modules (blue, brown, green,

red, and yellow) with a preservation Z-score of > 5.0 and
a p value of < 0.05 were obtained. A total of 1160 genes,
including 381, 205, 195, 184, and 195 genes in the blue,
brown, green, red, and yellow modules, were obtained
(Table 1). The correlation of these 8 WGCNA modules
with clinical factors, including patients’ age, gender, his-
tory of colon polyps, lymphatic invasion, microsatellite
instability, radiation therapy, death, tumor recurrence,
pathologic M, pathologic N, pathologic T, and patho-
logic stage, is shown in Fig. 2b. For instance, the genes
in the red module were significantly correlated with the
pathologic T classification (cor = 0.54, p < 0.0001).

Identification of common DEGs using the MetaDE analysis
Following the aforementioned criteria for the MetaDE
analysis, 1153 common DEGs were identified across the
three datasets (TCGA, GSE44861, and GSE44076), in-
cluding 724 downregulated DEGs and 429 upregulated
DEGs. These DEGs had distinctively different expression
profiles in the tumor and control samples and showed
the same differential expression direction across the
three datasets (Fig. 3).

Enrichment analysis of common DEGs
The Venn diagram indicated that 556 genes were over-
lapped between the five WGCNA module genes (n = 1160)
and common DEGs (n = 1153) were obtained (Fig. 4a), in-
cluding 218, 73, 166, 0, and 99 genes in the blue, brown,
green, red, and yellow modules, respectively. The functional
enrichment analyses indicated that these common DEGs
were significantly associated with 24 biological processes
related to immune response and the defense response
(Fig. 4b) and 8 KEGG pathways including cytokine-
cytokine receptor interaction, chemokine signaling
pathway, and focal adhesion (Fig. 4b).

Construction of the prognostic model
Based on the univariate Cox regression analysis, 84
prognosis-associated DEGs were identified in the TCGA
training dataset. The multivariate Cox regression ana-
lysis showed that 14 out of the 84 DEGs were independ-
ently correlated with the prognosis of patients with
colon cancer (Table S1). Afterward, an optimized prog-
nostic gene signature was identified using the Cox-PH
model, which consisted of 12 DEGs, including ADORA3,
CPA3, CPM, EDN3, FCRL2, MFNG, NAT1, PCSK5,
PPARGC1A, PRRX2, TNFRSF17, and WDR78 (Table 2).
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Most of these 12 genes were in the blue (n = 5) and green
modules (n = 6). The prognostic gene model of colon can-
cer was built according to the following algorithm: prog-
nostic risk score = 0.44262 × ExpADORA3 + (− 0.35894) ×
ExpCPA3 + (− 0.26349) × ExpCPM + (− 0.12557) × ExpEDN3
+ 1.38523 × ExpFCRL2 + 0.35734 × ExpMFNG + (− 0.42755)
× ExpNAT1 + 0.30206 × ExpPCSK5 + (− 0.34355) × ExpPPAR
GC1A + 0.04376× ExpPRRX2 + (− 0.21594) × ExpTNFRSF17 +
(− 0.07166) × ExpWDR78. The 432 samples in the TCGA
training set were then divided into the high- (n = 216) and

low-risk (n = 216) groups according to the median
prognostic risk score. The K-M survival test indicated
that patients with high-risk scores had a significantly
shorter survival time compared with patients with
low-risk scores (hazard ratio, HR = 3.287, 95% CI
2.082–5.189, p = 4.096e−08; Fig. 5a). The ROC curve
analysis showed the prognostic model had a high ac-
curacy in predicting the prognosis of colon cancer in
the training set (area under the ROC curve, AUC =
0.922; Fig. 5a).

Fig. 2 The gene module related to colon cancer based on the weighted gene co-expression network analysis (WGCNA) algorithm. a The module
partition results of WGCNA in the TCGA (left), GSE44861 (middle), and GSE44076 (right) datasets, respectively. The different colors represent the
different WGCNA modules. b The correlation heatmap of gene modules with the clinical factors of colon cancer. The horizontal axis represents
clinical factors, and the vertical axis represents gene modules. The color changed from blue to red indicates the correlation from negative to
positive. The numbers in the boxes indicate the correlation coefficients (upper) and the numbers in parentheses indicate the p values (lower)
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Validation of the prognostic model
Similarly, the samples with clinical overall survival data in
the two validation datasets (GSE17538, n = 232; and
GSE38832, n = 122) were separately divided into the high-
and low-risk groups according to the prognostic risk

scores (Fig. 5b, c). The K-M survival analysis showed there
was a significant difference in the overall survival time be-
tween patients in the high and low groups in the two data-
sets (GSE17538: HR = 1.659, 95% CI 1.042–2.642, p =
3.059e−02; GSE38832: HR = 3.247, 95% CI 1.312–9.037, p
= 5.273e−03; Fig. 5b, c). Besides, the model had high accur-
acies in predicting the prognosis in the two datasets
(GSE17538: AUC = 0.841; GSE38832: AUC = 0.824).
These results suggested the high performance of this
model in predicting the prognosis of colon cancer.

Identification of prognosis-associated clinical factors
Before the construction of the nomogram model, the
prognosis-associated clinical factors were identified
using the univariate and multivariate Cox regression
analysis. The stepwise Cox regression analyses showed
that patient’s age (HR = 1.047, 95% CI 1.021–1.073, p =
3.510e−04), pathologic T classification (HR = 3.561, 95%
CI 1.781–7.121, p = 3.280e−04), recurrence (HR = 1.881,
95% CI 1.050–3.369, p = 3.363e−02), and the risk model
status (high/low; HR = 2.737, 95% CI 1.447–5.178, p =

Table 1 The weighted gene co-expression network analysis
(WGCNA) gene modules related to colon cancer

ID Color Module size Preservation

Z-score P value

Module 1 Black 133 1.9913 1.40E−01

Module 2 Blue 381 8.7017 4.50E−06

Module 3 Brown 205 10.4907 4.00E−03

Module 4 Green 195 8.2073 5.10E−03

Module 5 Grey 2469 0.3400 2.30E−05

Module 6 Red 184 10.9777 1.00E− 03

Module 7 Turquoise 649 4.0049 1.30E−02

Module 8 Yellow 195 5.6788 2.00E−05

Fig. 3 The heatmap of the common differentially expressed genes across the three datasets. High- and low-expression levels are indicated by red
and green, respectively
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1.970e−03) were prognosis-associated factors in the
TCGA cohort (Table 3). The K-M survival analysis indi-
cated that there was a significantly lower survival ratio
in patients aged above 65 years (HR = 1.618, 95% CI
1.041–2.513, p = 2.748e−02; Fig. 6a, left), with advanced
T classification (HR = 2.658, 95% CI 1.775-3.979, p =
1.116e−06; Fig. 6b, left), and with recurrence tumor (HR
= 2.567, 95% CI 1.636–4.029, p = 2.113e−05; Fig. 6c, left)
in comparison with the corresponding control groups,
respectively. These results indicated the significant cor-
relation of patients’ age, T classification, and recurrence
status with the prognosis of colon cancer.
Besides, the subgroup K-M survival analysis showed

that high risk score was correlated with a lower survival
ratio in patients aged below 65 years (HR = 6.807, 95%
CI 2.358–19.65, p = 1.808e−05; Fig. 6a, middle), aged
above 65 years (HR = 2.623, 95% CI 1.566–4.393, p =
1.271e−04; Fig. 6a, right), with advanced T classifications

(T13-4, HR = 3.273, 95% CI 2.022–5.300, p = 1.831e−07;
Fig. 6b, right), with tumor recurrence (HR = 2.680, 95%
CI 1.410–5.094; p = 1.807e−03; Fig. 6c, middle), and
without tumor recurrence (HR = 3.073, 95% CI 1.322–
7.140; p = 6.222e−03; Fig. 6c, right). For patients with
early T classifications (T1-2), there was no difference in
the survival ratio between patients with high- and low-
risk scores (HR = 1.660, p = 5.395e−01; Fig. 6b, middle).
The subgroup analysis indicated that the prognostic
gene model had high performance in predicting the
prognosis of patients with colon cancer, irrespective of
the clinical age and tumor recurrence status.

Nomogram model construction
According to the above analyses, the nomogram model
was constructed using the prognosis-associated factors,
including patients’ age, clinical T classification, and
tumor recurrence status (Fig. 7a). According to the

Fig. 4 Features of the differentially expressed genes (DEGs) in the cancer-related WGCNA genes modules. a The Venn diagram indicating the
overlapping genes between genes in the five cancer-related WGCNA modules and the common DEGs across the three datasets (TCGA,
GSE44861, and GSE44076) identified by the MetaDE analysis (left), and the pie chart showing the number of overlapping genes in WGCNA
modules (right). b The Gene Ontology biological processes (left) and Kyoto Encyclopedia of Genes and Genomes pathways (right) associated with
the overlapping genes in the above figures. Horizontal axis represents gene number. The color and size of the dots indicate the p value. The
closer the color is to red, the higher the significance
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nomogram, we found that patients with older age, an
advanced T classification, tumor recurrence, and a
high risk score had low 3- and 5-year survival prob-
abilities. Take an 85-year-old man (~ 5 points), with
T3 classification (~ 33.7 points), with tumor recur-
rence (0 points), and a risk score of 1.5 (~ 9.3 points),
for example, he had a total point of 48. His 3- and 5-
year survival probabilities were approximately 40%
and 28%, respectively (Fig. 7a). What’s more, the pre-
dicted 3- and 5-year survival probabilities had high
compliance with the actual situations (c-index = 0.752
and 0.721; Fig. 7b). These results suggested the clinical
applicability of this prognostic model in predicting the
prognosis of colon cancer.

The features of the DEGs between patients with different
prognosis risk scores
At last, we investigated the differential gene expression
profiles between TCGA samples with high- and low-risk
scores. A total of 514 DEGs were identified between
high- and low-risk groups, including 102 downregulated
and 412 upregulated genes (Fig. 8a). The clustering ana-
lysis indicated that the expression profiles of these DEGs
changed with the risk scores (Fig. 8b), showing the co-
expression profiles of these DEGs with the 12-gene
signature.

Discussion
In the present study, 5 significantly stable gene modules
(including 1160 genes) related to colon cancer were con-
structed by the WGCNA algorithm. Then, 1153

common DEGs across the TCGA, GSE44861, and
GSE44076 datasets were identified between colon cancer
tumor and normal tissue samples. Furthermore, the ex-
pression features of 12 prognosis-associated DEGs
(ADORA3, CPA3, CPM, EDN3, FCRL2, MFNG, NAT1,
PCSK5, PPARGC1A, PRRX2, TNFRSF17, and WDR78)
were identified as the optimized prognostic gene signa-
ture. The corresponding prognostic model presented
high performance for predicting the prognosis of colon
cancer both in the training dataset and in the validation
datasets. Besides, we found that the predicted 3- and 5-
year survival probabilities using the combination of the
model status with clinical factors (including patients’
age, pathological T classification, and tumor recurrence
status) showed high compliance with the actual 3- and
5-year overall survival proportion. These results indi-
cated that the prognostic gene signature was of great ref-
erence value for predicting the prognosis and survival
probability of colon cancer.
The advances in mining the genetic properties of vari-

ous diseases have been enhanced due to the rapid
technological development in high-throughput sequen-
cing and bioinformatics [34]. The GEO and TCGA data-
bases, as public available cancer genomic databases,
provide the comprehensive data of cancers, including
mRNA expression data, miRNA expression data, copy
number variation, DNA methylation, and clinical infor-
mation [35, 36]. The TCGA and GEO data have been ef-
fectively applied to improve diagnostic and therapeutic
methods and potential of cancers [35–37]. Thus, this
study was performed based on the gene expression pro-
file data and clinical information of colon cancer re-
trieved from the TCGA and GEO databases. Gene
expression profiles have been reported to predict the
prognosis outcome of cancers [38–40]. Computationally,
the Cox regression methods were commonly used to
construct the prognostic models and screen prognostic
factors [41]. The availability of this model in survival
analysis has been confirmed in recent studies [42, 43].
Similarly, in this study, the Cox regression model based
on the LASSO was applied to screen the optimized gene
set with potential prognostic value. The 12-gene prog-
nostic signature constructed by the LASSO Cox regres-
sion model showed a higher predictive ability both in
the TCGA training data and the two validation sets
(GSE17538 and GSE38832; AUC > 0.800).
Besides, this study showed that age, pathological T

classification, and tumor recurrence were prognosis-
associated factors in patients with colon cancer. Consist-
ent with our results, previous studies have also demon-
strated that older age, advanced pathological T, and
tumor recurrence are associated with poor prognosis in
patients with colon cancer [44–46]. Notably, the nomo-
gram analysis in the current study revealed that the

Table 2 The list of the differentially expressed genes in the
optimized prognostic gene signature was identified by the Cox-
proportional hazards (Cox-PH) model

Symbol Module Univariate Cox regression analysis LASSO
coefficientHR 95%CI P value

ADORA3 Blue 1.570 1.067–2.549 3.40E−02 0.44262

CPA3 Blue 0.810 0.679–0.965 9.50E−03 − 0.35894

CPM Green 0.748 0.561–0.995 2.30E−02 − 0.26349

EDN3 Green 0.830 0.670–1.028 4.40E−02 − 0.12557

FCRL2 Blue 2.465 1.298–4.682 2.90E−03 1.38523

MFNG Blue 1.456 1.127–1.879 2.00E−03 0.35734

NAT1 Green 0.514 0.368–0.717 4.55E−05 − 0.42755

PCSK5 Green 1.477 1.021–2.138 1.95E−02 0.30206

PPARGC1A Green 0.579 0.399–0.842 2.10E−03 − 0.34355

PRRX2 Yellow 1.260 1.017–1.559 1.70E−02 0.04376

TNFRSF17 Blue 0.780 0.597–0.919 3.45E−02 − 0.21594

WDR78 Green 0.334 0.158–0.707 2.05E−03 − 0.07166

LASSO L1-penalized least absolute shrinkage and selection operator, HR hazard
ratio, CI confidential interval
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Table 3 Identification of the prognosis-associated factors in colon cancer (the TCGA samples) using Cox regression analysis

Clinical characteristics TCGA (N = 432) Univariate Multivariate

HR (95% CI) p value HR (95% CI) p value

Age (years, mean ± sd) 66.78 ± 12.88 1.018 (1.001–1.035) 3.408E−02 1.047 (1.021–1.073) 3.510E−04

Gender (male/female) 230/202 1.077 (0.719–1.610) 7.189E−01 – –

Pathologic M (M0/M1/–) 319/59/54 4.536 (2.851–7.218) 2.649E−12 1.501 (0.373–6.036) 5.671E− 01

Pathologic N (N0/N1/N2) 254/101/77 2.088 (1.648–2.644) 1.342E−10 1.614 (0.839–3.103) 1.514E−01

Pathologic T(T1/T2/T3/T4) 11/75/296/50 2.658 (1.775–3.979) 1.116E−06 3.561 (1.781–7.121) 3.280E−04

Pathologic stage (I/II/III/IV/–) 73/167/123/59/10 2.181 (1.719–2.767) 3.376E−11 1.123 (0.373–3.378) 8.362E−01

Colon polyps history (yes/no/–) 128/239/65 0.731 (0.426–1.255) 2.537E− 01 – –

Lymphatic invasion (yes/no/–) 150/241/41 2.150 (1.392–3.320) 4.125E− 04 0.922 (0.489–1.737) 8.024E− 01

Recurrence (yes/no) 78/292/62 2.567 (1.636–4.029) 2.113E−05 1.881 (1.050–3.369) 3.363E− 02

PS model status (high/low) 216/216 3.287 (2.082–5.189) 4.096E−08 2.737 (1.447–5.178) 1.970E−03

Vital status (dead/alive) 96/336 – – – –

Overall survival time (months, mean ± sd) 29.44 ± 25.43 – – – –

HR hazard ratio, CI confidential interval, TCGA The Cancer Genome Atlas, SD standard deviation

Fig. 5 The Kaplan-Meier (K-M) survival analysis for samples with different risk scores. a–c The K-M survival analysis of samples in the low- and
high- risk groups (upper), and the receiver operating characteristic (ROC) curve analysis for evaluating the prognostic model in predicting survival
in the training (TCGA) and validation datasets(GSE44861 and GSE44076; lower). HR represents hazard ratio, and the number in parentheses
indicates 95% confidence interval (CI). AUC, the area under the ROC curve
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combination of patients’ age, T classification, recurrence
status, and prognostic risk score had 3- and 5-year sur-
vival probabilities close to actual clinical situations.
These results further showed that the 12-gene prognos-
tic model had a significant predictive ability for the
prognosis of colon cancer.
In this study, the prognostic model was constructed

based on the signature of 12 prognosis-associated genes,
including 12 DEGs, ADORA3, CPA3, CPM, EDN3,

FCRL2, MFNG, NAT1, PCSK5, PPARGC1A, PRRX2,
TNFRSF17, and WDR78. Specifically, the adenosine re-
ceptor A3 (ADORA3) protein encoded by the ADORA3
gene is a G-protein-coupled receptor that functions in
inflammatory and immunological responses as well as
cancer growth through influencing the nucleotide meta-
bolic process [47–49]. There is increasing evidence prov-
ing that ADORA3 is overexpressed in several cancers,
including breast cancer [50], thyroid cancer [51], bladder

Fig. 6 The subgroup Kaplan-Meier (K-M) survival analyses of prognosis-associated clinical factors analysis. a–c The K-M survival analysis of age,
pathological T, and tumor recurrence in all samples (left), as well as different subgroups divided by the status of age, clinical T classification, and
recurrence status (middle and right). HR represents hazard ratio, and the number in parentheses indicates 95% confidence interval (CI)
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cancer [52], and colon cancer [53] and functions as a
tumor promoter [54]. Carboxypeptidase A3 (CPA3) is a
member of the CPA family of zinc metalloproteases re-
leased by mast cells and may be involved in the inactiva-
tion of venom-associated peptides and the degradation of
endogenous proteins [55]. Previous studies have shown
the elevated expression of CPA3 in asthma [56] and ana-
phylactic shock [57]. However, few studies have investi-
gated the role of CPA3 in cancers. CPM is also an
arginine/lysine CP which exerts important roles in angio-
genesis, proliferation, and apoptosis through modulating
chemokines or kinins in cancer cells [58]. Notably, a re-
cent study reports that CPM/Src-FAK pathway is involved
in cell migration and invasion in colon cancer [59].
Endothelin 3 (END3) is reported to participate in the

progression of several cancers including malignant melan-
oma [60], cervical cancer [61], and colon cancer [62]. Fc
Receptor Like 2 (FCRL2) is a member of the immuno-
globulin receptor superfamily that is involved in the devel-
opment of lymphoblastic leukemia by immunomodulating
B cell function [63–65]. Besides, it has been reported that
the inherited polymorphism in the acetyltransferase 1
(NAT1) gene increases the risk of colorectal adenocarcin-
oma [66]. Manic fringe (MFNG) is reported to exhibit an-
titumor effects in lung cancer [67]. The peroxisome
proliferator-activated receptor-γ coactivator 1-α (PPAR
GC1A) gene also contributes to tumor growth and metas-
tasis in several cancers [68, 69]. In addition, studies have
suggested that both the paired related homeobox 2
(PRRX2) gene [70, 71] and the tumor necrosis factor

Fig. 7 The nomogram model analysis. a The predictive weight of each factor and prognostic risk score in predicting the prognosis of colon
cancer. The red line with arrow notes the 3- and 5-year survival probability of the example case. b The difference analysis between nomogram-
predicted survival probability and the actual survival. The nomogram-predicted survival probabilities have high compliances with the actual
situations (c-index = 0.752 and 0.721)
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receptor superfamily member 17 (TNFRSF17) gene [72,
73] are associated with the development of several can-
cers, while the proprotein convertase subtilisin/kexin type
5 (PCSK5) gene and the WD repeat domain 78 (WDR78)
gene have not been reported to be associated with patho-
genesis and progression. Thus, the functions of these
genes in colon cancer should be further investigated using
preclinical and clinical experiments.

Conclusions
In conclusion, the prognostic model based on the signa-
ture of the 12 genes (ADORA3, CPA3, CPM, EDN3,
FCRL2, MFNG, NAT1, PCSK5, PPARGC1A, PRRX2,
TNFRSF17, and WDR78) exhibited a relatively satisfac-
tory and credible predictive power for the prognosis of
colon cancer, making it a great potential biomarker.
However, the prognostic significance and practicability
of the 12-gene prognostic model in colon cancer should
be further confirmed in clinical studies.
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