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Abstract
Wound healing is a common occurrence. However, delayed healing and aberrant scarring result in pathological 
wound healing. Accordingly, a scarless wound healing remains a significant clinical challenge. In this study, we 
constructed hyaluronic acid (HA)-modified and verteporfin (VP)-loaded polylactic acid (PLA) nanogels (HA/VP-PLA) 
to promote scarless wound healing by accelerating wound re-epithelialization and controlling scar formation. 
Owing to the unique structure of HA incorporating and coating in VP-loaded PLA nanoparticles, HA/VP-PLA could 
be topically applied on wound to achieve targeted delivery to fibroblasts. Then, HA/VP-PLA released HA and lactic 
acid (LA) to stimulate the proliferation and migration of fibroblasts, as well as VP to inhibit Yes-associated protein 
(YAP) expression and nuclear localization to suppress fibrosis. In vitro (skin fibroblasts) and in vivo (rat and rabbit 
models) experiments strongly suggested that HA/VP-PLA promoted scarless wound healing by accelerating wound 
re-epithelialization and controlling scar formation. Therefore, our work provides a feasible strategy for scarless 
wound healing, and the sophisticated HA/VP-PLA exhibit a great potential for clinical applications.
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Introduction
Wound healing is a common occurrence in humans, 
and it has been an active research area for many years 
[1, 2]. It is an extremely complex and coordinated pro-
cess comprising of four sequential, overlapping biologi-
cal stages (hemostasis, inflammation, proliferation, and 
remodeling) where in damaged tissues are restored [3]. 
Perturbations by external and internal factors in the 
wound-healing process may can lead to an unsatisfac-
tory outcome, further resulting in delayed healing and 
aberrant scarring [3]. Therefore, there is an urgent need 
to develop a scarless wound healing approach targeting 
delayed healing and aberrant scarring.

The molecular and cellular mechanisms underlying 
wound healing are extensively studied [4, 5]. However, 
achieving perfect scarless wound healing remains dif-
ficult. In adult humans, scar formation is the result of 
wound healing, and is characterized by dermal hyper-
plasia with a dense extracellular matrix (ECM) and dis-
organized collagen [6]. Recently, the mechanism of scar 
formation has been reported to be the persistent acti-
vation of Yes-associated protein (YAP) that up-regu-
lates fibrosis and leads to excessive ECM deposition [7, 
8]. Thus, YAP inhibition could represent a therapeutic 
strategy to suppress fibrosis in the treatment of various 
fibrosis diseases [9, 10]. Verteporfin (VP), a Food and 
Drug Administration (FDA) approved porphyrin com-
pound, has confirmed to inhibit YAP expression, sup-
press fibrosis and yield scarless skin regeneration [11, 12]. 
Therefore, VP-based YAP inhibition is a candidate for 
controlling scar formation, however, suppressed fibro-
sis prevents wound re-epithelialization [13]. Fortunately, 
Fortunately, the emergence of nanotechnology integrates 
the ability to accelerate wound re-epithelialization and 
control scar formation.

Recently, nanotechnology has provided a new oppor-
tunity for wound healing using different strategies to 
achieve antimicrobial properties, drug delivery, and 
wound microenvironment regulation [14, 15]. Currently, 
poly(D,L-lactic acid) (PLA) nanoparticles (PLA NPs) are 
approved for biomedical applications and as successful 
modalities for wound healing [16–18]. Furthermore, lac-
tic acid (LA), a product of PLA degradation, is regarded 
to accelerate wound re-epithelialization by stimulating 
fibroblast proliferation [19, 20]. Therefore, the combina-
tion of PLA NPs and VP can promote scarless wound 
healing by accelerating wound re-epithelialization and 
controlling scar formation. However, the application 
of VP-loaded PLA NPs (VP-PLA NPs) to wounds is 
challenging.

Nanogel-based topical treatments represent a classic 
approach for wound healing [21, 22]. Nanogels have a 
specific hydrophilic 3D macromolecular network struc-
ture that offers excellent water-retention properties and 

colloidal stability [23]. Currently, hyaluronic acid (HA) 
exhibits excellent performance in nanogel preparations 
used to promote wound healing by stimulating the prolif-
eration and migration of fibroblasts [24, 25]. HA, a natu-
ral polysaccharide composed of N-acetyl glucosamine 
and D-glucuronic acid in the ECM, is a biologically 
active, biocompatible, and biodegradable material. In 
particular, HA-modified nanoparticles have been studied 
for targeted delivery to fibroblasts, owing to their expres-
sion of HA receptors (such as CD44) [26]. Interesting, 
HA showed the amphiphilic property due to it contained 
the hydrophobic and hydrophilic patch domain [27]. 
The hydrophobic patch domain of the CH group facili-
tates HA to interact with PLA to be incorporated and 
coated in PLA NPs. With its hydrophilic patch domain, 
HS could improve the stability of PLA NPs. Furthermore, 
HA in PLA NPs promote the release of VP from PLA 
NPs owing to its hydrolytic degradation property [28, 
29]. Therefore, HA-modified VP-PLA NP nanogels (HA/
VP-PLA) might provide an ideal approach for scarless 
wound healing by accelerating wound re-epithelialization 
and controlling scar formation.

Hence, sophisticated HA/VP-PLA, constituting HA-
incorporated and HA-coated VP-PLA NPs, were pre-
pared for scarless wound healing. HA/VP-PLA can 
achieve a targeting delivery to fibroblasts, release HA and 
LA to accelerate wound re-epithelialization, and realize 
VP-based YAP inhibition to suppress fibrosis and control 
scar formation (Scheme 1). HA/VP-PLA exhibited excel-
lent properties to inhibit YAP and stimulate the prolif-
eration and migration of fibroblasts. Histopathological 
analysis showed that HA/VP-PLA accelerated wound 
re-epithelialization and controlled scar formation in both 
rat and rabbit models in vivo. This study thus presents a 
strategy for scarless wound healing.

Methods and experiments
Preparation and characterization
HA/VP-PLA were prepared through nanoprecipita-
tion. Briefly, VP (16 µg, Sigma-Aldrich) and PLA (40 mg, 
molecular weight 47  kDa with a carboxylic end group, 
Sigma-Aldrich) in acetone (1 mL) were added gradually 
into a 10 mL HA (0.5 mg/mL, 1.0 MDa, Aladdin) ethanol 
aqueous solution (20% ethanol, v/v) with stirring for 2 h. 
Subsequently, the organic solvent was evaporated on the 
rotary evaporator at 30 °C, and the aqueous solution was 
sonicated in an ultrasonic water bath (40  min, 300  W). 
Finally, HA/VP-PLA were obtained after hydration with 
HA (80 mg) overnight. VP-free nanogels (PLA-HAs) and 
VP in the HA nanogels (VP-HAs) were prepared using a 
similar procedure.

HA/VP-PLA were examined via transmission elec-
tron microscopy (TEM, JEM-2010, Japan) via negative 
staining with sodium phosphotungstate solution (1.5% 
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w/v, 20 s), cryogenic TEM (Cryo-TEM, Talos F200C G2, 
USA).and scanning electron microscopy (SEM, JSM-
6360LA, Japan). Ultraviolet-visible (UV-Vis) spectra were 
obtained using a Varian Cary 50 UV-Vis spectrophotom-
eter (Perkin Elmer, USA). The in vitro release of VP was 
carried out by incubating 500 µL of HA/VP-PLA in 5 mL 
of PBS with 10% fetal bovine serum (FBS, to mimic physi-
ological conditions) at 37  °C. An aliquot of the sample 
(50 µL) was used for the fluorescence measurement of 
the released VP. The entrapment efficiency (EE) and VP 
release were calculated as follows.

EE = analyzed weight of VP / theoretical weight of VP 
x 100%.

VP release = total VP released / total VP added x 100%.
Therefore, EE could be considered equal to VP release. 

Furthermore, the samples were used to determine the 
PLA-generating LA using high performance liquid chro-
matography (HPLC) according to a previous studies [30].

Cell cultures and model constructions
Human skin fibroblasts were isolated from foreskin tis-
sues using a collagenase digestion. The filtrated fibro-
blasts were collected and grown in Dulbecco’s modified 
eagle medium containing fetal bovine serum (FBS, 10%), 
and the culture medium was changed every 3 days. All 
cells were cultured at 37  °C under 5% CO2 in a humidi-
fied atmosphere. Cells were used for subsequent experi-
ments after 3–6 generations.

Animal studies were approved by the Animal Experi-
mentation Ethics Committee of the Shanghai Ninth 
People’s Hospital (IACUC number: SH9H-2021-A428-
SB). To verify wound re-epithelialization, eighteen male 

Sprague Dawley rat (180–250 g) were anesthetized with 
2.5% isoflurane, the dorsal area was shaved and disin-
fected with iodophenol and 75% alcohol, and four full-
thickness incisions (10  mm in diameter) were created 
on both sides of the spine. The formulations were then 
applied to wound and kept for 30 min every 2 day for 2 
weeks. Twelve male New Zealand rabbits (1.8-2 kg) were 
used to verify the scar formation. Rabbits were anesthe-
tized by baring cartilage on the ventral surface of ear, and 
four wounds (10 mm in diameter) were created by expos-
ing the cartilage on the ventral surface of ear. The formu-
lations were then applied to the wound and maintained 
for 30 min every 2 days for the first 2 weeks.

Cell studies
Cell viability detection
Fibroblasts were seeded in 96-well plates (2,000 cells per 
well) for 24  h. Then, the culture medium was replaced 
with FBS-free medium and fresh formulations were 
added (the same equivalent concentrations) for 24  h. 
Cells were then incubated with Cell Counting Kit-8 
(CCK-8) for 4 h, and optical density was measured using 
a microplate reader at a wavelength of 450 nm. Cell via-
bility was expressed as the percentage, which was nor-
malized to the value of the control.

Cellular uptake
Fibroblasts were seeded in glass-bottom dishes for 24 h. 
The culture medium was then replaced with FBS-free 
medium containing the different formulations, and the 
cells were incubated for 6 h. The cells were imaged using a 
confocal laser scanning microscopy system (CLSM, Leica 

Scheme 1  Schematic illustration of HA/VP-PLA promoting scarless wound healing by accelerating wound re-epithelialization and controlling scar 
formation
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TCS SP5, Germany) with VP fluorescence (425 nm exci-
tation, 690  nm emission) and 4’,6-diamidino-2-phenyl-
indole (DAPI) fluorescence (405  nm excitation, 488  nm 
emission) to determine cellular uptake and localization. 
In addition, fibroblasts treated with HA/VP-PLA were 
collected, standard methods for TEM were carried out, 
and the cellular uptake of HA/VP-PLA was observed.

YAP inhibition, fibrosis, proliferation and migration of 
fibroblasts
Fibroblasts were seeded on 1 cm coverslips for 8 h, and 
then incubated with medium containing formulations for 
24  h. Cells were fixed with paraformaldehyde and per-
meabilized with Triton-100. The coverslips were incu-
bated sequentially with the indicated primary antibodies 
overnight and fluorescein isothiocyanate (FITC)-conju-
gated secondary antibodies at room temperature for 2 h. 
Finally, the antibody localization and cell structures were 
visualized using CLSM. Furthermore, the fibrosis-related 
proteins (TGF-β1 and α-SMA) and a proliferation-related 
protein (PCNA) were analyzed via western blot analyses. 
A scratch assay was performed for cell migration. The 
scratch was created perpendicular to the back of the hor-
izontal line using a vertically positioned pipette tip, and 
fibroblasts were cultured with medium containing for-
mulations for 48 h.

Animal studies
Assessment of wound re-epithelialization in rat models
Digital images of the wounds were captured every 4 
days to analyze wound re-epithelialization. the rats were 
euthanized with an overdose of sodium pentobarbital 
(150 mg/kg), and tissues were harvested for histological 
evaluations after 16 days. Masson and Sirius red staining 
were used in histopathological analysis. The ratio of red/
green area in Sirius red staining images were quantified 
using ImageJ (version 1.48). Meanwhile, immunofluores-
cence analysis of YAP, TGF-β, α-SMA and MMP-3 was 
conducted using the respective antibodies.

Assessment of scar formation in rabbit models
After 30 days of post-surgery, the rabbits were eutha-
nized with an over-dose of pentobarbital sodium, and 
tissues were prepared for histological evaluations. Tissue 
sections were made across the most elevated portion of 
the scar and stained with Hematoxylin-eosin (HE), Mas-
son and Sirius red staining. Scar elevation index (SEI, the 
ratio of the scar height to the normal skin height) was 
used to evaluate scar formation. Meanwhile, immunohis-
tochemical staining for TGF-β1, α-SMA, collagen I, and 
collagen III was conducted using respective antibodies. 
The sections were examined, and immune-positive cells 
were scanned and counted using a scanner system (Scan-
Scope XT, Aperio, CA).

Statistical analysis
The results are expressed as the mean ± standard devia-
tion. Statistical analysis was performed by performing 
Student’s t-tests using Origin with p < 0.05 as the minimal 
level of significance.

Results and discussions
Characterization studies
The morphological features were initially studied using 
electron microscopy. Spherical HA/VP-PLA were 
embedded in visible HA meshes, and HA chains incor-
porated into and coated VP-PLA NPs according to TEM 
images (Fig.  1A). Cryo-TEM images showed that HA/
VP-PLA comprised of homogenous nanoparticles and 
their structure was favorable for loading hydrophobic VP 
owing to the interaction between hydrophobic VP and 
hydrophobic PLA (Fig. 1B). Furthermore, well dispersion 
indicated that the amphipathicity of HA could improve 
the stability of HA/VP-PLA. Scanning electron micros-
copy images showed that spherical HA/VP-PLA were 
distributed in the HA gel matrix (Fig. 1C). This endowed 
HA/VP-PLA with sufficient adhesion for direct applica-
tion to the wound to maintain a moist environment, and 
sustainably produce effective components.

The physicochemical features, including VP loading 
and degradation of HA/VP-PLA, were also extensively 
studied. UV-Vis spectroscopy revealed that VP was suc-
cessfully loaded onto HA/VP-PLA (Fig.  1D). Subse-
quently, the degradation of HA/VP-PLA, involving VP 
release and LA generation, was studied by measuring VP 
and LA. Most of loaded VP (28.3 ± 2.2% of dosage) was 
release in 12 h. Therefore, EE of VP in HA/VP-PLA, con-
sidered equal to VP release, was satisfactory (Fig.  1E). 
Compared with that in previously reported work, HA/
VP-PLA had a faster release rate (6 h vs. 40 h), because 
the structure of the HA incorporated in PLA NPs could 
promote the disaggregation of NPs to release VP with 
its hydrolytic degradation property [31]. As expected, 
The LA content increased with time (6 and 12 h), verify-
ing that PLA degradation could generate LA as expected 
(Fig. 1F).

In summary, the prepared HA/VP-PLA had a unique 
structure and physicochemical features that facilitated 
targeted delivery of VP, HA and LA to improve scarless 
wound healing.

Cell studies in vitro
Cellular biocompatibility
The biocompatibility of HA/VP-PLA is crucial for their 
potential applications, and a greater cellular uptake of 
HA/VP-PLA increases YAP inhibition as well as cytotox-
icity. All formulations exhibited concentration-depen-
dent cytotoxicity according to CCK-8 assays (Fig.  2A). 
However, cytotoxicity (cellular viability > 90%) was 
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insignificant at low VP concentrations (< 2 µg/mL). HA/
VP-PLA and HA-VP had 85–90% of the cellular viabil-
ity at 4 and 6 µg/mL, respectively. However, there was a 
slight decrease in viability (< 85% of the cellular viabil-
ity) at 8 µg/mL. In contrast, HA-PLA did not affect cell 
viability at any concentration (cellular viability > 90%). 
Therefore, HA/VP-PLA had excellent biocompatibility, 
and 2 µg/mL VP was used for downstream cell studies to 
balance its cytotoxicity and YAP inhibition.

Cellular uptake studies
The cellular uptake of HA/VP-PLA was evaluated using 
VP fluorescence. Compared to that in VP-HA group, 
HA/VP-PLA group showed much stronger fluores-
cence, depicting cell profiles, and the fluorescence 
intensity increased with the incubation time (Fig.  2B). 
Furthermore, HA/VP-PLA resulted in some intense red 
fluorescent dots on the cytomembrane and cytoplasm, 
suggesting that abundant HA/VP-PLA actively targeted 
the cell surface by utilizing HA receptors and more effi-
ciently entered the cells, as expected. Furthermore, TEM 
showed that HA/VP-PLA displayed homogeneous dark-
ness with contrast enhancement emerging inside of 
endosomes (Fig.  2C). This indicated that HA/VP-PLA 
readily entered into cell through their enclosure in endo-
somes [32]. Then, HA/VP-PLA mediated endosome deg-
radation to facilitate the release of VP, HA, and LA inside 
the fibroblasts.

YAP inhibition, fibrosis and proliferation/migration
YAP expression and nuclear localization were studied in 
the treated fibroblasts to initially determine whether HA/
VP-PLA treatment resulted in YAP inhibition and the 
suppression of fibrosis [33]. Immunostaining analysis of 

treated fibroblasts showed that HA/VP-PLA treatment 
significantly inhibited YAP expression (Fig.  2D). Quan-
tification of the YAP fluorescence nucleocytoplasmic 
intensity ratio indicated that HA/VP-PLA were most effi-
cient at inhibiting nuclear accumulation and improving 
the cytoplasmic retention of YAP (Fig. 2E). This matched 
with cellular uptake studies. Furthermore, PLA compo-
nents did not affect YAP inhibition. Fibrosis suppression 
was then studied using fibrosis biomarkers. Western blot 
revealed HA/VP-PLA exhibited the best performance 
in suppressing fibrosis, based on reduced expression of 
TGF-β1 and α-SMA (Fig.  2F). Subsequently, western 
blotting and cell scratch assays were used to assess pro-
liferation and migration ability, two important roles in 
wound healing. HA/VP-PLA had the best performance 
in terms of PCNA expression and migration ability of 
fibroblasts (Fig. 2F and G). Therefore, HA/VP-PLA could 
inhibit YAP to suppress fibrotic activity, and deliver HA 
and LA to stimulate the proliferation and migration, 
which was favorable for scarless wound healing.

Assessment of wound re-epithelialization in rat models in 
vivo
HA/VP-PLA were found to promote wound re-epithe-
lialization in rat models. To eliminate individual differ-
ences as possible, four wounds in each rat were divided 
into formulation and control groups, and nanogels were 
applied to the wounds as shown in schematic presenta-
tion (Fig.  3A). Formulations significantly improved epi-
dermal regeneration compared with that in the control 
group, and HA/VP-PLA exhibited the best performance 
in terms of wound re-epithelialization, owing to the 
release of HA and LA (Fig. 3B C).

Fig. 1   A: TEM image of HA/VP-PLA with detail and schematic; B-C: Cryo-TEM and SEM images of HA/VP-PLA; D: UV-Vis spectra (the absorption peak of 
VP was 689 nm); E: Release profiles; F: HPLC spectra of LA detection (LA: LA standard, 6 and 12: PLA degradation for 6 and 12 h)
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To evaluate the potential for fibrosis suppression, 
we analyzed the wound tissue samples in 16 days after 
wounding. In Masson staining result, formulations pro-
mote the significantly more collagen deposition for 
accelerating wound re-epithelialization. Meanwhile, the 
collagen remodeling, including new-born collagen con-
verting to mature collagen and reducing collagen I/III 
ratio, were studied in Masson and Sirius red staining. 

HA/VP-PLA promoted collagen remodeling involving 
the conversion of new-born collagen (the area of white 
arrows) into mature collagen (the area of white arrows) 
according to Masson’s staining, which improved the 
mechanical strength of skin [34]. Then, Sirius red stain-
ing was also used to evaluate collagen I (yellowish-red) 
and collagen III (green) in the tissues (Fig.  3E). Control 
group presented a collagen disorder arrangement with 

Fig. 3   A: Schematic of the application of HA/VP-PLA in rat models; B: wound re-epithelialization in rat models at the day 0 and day 16r; C: Percentage of 
wound area in each group over 16 days; D-E: Masson and Sirius red staining staining of tissues (the area of white arrows: the new-born collagen, the area 
of red arrows: the mature collagen); F: statistical analysis of the ratio of collagen I to collagen III (*: p < 0.05)

 

Fig. 2   A: The cell viability of fibroblasts treated by formulations; B: CLSM images of VP delivered into fibroblasts; C: Ultrastructural observation of fi-
broblasts treated with HA/VP-PLA; D: CLSM images of YAP expression; E:Statistics analysis of the YAP expression and nuclear localization; F: fibrosis and 
proliferation-related protein expressions; G: scratch assay
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collagen I dominance. In contrast, HA/VP-PLA exhibited 
the best performance not only in improving the collagen 
regular arrangement but also increasing the collagen III 
content, based on a quantification analysis of the collagen 
I/III ratios (Fig. 3F). Therefore, HA/VP-PLA accelerated 
and improved wound re-epithelialization.

YAP inhibition and fibrosis suppression were further 
demonstrated using in vivo immunofluorescence analy-
sis. HA/VP-PLA exhibited the best performance in terms 
of YAP inhibition compared with other formulations 
(Fig. 4A). Furthermore, the expression of TGF-β, α-SMA, 
and MMP-3 (affecting collagen production and metabo-
lism) proportionally decreased and increased, respec-
tively to YAP inhibition (Fig.  4B C). Therefore, HA/
VP-PLA inhibited YAP and suppressed fibrosis owing to 
its targeted delivery ability, which helped promote scar-
less wound healing.

Assessment of scar formation in rabbit models in vivo
Although rat models provide information on wound re-
epithelialization, they were not used to assess scar forma-
tion owing to the lack of mechanical tension [35]. Thus, 
HA/VP-PLA were applied to rabbit ear wound models 
to further evaluate their potential in controlling scar for-
mation (Fig. 5A). HA/VP-PLA promoted wound epithe-
lialization in rabbit models within 15 days post-surgery, 
similar to that in rat models. All tissues were thick, and 
presented a dark red color after 30 days post-surgery; 
the HA/VP-PLA treatment produced the best morpho-
logical appearance (Fig. 5B). The SEI was used to evalu-
ate scar thickness and provide accurate evidence that 

HA/VP-PLA could significantly control scar formation 
(Fig.  5C). Fibroblast proliferation and collagen deposi-
tion, indicators of scar formation, were assessed via his-
topathological analyses (Fig. 5D). Hematoxylin and eosin 
(HE) staining analysis for fibroblast proliferation revealed 
that the HA/VP-PLA group exhibited a remarkable 
reduction in fibroblasts compared to the umbers in the 
other groups (Fig. 5E). This phenomenon was explained 
by the fact that HA/VP-PLA promoted the transition 
from the proliferation stage to the remodeling stage [36].

Masson staining analysis for collagen deposition and 
HA/VP-PLA showed significantly reduced collagen fiber 
deposition and improved collagen arrangements with 
slender structures. Sirius red staining was further used to 
evaluated collagen I and collagen III in tissues, and HA/
VP-PLA were found to improve the collagen arrange-
ment with collagen III dominating. Statistical analysis of 
I/III ratios indicated that HA/VP-PLA were more effec-
tive in reducing the ratio, as expected (Fig. 5F). Moreover, 
the slender collagen in HA/VP-PLA group displayed a 
“basket-weave” pattern and regular arrangement accord-
ing to TEM, whereas the Control group had a disorga-
nized dense and bulky collagen arrangement (Fig.  5G). 
Therefore, the ultra-features of collagen were in accor-
dance with scarless wound healing [37].

Fibrosis-related protein expression was further stud-
ied using immunohisto-chemical analysis (Fig.  6A). The 
results indicated that HA/VP-PLA had the best per-
formance in suppressing the expression of TGF-β and 
α-SMA (Fig.  6B). HA/VP-PLA showed improved effi-
cacy in reducing collagen I deposition and augmenting 

Fig. 4   A: immunofluorescence analysis of YAP expression and fibrosis biomarkers; B: Statistical analysis of YAP and TGF-βα-SMA (*: p < 0.05); C: Statistical 
analysis of α-SMA and MMP-3 (*: p < 0.05)
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collagen III deposition (Fig. 6C). Therefore, rabbit model 
studies confirmed that HA/VP-PLA showed great poten-
tial to control scar formation by suppressing fibrosis.

Together, these animal studies strongly suggested that 
HA/VP-PLA could effectively promote scarless wound 
healing by accelerating wound re-epithelialization and 
controlling scar formation via targeted delivery to inhibit 
YAP, suppress fibrosis, and stimulate the proliferation 
and migration of fibroblasts.

Conclusion
Sophisticated HA/VP-PLA was developed to realize tar-
geted delivery to fibroblasts in wound tissue. They pro-
moted scarless wound healing by accelerating wound 
re-epithelialization and controlling scar formation. The 
sustained release of HA and LA was found to stimu-
late the proliferation and migration of fibroblasts to 

accelerate wound re-epithelialization. Meanwhile, HA/
VP-PLA successfully controlled scar formation, as deliv-
ery of VP for YAP inhibition suppressed fibrosis. Detailed 
studies using fibroblasts and animal models demon-
strated the ability of HA/VP-PLA to promote scarless 
wound healing. Thus, this study provided an effective 
therapeutic strategy to promote scarless wound healing. 
Future studies will be performed to provide an additional 
experimental basis to investigate the clinical applications 
of HA/VP-PLA.

Fig. 5   A: Schematic of the application of HA/VP-PLA in rabbit models; B: The appearance changes of wound tissue at 15 and days post-surgery; C: Statis-
tics of SEI of tissues(*: p < 0.05); D:HE, Masson and Sirius red staining of tissues; E: Statistics of fibroblast proliferation(*: p < 0.05); F: statistical analysis of the 
ratio of collagen I to collagen III (*: p < 0.05); G: Ultrastructural differences of tissue in HA/VP-PLA and control groups
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