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Abstract

Surgical resection is the cornerstone of solid tumour treatment. Current techniques for evaluating margin statuses,
such as frozen section, imprint cytology, and intraoperative ultrasound, are helpful. However, an intraoperative
assessment of tumour margins that is accurate and safe is clinically necessary. Positive surgical margins (PSM) have a
well-documented negative effect on treatment outcomes and survival. As a result, surgical tumour imaging meth-
ods are now a practical method for reducing PSM rates and improving the efficiency of debulking surgery. Because
of their unique characteristics, nanoparticles can function as contrast agents in image-guided surgery. While most
image-guided surgical applications utilizing nanotechnology are now in the preclinical stage, some are beginning to
reach the clinical phase. Here, we list the various imaging techniques used in image-guided surgery, such as optical
imaging, ultrasound, computed tomography, magnetic resonance imaging, nuclear medicine imaging, and the most
current developments in the potential of nanotechnology to detect surgical malignancies. In the coming years, we
will see the evolution of nanoparticles tailored to specific tumour types and the introduction of surgical equipment to
improve resection accuracy. Although the promise of nanotechnology for producing exogenous molecular contrast
agents has been clearly demonstrated, much work remains to be done to put it into practice.
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Introduction

Cancer is a substantial contributor to the global illness
burden. In 2019, there were an expected 23.6 million
new cancer diagnoses and 10.0 million cancer deaths
worldwide [1]. New technology, research, and innova-
tion in cancer diagnostics and therapeutics have been
advocated to improve this high impact, leading to cur-
rent efforts such as the Precision Medicine Initiative in
January 2017 [2]. Although molecularly targeted thera-
pies have resulted in significant improvements in survival
outcomes, the surgical treatment to achieve complete
resection of tumour lesions remains an integral part
of the cure for most solid tumours and one of the most
important prognostic factors for patient survival. Posi-
tive surgical margins (PSM) are cancer cells that stay at
the edge of the resection specimen and have negative
prognostic consequences across diverse tumour types,
necessitating further (adjuvant) treatments that involve
considerable expense and inconvenience for the patient
and the healthcare system [3]. Oral cancers have the
highest prevalence of PSM. Among sex-specific cancers,
ovarian and prostate cancers have the highest prevalence
in women and men, respectively [4].

Current techniques for evaluating margin statuses,
such as frozen section, imprint cytology, and intraop-
erative ultrasound, are very useful tools for precision
surgery but expensive in terms of time and costs and
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not always available to surgeons. Furthermore, not all
hospitals have experts in the use of this instrumenta-
tion applied to tumours [5, 6]. However, there is a clini-
cal need for safe and accurate approaches to defining
tumour margins intraoperatively [7]. Molecular image-
guided surgery enables the differentiation of tumour
and nearby normal tissue, which improves resection
accuracy and may reduce PSMs. Along with achieving
acceptable margins during tumour removal, this tech-
nology can improve the efficiency of debulking surgery
and establish new tactics for time-consuming proce-
dures such as sentinel node mapping. It can visualize
distinct anatomic structures to protect healthy tissues
from harm. Intriguingly, nerve detection still neces-
sitates the development of specific imaging probes,
which is currently a priority research topic [8].

Cancer research has thus focused on developing
molecular imaging probes to reveal molecular pheno-
type or even genotype of malignant and normal tissues
during image-guided surgery [3, 9-11]. The advance-
ment of molecular pathology understanding has uncov-
ered a plethora of opportunities for image-guided
surgery. Targeting cancerous cells based on specific
markers not only drives new precision medicine tri-
als, but also enables the development of new molecular
imaging procedures [11]. For instance, labelling thera-
peutic antibodies to translate therapeutic biologicals as
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imaging agents has already been demonstrated in ongo-
ing surgical trials [12—-14].

Advances in nanomedicine have aided in the develop-
ment of multifunctional and multimodal nanoparticles
(NPs). NPs have a substantial impact on cancer imag-
ing because they enable the generation of multimodal
contrast agents and surface functionalization for precise
molecular recognition [15, 16]. In recent years, several
studies investigating the use of nanotechnology platforms
for intraoperative imaging have advanced to the clinical
stage [17]. Here, we outline the fundamental intraopera-
tive imaging modalities and the most promising contrast
agents developed through nanotechnology. In the context
of solid tumours, the increased permeability and reten-
tion (EPR) effect has proved to be a key factor in cancer
nanomedicine design and is a crucial component of drug
delivery that targets specific tumours. Active targeting
can be employed in addition to EPR-based passive tar-
geting to enhance tumour accumulation and retention in
nanomedicine.

Intraoperative imaging modalities to improve
surgical precision

There are numerous medical imaging modalities acces-
sible, including optical imaging, ultrasound, computed
tomography (CT), magnetic resonance imaging (MRI),
and nuclear medicine imaging, including positron emis-
sion tomography (PET) and single-photon emission com-
puterized tomography (SPECT). Each imaging modality
has its sensitivity, resolution, and quantitative capabili-
ties, as well as its own set of benefits and inherent restric-
tions (Fig. 1). The integration of multiple intraoperative
imaging techniques has the potential to overcome the
limitations of a single imaging modality and represents,
therefore, a new task for present and future image-
guided surgery research [18]. Novel imaging approaches
for intraoperative margin assessment in surgical oncol-
ogy are rapidly evolving. Heidkamp and colleagues have
published a thorough evaluation of intraoperative mar-
gin assessment imaging techniques in surgical oncology,
as well as data on their technical features, operational
feasibility, and diagnostic accuracy [19]. Radiography
and ultrasound, in particular, had the highest number
of IDEAL 3 and 4 studies, primarily for usage in breast
cancer. The most prevalent technique in research inves-
tigations was intraoperative fluorescence; however, these
only involved IDEAL stages 1 and 2.

Optical imaging

Optical imaging technologies rely on non-ionizing radia-
tion to visualize structural, functional and molecular
information based on their specific photon absorption
and emission or scattering profile. Great efforts have
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Fig. 1 Intraoperative imaging modalities in cancer surgery.
Image-guided surgery’s potential oncological applications are
depicted schematically. The graph shows the sensitivity and spatial
resolution ranges of the different imaging modalities

been dedicated to developing an optical imaging system
integrated into traditional open-air and minimally inva-
sive surgery. Optical image-guided surgery is an emerg-
ing technology that requires the development of contrast
agents and dedicated intraoperative camera systems.
Over the past few years, substantial progress has been
made in both fields [20]. The commonly used optical
imaging methods include fluorescence, lifetime fluores-
cence, photoacoustic imaging and Raman spectroscopy
[21, 22] (Fig. 2).

Fluorescence imaging

Near-infrared (NIR) fluorescence modalities are the opti-
cal imaging approaches chosen for intraoperative image-
guided surgery [10, 11, 23]. In vivo imaging in the NIR
range (700-900 nm) is superior to that in the visible
spectrum due to its low scattering, diminished tissue
autofluorescence, and relatively high tissue penetration
[24]. The first FDA-approved NIR dye, indocyanine green
(ICG), is the most commonly used fluorophore and has
shown promising results in image-guided surgery for
many organs. Utility for functional imaging in differ-
ent domains such as identifying lymphatic structures,
tumour localization, angiography of blood supply of vari-
ous organs, thoracic duct visualization, tracheal blood
flow analysis, and sentinel lymph node (SLN) biopsy has
dominated ICG literature in the field of surgical oncology
[25]. The intrinsic limitations of ICG are its short half-life



Bortot et al. Journal of Nanobiotechnology (2023) 21:155

Page 4 of 23

Intraoperative Optical Imaging in Oncology

|

Fluorescence

®

Chemical dyes for multicolor
imaging approach

FDA-approved commercial devices
available for NIR fluorescence
navigation in laparoscopy,
endoscopy, and robotic surgery

Radio

Microwave élnfrared

Fluorescence Lifetime (ns)

lifetime W 212
Information on the tumor B oos
microenvironment,
no background signals
0.38

Specificity at the cellular level

Qualitative analysis

EUItravioIet: X-ray Gamma

Raman

Molecular fingerprint

Low time resolution

Reported in brain tumor
biopsies

Visible light

Photoacoustic

Multispectral tomography

Assessment of hemoglobin levels

N
Reported in sentinel Q O
lymph node mapping

Fig. 2 Intraoperative optical imaging in oncology. Optical imaging technologies provide non-invasive visualization, characterization, and often
quantification of structures and biological processes at the cellular and molecular levels in therapeutic settings. All imaging modalities are based on

the excitation of the tissue by an external light source

and the lack of a tumour-specific interaction mechanism
as a passive fluorescent dye.

There are many commercial devices, FDA-approved,
available for NIR fluorescence navigation in laparoscopy,
endoscopy, and robotic surgery; an example is the firefly
camera integration in the da Vinci Robotic platform [26].
Of interest, there has recently been reported a medical
imaging projection system (MIPS) that provides a con-
tinuous real-time projection of ICG fluorescence images
directly on the surgical field and overcomes the problem
of recurrent dimming of operating room lights [27].

Fluorescence can safely be used in several oncology
contexts, such as (i) in advanced epithelial ovarian cancer
to evaluate invisible microscopic peritoneal metastasis
with a high negative predictive value [28]; (ii) for multi-
ple indications in neuro-oncology for resection to the
functional limit of the peritumoral region with a greater
extent of resection and better outcomes [29, 30]; (iii) to
identify structures, including the prostate, neurovas-
cular bundle and lymph nodes in robot-assisted radical

prostatectomy [31]; (iv) to better define the borders of the
surgical resection in head and neck cancer [13, 32]; (v) for
sentinel lymph node mapping in early-stage cervical and
endometrial cancer [33]; (vi) to support hepatic resection
in liver surgery [34]. This surgical approach improves the
current ablation technology, showing promising potential
for the complete treatment of more prominent or irregu-
lar malignant lesions in the liver and other solid organs.
Notwithstanding attractive and intriguing properties,
there are drawbacks of fluorescent imaging that include
significant attenuation as the signal travels more in-depth
in the tissue and interference from white surgical light
during open surgery. Fluorescent imaging of tumour
lesions can be challenging where contrast agent uptake is
not specific. In an ideal condition, a minimum signal-to-
background ratio of 1.5 is required to discriminate fluo-
rescent lesions and guide surgical decision-making [35].
Because of this potential limitation, the development of
tumour-targeting probes for fluorescence-guided surgery
can improve the chance of achieving complete resection
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of tumours with negative surgical margins and identifica-
tion of occult foci of disease.

We are witnessing, on the one hand, a significant
advance in the field of fluorescence chemical dye synthe-
sis, with the development of molecules that make pos-
sible a multicolour imaging approach [36]; on the other
hand, engineering progress has led to the development of
new signal detectors capable of encoding multiplicities of
signals with efficient spectral separation and sensitivity at
low concentrations.

Fluorescence lifetime imaging

Fluorescence lifetime techniques have been used for bio-
logical and medical imaging as they display sensitivity
to the chemical structures of probes and their microen-
vironment. Previous studies demonstrated that lifetime
analysis of exogenous NIR probes effectively provides
information about the tumour microenvironment and
eliminates background signals, thus improving probes
distribution data [37, 38]. Recently, an epidermal growth
factor receptor (EGFR) targeted NIR fluorescent probe
enabled a fluorescence lifetime imaging approach to
enhance tumour contrast with a proven safety profile in
humans, suggesting a strong potential for clinical appli-
cations in image-guided surgery, cancer diagnostics and
staging [39].

Raman spectroscopy
Raman spectroscopy can accurately differentiate between
tumours and healthy tissue according to their molecular
composition [40]. Raman imaging can provide an intrin-
sic “molecular fingerprint” of the tissue by analysing mol-
ecule vibrations (referred to as Raman scattering). Raman
techniques offer label-free molecular contrast, albeit with
a low signal-to-noise ratio, due to the weak Raman scat-
tering cross-sections. In Raman spectroscopy, despite the
advantage of high specificity, the signal intensity is low,
and imaging measurements are primarily performed
punctually on microscopic tissue volumes, making
whole-field assessment temporally inaccessible [40].
Time resolution may have hampered the Raman imaging
clinical implementation, and the technological advance-
ment in this field is focused on enhancement of signal
and speed acquisition. The entrance of machine learning
and deep learning models in the data analysis has con-
tributed to overcoming some of the method’s limits [41].
Raman spectroscopy application for image-guided can-
cer surgery has recently been explored in brain tumour
biopsies, where stimulated Raman scattering micros-
copy allowed to image and detect tumours infiltrating
the human brain [42]. Stimulated Raman histology has
enabled rapid diagnostic histology data during pediatric
brain tumour surgery, thus improving decision-making
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[43]. Jermyn et al. adapted Raman spectroscopy for the
operating room by developing an imaging technique that
uses a commercially available, handheld contact probe
technique for live, local detection of cancer cells in the
human brain with a sensitivity of 93% and a specificity
of 91% [44]. At a preclinical level, Raman spectroscopy
demonstrated its potential for peripheral nerve visualisa-
tion and identification and for discriminating vital struc-
tures during oncological surgery [45, 46].

Photoacoustic imaging

Photoacoustic imaging is a clinically emerging modal-
ity for molecular imaging of cancer, enabling affordable,
real-time non-invasive assessment of tissue oxyhemo-
globin (HbO2) and deoxyhemoglobin (Hb) with optical
contrast at a high Spatio-temporal resolution [47]. This
approach relies on the excitation of short-pulsed laser
light in the NIR range to induce the photoacoustic effect
in targeted tissues, which results in detectable ultrasound
waves generated by thermoelastic expansion [48]. Several
studies have investigated the potential of photoacous-
tic imaging to guide various interventions such as drug
delivery, treatment planning and evaluation, surgeries,
and biopsies [49]. The multispectral optoacoustic tomog-
raphy (MSOT) potential combined with ICG has been
shown for SLN mapping and is a promising approach to
reducing the number of patients subjected to SLN sur-
gical excision by “ruling out” metastasis [50]. Vonk and
colleagues report on employing MSOT for in vivo imag-
ing of neck lymph nodes in oral cancer patients using
cetuximab-800CW, a tumour-specific fluorescent tracer
[51]. MSOT-based assessment of haemoglobin levels can
be used as a surrogate of inflammation, and at the intes-
tinal wall, it allows to distinguish the active disease from
remission in patients with Crohn’s disease [52].

Recently, US and optoacoustic tomography fusion has
demonstrated the ability to decode the distribution of
lipids and collagen, aiming at differentiating benign and
malignant lesions on the breast [53]. This holds great
potential in an intra-operative setting to evaluate tumour
margins.

Radio-guided surgery

Radio-guided surgery (RGS) is a surgical technique
developed about 60 years ago that is crucial for those
tumours for which resection is the only possible therapy
[54]. It allows the surgeon to assess the completeness of
the tumour lesion resection in realtime, minimizing the
amount of healthy tissue removed [54]. The RGS consists
of complex procedures which, using a suitable probe for
the detection of radioactivity in the operative field, allows
the identification and, therefore, the surgical excision of a
tissue that has been “marked” presurgical with a specific
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radiopharmaceutical (Fig. 3) [55]. Radiopharmaceuticals
are biologically active molecules labelled by radionuclides
that provide a source of ionizing radiation mainly applied
in diagnostic imaging and therapy [56]. The radiophar-
maceutical is administered to the patient before surgery,
temporarily making the body a source of radiation to
detect with a specific instrument, an intraoperative probe
sensitive to the emissions released by the drug [55]. The
radiopharmaceutical is administered to the patient and
absorbed by the target tissue. Therefore, during surgery,
the surgeon can position the probe in correspondence
with the lesion since the probe detects the emissions
released by tissue-enhancing in real time [55].

The RGS probe converts the radioactivity detected
intraoperatively into a numerical signal and into an
acoustic signal of intensity and frequency proportional to
the activity in the region under examination. The “ideal”
probe for RGS should have the best sensitivity, spatial
resolution, and energy resolution [57]. Unfortunately,
these three parameters cannot be optimized simultane-
ously, considering that sensitivity and spatial resolution
are inversely correlated. It is, therefore, often necessary
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to reach the best possible “trade-oft” between sensitivity
and spatial resolution, a trade-off that can occur at differ-
ent levels for the different applications of RGS. Numer-
ous intraoperative probe systems have been developed
and then marketed for use in radio-guided surgery, but
we can classify them into two general categories, based
on the specific type of radiation detected: gamma probes
and gamma radiation detection systems, as well as beta
probes and beta radiation detection systems [55]. The
type of probe to be used during the surgery depends
on the type of tumour, the characteristics of the radi-
opharmaceutical, and the preferences of the oncologist
and surgeon. The intraoperative device detects the spe-
cific activity in the radiopharmaceutical uptake area and
translates the intensity of the radioactivity recorded into
a digital value [55]. This number is expressed in counts
per second (cps) and in an acoustic signal of intensity and
frequency directly proportional to the detected activity.
The acoustic signal emitted by the probe represents a
guide for the surgeon to identify the lesion and any other
residues present after the surgical removal of the tumour.
The standardized number produced by the probe is

Probe Tumor Signal
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Fig. 3 Schematic illustration of a typical radio-guided surgical procedure. Stages of the procedure include: (1) a radio-labelled tracer administered
to the patient before the operation; (2) the radiopharmaceutical mainly absorbed by the tumour; (3) after the tumour mass removal, the surgeon
scans the lesion with a radiation detection probe and searches for targeted tumour residues in real time. The lower images show the effect of the

proposed procedure with y-emitter tracers, and with 3-emitting tracers
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interpreted as the relationship between the signal and the
background (Tumor-to-Background Activity Ratio, TBR),
that is, between the activity originating from the lesion
that picked up the radiopharmaceutical administered
to the patient and the activity originating from the area
adjacent to the tumour, radiation originating from non-
diseased absorbing tissue, caused by electromagnetic
radiation interactions with matter.

RGS represents, for the surgeon, an additional tool,
providing intraoperative information from a radiation
detection device in the form of acoustic signals of inten-
sity and/or frequency proportional to the amount of
radiation detected for the sole purpose of guiding the
successful performance of the surgical procedure.

Gamma probe

The first RGS description involving a gamma-sensing sys-
tem, was reported in 1956 at the Oak Ridge Institute of
Nuclear Studies Medical Hospital. On that occasion, the
authors of the study published the results obtained on a
patient with thyroid cancer, for whom, after the adminis-
tration of a gamma radiation emitter (I'3!), the area of the
thyroid tissue was successfully localized [58]. The most
important clinical applications of gamma detection tech-
nology are sentinel lymph node research and the Radio-
guided Occult Lesion Localization (ROLL) technique
[54, 59]. The gamma radiation high-penetration capacity
is the only authentic limit for this type of probe. In fact,
y-rays cross the human body effortlessly and for large
quantities of tissue (it is necessary to stop thicknesses of
a few centimeters of lead or decimetres of concrete), and
the possible absorption of the tracer in the area of healthy
tissue near the lesion represents a non-negligible back-
ground [54]. It can sometimes prevent the applicability
of the y-RGS technique, so to overcome the problems
encountered with gamma probes, new particles have
been sought, and innovative probe prototypes have been
proposed.

Beta probe

As for y-RGS, it is clear that most of its drawbacks arise
from the photons use as decay particles. The develop-
ment of probes designed to detect beta particles (+ and
—) is one of the most recent developments in the field of
RGS [55]. Since P radiation (positrons or electrons) has a
short range in tissue, these probes are ideal for detecting
tracers in tumours at the surface of the surgical field. The
first option is to employ a radioactive atom that decays
by emitting positrons (B+ particles). Several + emitting
isotopes are already commonly used in nuclear medicine.
The most common one is the '®F, utilized in "*F-FDG PET
exams. Another advantage of this approach is related
to the interactions of positrons in the matter. Positrons
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(being charged particles) interact much more than pho-
tons. Therefore, their range is reduced to a few millime-
tres for p+ particles of about 1 MeV. Due to their nature
as antiparticles, they annihilate encountering electrons
in the traversed tissue, producing a couple of back-to-
back photons of 511 keV in energy. The low penetration
range results in the double advantage of a narrow path
within the body, assuring better spatial resolution than
photons, thinner detectors, and more miniature probes.
Consequently, the B+ emitters solve some of the main
limitations of y-RGS, such as long gamma radiation pen-
etration and the resulting loss of spatial resolution.

However, some problems remain with this strategy,
primarily due to physical causes such as the annihila-
tion photon background [55, 60, 61]. The third approach
in RGS, which aims to overcome all the limitations out-
lined thus far, would be represented by p— radiation. The
search for possible particle emitters was prompted by dif-
ficulties encountered during radio-guided surgery with
B+ probes. The B— particles penetrate a few millimetres
of tissue. They have energy distributed in a continuous
spectrum extending between 0 and the incident B— radi-
ation, which can be ignored because it is transferred to
the photons produced rather than the medium.

The f— emitting radiopharmaceuticals are less sensitive
to the presence of background radiation. They represent
a problem and a source of degradation of the resolution
of the probe, and, therefore, this new device can oper-
ate with low background detecting the margins of the
tumour radioactive-tissue in more detail, with a substan-
tial reduction (due to p— particles low penetration) of
the dose given to the medical staff [55, 60]. The detection
of p— emission had been proposed at the outset of RGS
development. However, it was soon abandoned because
of the emission phenomenology and because the avail-
able tools and materials did not meet the prerequisites
needed. Modern technologies make it possible to develop
RGS with these particles and quantify the impact of this
innovation in the sector. In recent years, this proposed
novel technique of RGS proved not only to be theoreti-
cally possible [62] but also its actual feasibility has been
demonstrated with ex-vivo tests on meningioma samples
marked with *°Y-DOTATOC [63].

Ultrasound

Due to its low cost, lack of reliance on radiation, and non-
invasive nature, ultrasound imaging has become widely
used in clinical settings. Moreover, ultrasound imaging
systems can be portable, which accounts for their wide-
spread use in clinics. Ultrasound contrast agents increase
the differential in acoustic impedance across tissues or
at vascular/tissue interfaces, amplifying the reflected
acoustic echoes. The acceptance criteria for ultrasound
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contrast agents include excellent acoustic impedance
changes, appropriate stability, a proper size that allows
extravasation of the vascular space, good compatibility,
and the required safety measures for live tissues [64]. The
particle size, core material, compounds, and shell thick-
ness can all impact the acoustic echo intensity of ultra-
sound contrast agents.

Intraoperative contrast-enhanced ultrasound is a
sophisticated approach that uses an intravenous micro-
bubble-based contrast agent to provide valuable informa-
tion about tumour biological properties through direct
observation of its vascular pattern [65]. Neuro-oncologi-
cal surgery is the initial application field of intraoperative
ultrasound [66]. During neurosurgical procedures, ultra-
sound imaging accurately identifies brain tumour lesions
and maximizes the resection area while preserving nor-
mal brain parenchyma in both intra- and extra-axial
lesions [66, 67]. As a result, neurological functions are
better preserved, which reduces mortality and increases
progression-free survival. Although liver imaging is the
most widely used application, recommendations for non-
hepatic conditions have also been established [68].

Intraoperative ultrasound imaging is also employed in
gynecologic surgery (particularly for ovarian cancer) [69,
70], general surgery for colon cancer [71], and breast can-
cer [72].

Magnetic resonance imaging (MRI)

Using MRI to guide surgical navigation has distinct
advantages over other imaging modalities because MRI
delivers efficient soft-tissue contrast and spatial resolu-
tion. Also, MRI allows for simultaneous imaging of soft
tissue and interventional equipment (e.g., needles and
catheters), allowing the interventional plan to be adjusted
and controlled interactively. Furthermore, as a multipara-
metric imaging approach, MRI can detect several physi-
ological functions such as blood oxygen level, flow, and
temperature [73].

MRI is the gold standard for diagnostic imaging in
neurosurgery and is employed in neuro-oncology for
pre-surgical planning, surgical navigation, and monitor-
ing therapy response [74]. MR images aid in diagnosing
glioma by examining the association between the glioma
infiltration area and the eloquent area of the connect-
ing fibres [75]. As a result, intraoperative MRI can help
neurosurgeons determine the extent of removal, the dis-
tance between the excision site and eloquent regions, and
how to rectify brain shifts in the neuro-navigation system
[75]. Prostate surgery is one of the most active research
fields in MRI-guided robotics. Because of their potential
to offer comprehensive anatomical pictures in real-time,
MRI-guided robots have been created to provide intra-
operative imaging guidance and automatic targeting [73].
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MRI-guided imaging finds another substantial applica-
tion field in robotic system implementation for breast
tumour biopsy and therapy.

Computed tomography (CT)

With a high frequency of usage and hospital availability,
CT is one of the most potent tools for guiding diagnosis
and treatment [76]. Intraoperative CT was introduced in
the early 2000s as a portable device and has been utilized
successfully in surgical oncology [77-79]. The resolution
of the soft-tissue image is improving as multidetector
CT technology advances [77]. However, contrast agents
with high X-ray attenuation, often including high atomic
number elements such as iodine, barium, and gold, are
required to boost the sensitivity of CT scanning and
improve imaging of the tissue of interest. Current CT
contrast agents, primarily based on small iodinated com-
pounds, have quick elimination and limited efficacy:
only massive doses at molar concentrations can generate
appropriate contrast for CT imaging [80]. The relevance
of CT as one of the fundamental radiological modalities
used in biomedical imaging has accelerated the develop-
ment of NPs as next-generation CT contrast agents [81].

Nanotechnology approaches for image-guided
surgery

The EPR effect has become a significant driver of cancer
nanomedicine design in the therapy of solid tumours,
serving as a critical cornerstone of tumour-targeted drug
delivery [82, 83]. EPR-mediated tumour accumulation
has traditionally been thought to be caused by long-cir-
culating NPs with hydrodynamic diameters wider than
the renal clearance threshold, which can extravasate from
leaky tumour vasculature. However, recent research has
looked into ways to broaden the traditional concept of
EPR-based tumour targeting [83]. The mechanism by
which NPs enter solid tumours was more complex than
previously thought, and immune cells in the tumour
microenvironment play critical roles in the accumulation,
retention, and tumoral distribution of nanomedicines
(83, 84].

The fact that the EPR effect is a blood vessel phenom-
enon that heavily depends on tumour blood flow is a cru-
cial issue that needs to be addressed [85]. Many clinical
cancers, particularly advanced late-stage and refractor
cancers, are poor in tumour blood flow due to high coag-
ulation activity and thrombi formation, resulting in an
unsatisfactory EPR effect. The EPR impact is significantly
broader in small animal xenograft tumour models, which
are routinely employed in preclinical settings to explore
cancer nanomedicines, than in tumours developing in
humans. As a result, assessing the degree of EPR effect
in tumours using non-invasive imaging is a promising
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strategy for stratifying patients for cancer nanomedicine
treatment.

The EPR effect is a dynamic phenomenon that can
empowered by altering vascular mediators. Numerous
investigated methods successfully enhanced the EPR
effect-based nanomedicine therapy, such as the alteration
of the tumour vasculature or focusing on tumour stroma
and extracellular matrix [85]. Active targeting added to
EPR-based passive targeting (Fig. 4) can improve nano-
medicine tumour accumulation and retention. Antibod-
ies, antibody fragments (e.g., nanobodies), and peptides
are examples of tumour-targeting ligands. Even if the
nanocarrier is designed for active targeting, passive accu-
mulation happens first, followed by target-specific bind-
ing as a supplementary technique. The possibility of
enhanced targeting leads to increased treatment efficacy
and fewer adverse effects caused by drug accumulation in
healthy tissues. As a result, actively targeted nanothera-
peutics have generated considerable interest as a possible
method for addressing unmet medical needs [15].

Passive and Active Tumor Trageting

Cancer cell
by
Normal cell —= — AR

Targeting
moiety

Nanoparticle

TEN™
Polymeric Lipid-based

Inorganic Gas-loaded
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Tumour-targeted image-guided surgery develop-
ment has advanced dramatically, initiating a new field
of research centred on real-time intraoperative visuali-
zation of cellular processes to improve cancer surgery
precision. Imaging-agents can be made to precisely
bind to or interact with a target protein associated with
a cancer hallmark using several methods. It is possible
to identify various stages in the development and clini-
cal translation of new tumour-targeted imaging agents
(Fig. 5). First, a viable target is selected based on clini-
cal need. Following that, a targeting agent is created.
Finally, the signalling moiety is chosen based on the
imaging modality. Following validation, the imaging
agent (which consists of the targeted agent and the sig-
nalling moiety) is tested in early-stage clinical studies.

NPs, which can be categorized into four classes, com-
prise a large target agent category (Fig. 6). In the con-
text of image-guided surgery, the four primary types
of NP-based targeting agents are inorganic, polymeric,
lipid-based, and ultrasound.

EPR is a blood vessel phenomenon

Linker chain J

Contrast agent

EPR impact is significantly greater in small
animal xenograft tumor models

Cancer cell
marker Many clinical cancers are poor in

tumor blood flow

Assessing EPR using imaging in cancer
nanomedicine is a promising strategy

Immune cells in the tumor
microenvironment play an important role in
the EPR effect

-

Altering tumor vasculature or focusing on
tumor stroma and extracellular matrix can

G EPR effect
° Active targeting

enhance EPR effect

Active targeting can be used in addition to
EPR-based passive targeting

Fig. 4 The enhanced permeability and retention (EPR) effect is a critical element in the design of cancer nanomedicine and is an essential part
of drug delivery that targets solid tumours. Active targeting added to passive targeting based on EPR can improve tumour accumulation and
retention. Passive accumulation occurs initially (1), with target-specific binding arising as a synergic strategy (2), even if the nanocarrier is intended

for active targeting
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Fig. 5 Different stages in the development of novel tumour-targeted imaging agents. (1) Many approaches might be applied to highlight the
tissue of interest. (2) The appropriate target selection should be combined with identifying a targeting agent/binder to interact with the target. In
general, downsizing the binder shortened the half-life of the imaging agent in circulation, reducing background signal intensity. Synthetic binders,
such as small molecules and nanoparticles, are appealing for active targeting because they may be modified using various chemical techniques. (3)

The signal moiety generates the signal for imaging applications

Nanoparticles for image-guided surgery in the clinic
Although the development of nanotechnology for image-
guided surgery is now mainly in the preclinical stage,
there are some intriguing clinical applications in the
pipeline (Table 1). In particular, five imaging NP-based
formulations were tested in different clinical settings.

A carbon NP suspension injection contains nanosized
carbon particles with an average diameter of 150 nm [86].
When nanocarbon particles are injected into the tissues
around the tumour, macrophages quickly engulf them.
After entering lymphatic vessels, the particles accumulate
in the lymph nodes and stain them black. This approach
has made the vital staining of lymph nodes that drain
tumours easier. Four documented clinical studies investi-
gated patients with gastric cancer, colorectal cancer, and
papillary thyroid carcinoma. Long-term gastric cancer
survival depends on complete perigastric lymphadenec-
tomy. It is essential for precise staging of malignancies,
selecting the subsequent treatment plan, and improving
prognosis [87]. Therefore, developing technologies that

can make performing this procedure safer and increase
the precision of lymph node dissection is a topic of sig-
nificant interest. Carbon NPs outperformed methylene
blue concerning lymph node staining and positive rate
for SLN metastatic disease in thyroid cancer surgery [88].
Other dyes, such as methylene blue and indocyanine
green, have been employed to enhance the results of thy-
roid surgery. The main disadvantage of methylene blue is
that it stains the lymph nodes and the parathyroid glands
[89], causing intraoperative complications.

A recent Phase I clinical trial involved 10 patients
for laparoscopic radical prostatectomy and bilateral
pelvic LN dissection or salvage lymph node dissection
(NCT04167969). Patients received PSMA-targeting NP
injections up to 48 hours before surgery. Chen et al.
describe the study’s findings of ultrasmall (sub-8 nm
diameter) PSMA-targeting core-shell silica NPs (Cor-
nell prime dots) for dual-modality imaging in pre-
operative (PET) and/or intraoperative (optical) settings.
The PSMA-targeting platform prevents undesirable
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Nanoparticles for image-guided surgery
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Fig. 6 The four main categories of targeting agents based on NPs used in image-guided surgery are polymeric, inorganic, lipid-based, and NPs for
the ultrasound. Some NP-based formulations have already been tested in different clinical settings

accumulations in the salivary glands, kidneys, and retic-
uloendothelial system while demonstrating bulk renal
clearance [90].

Zanoni and colleagues created and tested the ultras-
mall integrin-targeting, ultrabright, fluorescent core-
shell silica NPs (NCT02106598) [91]. The enhanced
brightness and photostability of fluorescent NPs over
free dyes are due to the encapsulation of Cy5.5 within
the silica core matrix. Furthermore, because av integ-
rins are known to be overexpressed on the surface of
neoangiogenic endothelial and melanoma cells, the par-
ticle surface was functionalized with multiple integrin-
targeting peptides (i.e., cyclic arginine-glycine-aspartic
acid-tyrosine [cRGD]) via polyethylene glycol chains
(PEGS) to create cRGDY-PEG-Cy5.5-NPs. As cRGDY-
PEG-Cy5.5-NPs were used in procedures where SLNs
could be detected and removed, the length of the sur-
gery was estimated to be reduced by 30-50% when
compared to technetium Tc 99m sulfur colloid alone.
This range represented differences in procedure type,
node depth from the skin’s surface, the need for nerve

dissection, and other technical aspects such as equip-
ment setup.

A Phase I study (Netherlands National Trial Register
#7085) explored ONM-100, a molecular imaging probe
based on an ultra-pH sensitive amphiphilic polymer
coupled with indocyanine green. This tool quickly and
irreversibly dissociates to emit fluorescence in the acidic
extracellular tumour microenvironment via macromo-
lecular cooperativity at the nanoscale [92]. ONM-100 has
also been studied in two more Phase II clinical trials in
patients undergoing surgery for peritoneal carcinoma-
tosis (NCT04950166), lung cancer (NCT05048082) and
various solid tumours (NCT03735680).

The LUMO15 probe, which has a polymer therapeu-
tic chemical configuration, warrants a separate consid-
eration when examining nanotechnology approaches
for tumour-targeted imaging. Polymer therapeutics—a
broad category that includes polymeric drugs, polymer-
drug conjugates, polymer-protein conjugates, polymeric
micelles, and polymeric non-viral vectors for gene deliv-
ery—are nano-sized medicines [93]. The rationale behind
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this chemical strategy relies on the ability of polymer
conjugation to change a low molecular weight drug’s bio-
distribution. The increased drug molecular weight results
in pharmacokinetics substantial alteration at whole-body
and cellular levels, making the covalent attachment of
the drug to a polymeric carrier particularly appealing.
LUMO15 is a PEGylated protease-activated fluorescent
imaging probe [94]. LUMO015 comprises 20-kD polyeth-
ylene glycol (PEG) and a Cy5 fluorophore connected to
a commercially available fluorescence quencher molecule
(QSY21) through a GGRK peptide. Although LUMO15 is
optically inactive, cathepsins K, L, and S (and, to a lesser
extent, B) cleave it to release the quencher, which liber-
ates the optically active fragment. Co-clinical investi-
gations indicate that both biodistribution and enzyme
activity is critical for the tumour selectivity of this pro-
tease-triggered imaging probe [94]. The tumour/normal
ratio is not entirely explained by protease activation;
instead, tumour-selective accumulation via the EPR effect
is established, supporting the function of PEGylation.

Polymeric nanoparticles

Polymeric NPs represent nanocarriers unique in terms
of nanometric size range from 1 to 1000 nm, high sur-
face area-to-volume ratio, and suitable characteristics for
drug release and tumour targeting. The “polymeric NPs”
label encompasses nanocapsules as well as nanospheres
differing in morphological structure mostly, and the first
model can be loaded with drugs or molecules adsorbed
on the surface of the polymeric core, whereas in the sec-
ond the molecules are entrapped in the polymeric net-
work of NPs [95]. In NP formulations, the polymer used
can be either of natural or synthetic origin such as satu-
rated poly(-hydroxy esters) [e.g. poly (lactic acid) (PLA),
poly (glycolic acid) (PGA), and poly (lactic-co-glycolide)
(PLGA)] approved by the FDA. These kinds of polymers
are characterized by a high safety profile and biocompati-
bility, with low levels of immunogenicity and toxicity, and
they are completely biodegradable [96]. These properties
make polymeric NPs well-suited to promote the accumu-
lation of drugs in the target tissue and improve the treat-
ment of several diseases [97—-99].

Polymeric NPs are considered soft NPs that can hold a
various cargos, such as fluorophores, therapeutic agents,
and inorganic NPs to produce hybrid NPs. Because of the
plasticity of soft NPs, many fluorescent compounds can
be enclosed, with the benefit that some of them, particu-
larly insoluble ones, gain better stability [100]. The NPs
can be surface-coated with targeted ligands such as anti-
bodies or antibody fragments, small molecules, peptides,
or aptamers. The conjugation of the NPs with a ligand
enables active recruitment of the NP, cooperatively with
the passive targeting based on the EPR effect. The ligand
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ensures high NP specificity by lowering the percentage of
positive surgical margins during tumour resection sur-
geries [101].

Because of their optical characteristics, polymeric NPs
have been used to enhance in vitro and in vivo bioimag-
ing. Semiconducting polymeric NPs are among the most
technically advanced optical imaging probes because
they exhibit excellent photostability and brightness, a
large Stokes shift, and tunable optical characteristics
[102]. This new formulation enabled us to overcome
the difficulties associated with the free dye, such as its
hydrophobicity, photobleaching and aggregation-caused
quenching (ACQ) manifestations, particularly in vivo.
Remarkably, recent research has shown that using bulky
hydrophobic counterions in NPs improves their bioimag-
ing performance by reducing dye leakage and ACQ [103].

Nanoformulations were created by combining hya-
luronic acid (HA) with an aminopropyl-1-pyrenebu-
tanamide (PBA), a hydrophobic ligand that induces NP
self-assembly [104], to enhance the ICG’s limited tumour
retention and optical stability while also employing non-
toxic and biodegradable polymers. The ICG molecules
were physically entrapped in the hydrophobic pockets
of HA-NPs and are known as NanoICG. NanoICG NPs
were reported to be non-toxic and biodegradable. Their
outstanding nano-morphology increases circulation
time, facilitates delivery to tumours, ensures better cel-
lular internalization, and improves intra-operative con-
trast and surgical advantages in solid tumours such as
pancreas, breast, liver, and prostate. Preclinical investiga-
tions of prostate cancer xenograft models yielded prom-
ising results, and intravenously administered NanoICG
improved tumour signal-to-noise ratio, at 24 h, by 2.9-
fold compared to free ICG [104-106].

Recent fluorescence-imaging techniques employes dyes
that absorb near-infrared-II (NIR-II) light (1000-1700
nm) with remarkable penetration depth, less photodam-
age, and low autofluorescence within the extended spec-
tral region [102, 107]. The use of NIR-II imaging-guided
surgery has the potential to improve tumour margin esti-
mation and precision. However, many NIR-II probes have
poor water solubility and slower excretion kinetics. Some
formulations use PEGylation, leading to self-assembly.
The HISSNPs represent an example of polymeric NPs
without PEGylation in which the IR-1061, a commercial
NIR-II dye, has been conjugated with hyaluronic acid
chains [107]. HINSSNP is an activatable NIR-II probe
and employs a “dual lock-and-key” mechanism simulta-
neously activated by dual-pathological tumour microen-
vironment (TME) parameters [107, 108].

While up-conversion NPs have been studied for
decades, the down-conversion luminescence of rare-
earth-based probes in the second near-infrared (NIR-II,
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1,000-1,700 nm) window for in vivo biological imaging
has only recently been discovered [109]. Among them,
erbium-based rare-earth NPs (ERNPs) represent NIR-II
probes with down-conversion luminescence in the 1500—
1700 nm range of the NIR-IIb window. In a recent study,
the administration of ERNPs-TRC105 probes to mice
with 4T1 murine breast tumours enabled high spatial
resolution during surgery, determining tumour resection
margins unambiguously. The NIR-IIb imaging detected
residual tumour lesions composed of a small number of
cancer cells, avoiding excessive resection of non-tumour
tissue and making this NIR-IIb imaging-guided surgery
highly accurate up to the few-cell level [110].

The TME’s unique properties were evaluated to
develop novel tumour-targeting NP formulations. The
TME becomes more acidic and hypoxic and has an over-
expression of proteolytic enzymes due to the high energy
demand needed to support the development and survival
of cancer cells. The TME’s distinctive hallmarks derive
from a change in the cancer cell metabolism from oxida-
tive phosphorylation to aerobic glycolysis, known as the
Warburg effect, that lowers the pH to values below 7. The
pH-activatable indocyanine green-encoded nanosen-
sors (PINS) are pH-sensitive NPs made of [poly (ethylene
glycol)-b-poly (ethyl propyl aminoethyl methacrylate)]
(EPA) copolymers with several repeated EPA monomers
and ICG dye units. When the PINS nanosensors reach
TME with pH values below 7.0, they are activated, disas-
sociating themselves into individual protonated unimers,
amplifying tumour signals and allowing deeper fluores-
cence penetration in tissues [111]. At pH 7.0 the PINS
remain intact NPs with no fluorescence signals. Preclini-
cal investigations revealed that PINS enables superior
contrast compared to a panel of NIR imaging probes
frequently used and is effective in orthotopic and meta-
static models. Zhao and colleagues demonstrated that
the PINS use allows for 100% sensitivity and 100% speci-
ficity, ensuring efficient debulking surgery and complete
survival in models of head and neck cancer and small
occult breast nodules. Due to the promising preclinical
results, the PINS nanosensors (referred to as Pegsitacia-
nine, or ONM-100) were administered in patients with
solid tumours such as breast cancer, head and neck squa-
mous cell carcinoma, colorectal cancer, prostate cancer,
ovarian cancer, urothelial carcinoma, and non-small cell
lung cancer undergoing routine surgery, and the clinical
trial (NCT03735680) completed phase 2 on February 1,
2022 (Table 1).

Inorganic nanoparticles

Gold, metal oxide (Fe304, WO3, W02.9), semiconduc-
tor nanocrystals (quantum dots, QDs), and silica NPs are
among the inorganic NPs investigated for image-guided
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surgery. Inorganic NPs offer several advantageous char-
acteristics, including ease of manufacturing, variable size,
heat or reactive oxygen species (ROS) generation, x-ray
absorption, and energy transfer capabilities [112].

Because of their advantageous properties, such as
biocompatibility and ease of modification, gold NPs
(AuNPs) are among the most commonly employed inor-
ganic NPs in many fields [112, 113]. Their surfaces can
be readily modified, with various agents such as poly-
mers, drugs, contrast agents, antibodies, and proteins.
AuNPs have tunable surface plasmon resonance due to
their size, shape, and structure. As a result, they have
significant fluorescence absorption caused by resonance
energy transfer (FRET) and nonradiative energy dissipa-
tion capabilities that can create heat energy through elec-
tron excitation and relaxation. For increased stability, the
surface of AuNPs has been modified using biocompatible
materials such as polyethylene glycols (PEGs) and glycol
chitosan (GC).

Several therapeutic AuNPs have entered clinical studies
[114]. These nanoconstructs have specific critical prop-
erties that make clinical translation easier. Unlike other
multifunctional NPs described in the literature, clinically
investigated AuNPs have basic compositions, and in vivo
behaviour is easier to predict and manufacturing easier
to scale up [114]. On the other hand, the concerns about
the long-term accumulation of gold in the organism
require that the advantages of AuNP-based treatments
clearly exceed the potential risks. There are currently
no clinical trials using AuNPs in image-guided surgery,
but numerous preclinical investigations in this field. In
a recent study [115], adding small biocompatible ligands
to the gold core, such as zwitterionic or pegylated moie-
ties, enhanced the optical characteristics of the AuNPs.
Besides, it prolonged their plasma half-life while pre-
serving renal clearance. Functionalized AuNPs indicated
a tumour-to-healthy tissue ratio greater than 1.5 within
the first hour of administration, allowing for rapid and
extended tumour visualization. In another study, a multi-
functionalized PEG-AuNP-Cy5.5-anti-EGFR antibody
was employed, to accurately guide endoscopic near-infra-
red photothermal treatment [116]. This study proved the
efficiency of multifunctional AuNPs in the theranostics of
upper GI cancer and proposed a novel and viable design
for real-time in vivo application via endoscopy. The anti-
EGEFR antibody was the ligand of choice on AuNPs since
EGER is overexpressed in multiple cancers. Although
competition binding with other EFGR-expressing tissues
is predicted, directing functionalized AuNPs to tumour
areas utilizing a synergistic mix of active targeting (anti-
body-driven) and passive accumulation (EPR effect)
increased the number of AuNPs within the tumour
lesion. A recent preclinical investigation showed that the
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AuNPs functionalization with the cmHsp70.1 antibody, is
a promising approach for tumour targeting in vivo [117].
The concentration of the probe within tumours was ade-
quate for spectral-CT imaging, allowing for 3D recon-
structions and quantifications.

Superparamagnetic iron oxide NPs (SPIONs) have par-
ticular relevance because they have been approved for
human use by the FDA and utilized in clinics. SPIONs
are a promising probe for MRI of brain tumours because
they function as a negative-contrast agent, increasing
image contrast by decreasing the T2 MRI signal [118].
Relaxivity may be improved further by adjusting the core
size and coating. SPIONs ease of modification allows
surface modification with antibodies, peptides, and poly-
mers to give long-circulation and target-specific imaging.
Currently, clinical investigations with SPIONs primar-
ily include the development of hyperthermia. Although
recent developments in preclinical research show prom-
ise for the future, clinical applications are still developing
gradually [118]. Among the studies reporting promising
applications in image-guided surgery, Winter and col-
leagues showed that after intraprostatic SPION injec-
tion, magnetic resonance scintigraphy offers a roadmap
for intraoperative magnetometer-guided SLN identifica-
tion and can be used to describe a valid lymphadenec-
tomy template [119]. In a recent study, ICG was added
to the SPIONS, allowing the method to be refined using
integrated fluorescence imaging in a porcine model
[120]. A unique imaging and navigation modality for the
intraoperative detection of SPION tracers was success-
fully created and assessed. It might broaden the options
for guiding during magnetic SLN operations for several
oncological reasons (e.g., penile, breast, melanoma, head-
and-neck, prostate, and vulva cancer).

QDs are semiconductor nanocrystals with diameters
ranging from 2 to 10 nm, high quantum yields, photo-
stability, and tunable emission wavelengths. Because of
their narrow emission peak and absorption spectra rang-
ing from UV to visible wavelengths, multiple QDs may be
triggered simultaneously under UV stimulation, enabling
multicolour fluorescence imaging. Furthermore, QDs
can outperform single-molecule dyes in photoactivation
and ROS generation because of their high photostabil-
ity. Traditional QDs, on the other hand, are composed of
heavy metal components such as Cd2 + and Pb2 +. The
cytotoxicity of the heavy metal ions produced and their
potential risk in biological systems restrict the theranos-
tic applications of QDs.

A novel generation of near-infrared fluorescent core-
shell silica-based NPs (Cornell prime dots) tuned to
hydrodynamic diameters of 3.3 and 6.0 nm was suc-
cessfully created, with improved photophysical proper-
ties over the parent dye [121]. A neutral organic coating
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reduced serum protein adsorption and promoted effec-
tive urine elimination. Molecularly targeted Cornell
prime dots entered clinical trials, as reported in Table 1.

Among the most significant examples of inorganic NPs
at the preclinical stage is a Gd-based degradable hollow
virus-like NP made using a hard template of mesoporous
SiO2 with loading ICG [122]. The NP was subsequently
surface-modified with cyclic RGD pentapeptide, thus
combining multimodal imaging with tumour-targeting
strategies. The nanoprobe significantly increased tumour
retention, target selectivity, and water stability of ICG. It
also produced remarkable magnetic resonance and sec-
ond near-infrared (NIR-II) window multimodal imaging
in vivo. In another study, biocompatible tantalum oxide/
silica core/shell NPs with multifunctional imaging and
adhesion properties have been developed. These charac-
teristics allowed this formulation to be effectively used
as an immobilized marker for image-guided procedures
and as a hemostatic adhesive for minimally invasive
procedures.

Lipid nanoparticles
Studies involving lipid NPs in image-guided surgery gave
encouraging results, albeit still in the preclinical stage.
Liposomal formulations of ICG provide the ideal prop-
erties for imaging lymphatic function: (i) they improved
optical properties and long-term fluorescence stability
in solution; (ii) following intradermal injection, numer-
ous draining lymph nodes can be seen clearly, allowing
the dynamics of lymphatic flow to be measured [123].
A hereditary model of lymphatic malfunction and a
B16 melanoma tumour model of lymphatic metasta-
sis was used to confirm further quantitative imaging of
lymphatic function using the liposomal formulation of
ICG. A subsequent study attempted to re-engineer the
PEGylated liposomes intended for systemic blood circu-
lation and tumour imaging [124]. By utilizing the pho-
toacoustic effect to overcome the limitations of pure
optical approaches, photoacoustic tomography, which
has a high spatial resolution and deep penetration (up to
7 ¢cm), provides a new potential in image-guided surgery.
Based on the effectiveness of clinically-applied PEGylated
liposomes, encapsulating indocyanine green as an optoa-
coustic agent was demonstrated [124]. ICG-loaded gold
nanorod-liposome core-shell NPs were developed to
integrate photoacoustically and fluorescence imaging
strategies [125] in another multimodal approach. The
tumour detection effectiveness and surgery guidance
were demonstrated in orthotopic liver cancer mouse
models.

Non-lamellar lyotropic liquid crystalline nanocarriers
called exosomes and cubosomes are lipid-based NPs that
can be specifically engineered to meet precise therapeutic
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needs in nanomedicine [126]. A growing number of stud-
ies have drawn attention to intriguing properties that
make them good candidates for usage as nanocarriers for
therapeutically active chemicals or imaging probes [37,
127-129]. However, their potential as nanomedicines are
questioned due to essential aspects such as pharmacoki-
netics, hemocompatibility, toxicity, and transport proper-
ties that have not been thoroughly characterized.

Nanosized ultrasound contrast agents

Ultrasound contrast agents are generally classified into
three types based on the composition of their cores: gas,
solid, and liquid [130]. Ultrasound contrast agents with a
gas core cause substantial acoustic impedance variation
within tissue interfaces and can create the highest acous-
tic intensity among the other classes. Several micro-
bubble ultrasound contrast agents, including Definity,
Echovist, and Sonovue, have received clinical approval.
It is worth mentioning that there is a significant link
between particle size and acoustic echo reflectivity. On
the other hand, nano-bubble gas-core ultrasound con-
trast agents can escape from the RES, enter the tumour
tissue through the endothelium gap, and accumulate at
the target site. As a complement to microbubbles, nano-
sized ultrasound contrast agents are developed as con-
trast enhancers for ultrasound molecular imaging with
the capacity to permeate vasculature for extravascular
imaging [131]. A significant accumulation of nanosized
ultrasound contrast agents in an investigated area can
improve the signal of target regions while increasing per-
sistence time, particularly in malignancies with the EPR
effect [132] when compared to microbubbles. Nano-
bubbles have a gas core with a coating layer that includes
lipid, protein, and polymers [e.g., poly-lactic-co-glycolic
acid (PLGA), poly-lactic acid (PLA), and polyethylene
glycol (PEG)] to optimize the structure’s stability. Fur-
thermore, numerous tactics have been implemented to
maximize the nano-bubbles stabilities, including heavy
gas core and conjugation, with a targeting agent [133,
134].

Because of their low impedance, liquid-core ultrasound
contrast agents provide poor contrast enhancement due
to low acoustic dispersion inside the arteries. In this
regard, liquid-based compounds such as perfluorocarbon
(PFC), including perfluoro-pentane (PFP), perfluorooctyl
bromide (PFOB), and perfluorohexane (PFH), have cre-
ated a remarkable echo in preclinical studies when they
concentrate in the target tissue/cells or change phase
from liquid to gas by applying thermal energy [135].
Nanodroplets are ultrasound contrast agents that have
a liquid core with a low boiling point and are enclosed
in an organic shell. They can change from a liquid to
a gas phase when heated. Theyre also referred to as
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phase-change droplets [136]. Liquid fluorocarbons can
become micron-sized bubbles under ultrasonic irradia-
tion or other energy delivery, which improves their effec-
tiveness in ultrasound imaging and treatment.

A noninvasive thermal procedure called high-intensity
focused ultrasound (HIFU) has recently shown much
promise for treating tumours. Applying targeted ultra-
sonic waves to the tumour tissue so that the tissue heats
up and becomes necrotic is the physical principle behind
this interventional method. In 1942, Lynn et al. intro-
duced the idea of HIFU-assisted noninvasive surgery
[137]. Nano-biotechnology has now been introduced
into HIFU cancer surgery research. PLGA allowed PEP
encapsulation to produce a nanoemulsion in a recent
preclinical investigation. Phase-shift PFP nanoemulsions
could enhance pulsed HIFU ablation in the subcutaneous
xenograft rabbit model [138].

Because of their distinct properties, solid-core nano-
sized ultrasound contrast agents have been developed
for ultrasound contrast enhancement. These properties
include increased stability and suitable acoustic imped-
ance variations between solid-core materials and soft
tissue. The solid-core nanosized ultrasound contrast
agents provide a more robust reflectivity output, a better
signal-to-noise ratio, and increased contrast enhance-
ment. These NPs have strong, intravascular and within-
soft tissue echo intensities [139]. As a clinical application
example, Fand and colleagues utilized surface-modified
Fe304 magnetic NPs to create magnetic lipid ultrasonic
microbubbles (MLU-MBs) using the mechanical oscil-
lation method with polyethylene terephthalate (PET)
[140]. MLU-MBs could improve the accuracy of ultra-
sound localization-guided breast-conserving surgery for
tumour removal in a cohort of 92 patients undergoing
breast-conserving surgery for breast cancer.

The following are the primary issues in studying nano-
sized ultrasonic contrast agents. The decline in signal
strength, the decrease in the inner diameter of contrast
agents, and the loss in backscattering ability are all signif-
icant issues to be addressed in contrast agents’ nanosized
ultrasound research. It is challenging to precisely man-
age the size of nanosized ultrasound contrast agents that
cross the vasculature and scatter strongly. Furthermore,
their shell and core will affect the nanosized ultrasound
contrast agents’ stability and residence time. Thus, future
studies will focus on how to lower the size of nanosized
ultrasound contrast agents while increasing the signal
[131].

Challenges and future perspectives

There is a broad range of sensitivity, spatial resolution,
and accessibility in the imaging technologies discussed.
Image-guided surgery enables the differentiation of
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pathology from nearby normal tissue, which improves
resection accuracy [3, 10, 23]. Moreover, the intraopera-
tive imaging procedures can be developed to enable lym-
phatic mapping of tumour-draining lymph nodes and
target the analysis of regional nodes at risk for metas-
tases [27, 59, 91]. However, the true potential of image-
guided surgery may lie in contexts where radical excision
of microscopic or diffuse infiltrative lesions is necessary
with acceptable safety margins. The surgical process of
removing an incurable tumour is known as “debulking”
or “cytoreduction” It is further classified as complete or
optimal, with the “complete” indicating the absence of
any visible residual tumour and the “optimal” describing
a maximum residual tumour size of 10 mm. These indica-
tions present the greatest challenges for the use of image
guidance because they call for the development of tracers
with high affinity and specificity for cancer tissue as well
as the generation of target-to-background contrast that
allows accurate detection with the chosen instrumenta-
tion [11].

Typically, radiotracers are superior to optical tracers
because they provide stronger signals with less interfer-
ence. For applications requiring minimal signal attenu-
ation and scattering (i.e., a high penetration depth),
X-ray and MRI are the optimal modalities, followed by
radiotracer-based detection, ultrasound, and then opti-
cal tracers. Thus, the applications of optical imaging are
still limited to superficial examinations, where the effects
of light attenuation from both the emitted signal and the
background light can be minimised. In addition to high
sensitivity, detecting small lesions requires an imaging
modality with high spatial resolution. When compared to
other methods, optical technologies outperform in this
area [14]. Moreover, the availability of chemical dyes with
a range of spectral properties makes multicolor imag-
ing approaches possible with fluorescence imaging [36].
Given the complementing properties of the various imag-
ing modalities, we believe that hybrid techniques based
on the integration of multiple methodologies will provide
the best outcomes in the future [10, 16].

Improved knowledge of molecular pathology has
revealed an extensive range of options for image-guided
surgery. The identification of unique cancer cell markers
not only drives the creation of novel precision medicine
trials but also paves the way for novel molecular imaging
strategies. Therapeutic antibody labeling, for instance,
has previously been established in ongoing surgical
studies as a means of translating therapeutic biologicals
into imaging agents [13]. Certainly, in this context, the
future challenges will lie in identifying relevant imaging
biomarkers.

NPs have an important impact on cancer imaging due
to their ability to facilitate the generation of multimodal
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contrast agents and surface functionalization for pre-
cise molecular recognition [15, 16, 101, 141]. However,
two crucial factors should be addressed when analysing
the gap between the numerous preclinical studies and
the small number of clinical studies. Is the configura-
tion of the NPs chosen to maximise their accumulation
in the tumour? Second, how can we conduct an accurate
screening to determine which patients are candidates for
nanomedicine? Both factors are critical in determining
whether a nanotherapeutic will be effective.

Due to the EPR effect, the leaky vasculature of tumors
promotes the passive diffusion of NPs [82, 142]. Beyond
the EPR effect, a number of strategies are under investi-
gation for accumulating NPs in the desired lesions [15,
83]. At present, important goals have been achieved
in preclinical studies on actively targeted NPs, with
intriguing results arriving from the clinical trial of the
integrin-targeting Cornell prime dots applied in real-
time intraoperative optical imaging guidance [91]. In
addition, targeting the tumor microenvironment (TME)
is a promising new approach in clinical testing. ONM-
100 is an NP-based fluorescence imaging agent that
reacts to pH changes caused by cancer acidosis; recent
research showed that it was well tolerated and that four
solid tumor types could be detected in- and ex vivo in
thirty patients [92]. Undoubtedly, additional preclinical
research and clinical trials will be required to improve
nano-based imaging contrast agent approval and clini-
cal translation [141]. NPs have unique properties that
offer enhanced imaging sensitivity and specificity, which
could have a significant impact on healthcare and patient
outcomes.

Conclusions

Over time, technologies will almost certainly transform
the surgical approach to cancer. Indeed, technological
advancement in the field of molecular imaging has been
remarkable and promising. However, many steps must be
taken to progress from proof-of-concept studies to rou-
tine clinical use. In particular, we must ensure that clini-
cal requirements keep pace with tracer chemistry, device
physics, and the increasing digitization of the operating
room. Reaching consensus through well-defined efficacy
studies will help to standardize all aspects of the imag-
ing cascade. Many trials are currently underway, and the
results will reveal the actual benefits for patients, espe-
cially in terms of survival. Unfortunately, the time frame
will not be brief. Besides, the costs of technology must be
proportional to the benefits. Technology diffusion may
be challenging in non-hyper-specialized centres, but cen-
tralization might overcome this issue. Which scenario
will emerge in the future: will technology drive clinic evo-
lution, or clinics drive technological advancement?
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