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Abstract 

Background Idiopathic pulmonary fibrosis (IPF) is a respiratory disorder of obscure etiology and limited treatment 
options, possibly linked to dysregulation in lipid metabolism. While several observational studies suggest that lipid-
lowering agents may decrease the risk of IPF, the evidence is inconsistent. The present Mendelian randomization (MR) 
study aims to determine the association between circulating lipid traits and IPF and to assess the potential influence 
of lipid-modifying medications for IPF.

Methods Summary statistics of 5 lipid traits (high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, 
triglyceride, apolipoprotein A, and apolipoprotein B) and IPF were sourced from the UK Biobank and FinnGen Project 
Round 10. The study’s focus on lipid-regulatory genes encompassed PCSK9, NPC1L1, ABCG5, ABCG8, HMGCR, APOB, 
LDLR, CETP, ANGPTL3, APOC3, LPL, and PPARA. The primary effect estimates were determined using the inverse-
variance-weighted method, with additional analyses employing the contamination mixture method, robust adjusted 
profile score, the weighted median, weighted mode methods, and MR-Egger. Summary-data-based Mendelian ran-
domization (SMR) was used to confirm significant lipid-modifying drug targets, leveraging data on expressed quan-
titative trait loci in relevant tissues. Sensitivity analyses included assessments of heterogeneity, horizontal pleiotropy, 
and leave-one-out methods.

Results There was no significant effect of blood lipid traits on IPF risk (all P＞0.05). Drug-target MR analysis indicated 
that genetic mimicry for inhibitor of NPC1L1, PCSK9, ABCG5, ABCG8, and APOC3 were associated with increased IPF 
risks, with odds ratios (ORs) and 95% confidence intervals (CIs) as follows: 2.74 (1.05–7.12, P = 0.039), 1.36 (1.02–1.82, 
P = 0.037), 1.66 (1.12–2.45, P = 0.011), 1.68 (1.14–2.48, P = 0.009), and 1.42 (1.20–1.67, P = 3.17×10-5), respectively. The 
SMR method identified a significant association between PCSK9 gene expression in whole blood and reduced IPF risk 
(OR = 0.71, 95% CI: 0.50–0.99, P = 0.043). Sensitivity analyses showed no evidence of bias.

Conclusions Serum lipid traits did not significantly affect the risk of idiopathic pulmonary fibrosis. Drug targets 
MR studies examining 12 lipid-modifying drugs indicated that PCSK9 inhibitors could dramatically increase IPF risk, 
a mechanism that may differ from their lipid-lowering actions and thus warrants further investigation.
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Introduction
Idiopathic pulmonary fibrosis (IPF) is a progressive and 
chronic disorder of unknown origin, affecting an esti-
mated 3 million individuals globally [1]. The condition 
is characterized by a high mortality rate, with a median 
survival time of approximately 3.8  years following diag-
nosis [2, 3]. The pathophysiology of IPF is highly intri-
cate, encompassing alterations in genetic factors, cellular 
signaling, apoptosis, autophagy, and additional processes 
[1]. This multifaceted nature significantly complicates the 
development of effective therapeutic strategies for IPF. 
Currently, nintedanib and pirfenidone are the only medi-
cations approved by the Food and Drug Administration 
for IPF treatment [4, 5]. Although these treatments can 
mitigate symptoms, they do not address the underlying 
disease, and lung transplantation may become necessary 
for patients to extend their lifespan [6, 7].

Current research indicates that metabolic changes 
play a pivotal role in the fibrosis process [8]. As a lipid-
rich organ, the lung’s lipid metabolism and its regulation 
are essential for normal lung physiology [9, 10]. Tran-
scriptomic analyses of various pulmonary cells, such as 
alveolar epithelial type II cells, alveolar macrophages, 
and fibroblasts, consistently reveal disruptions in lipid 
metabolism during fibrosis [11]. Studies have demon-
strated that diminished expression of genes related to 
lipid, cholesterol, and steroid metabolism can reduce sur-
factant production in alveolar epithelial type II cells [12]. 
Lipid accumulation in alveolar macrophages is linked to 
elevated CD36 expression, leading to increased absorp-
tion of fatty acids. This imbalance in lipid metabolism 
can precipitate a fibrotic transformation in macrophages, 
culminating in augmented extracellular matrix (ECM) 
synthesis. Concurrently, fibroblasts display diminished 
activity of PPAR-γ, which can drive their metamorphosis 
from lipid-producing cells into myofibroblast-like entities 
[3]. Consequently, the disruption of lipid metabolism is 
recognized as a key metabolic shift in the pathogenesis of 
fibrosis [3, 13].

Given the strong connection between lipid metabo-
lism disorders and IPF, there is interest in whether lipid-
lowering medications have a protective impact on IPF. 
A cohort study within the Korean population found that 
the utilization of statins was linked to lower IPF risk [14]. 
Among individuals taking statins, the incidence rate of 
IPF was 15.6 cases per 100,000 person-years, which was 
less than the rate of 19.3 cases per 100,000 person-years 
observed in those not taking [14]. Another Phase III 

randomized clinical trial involving 624 IPF participants 
indicated that statins could decrease the mortality rate 
and the frequency of hospitalizations due to acute exac-
erbations [15]. Nonetheless, there is limited randomized 
controlled trials (RCTs), and some studies present con-
flicting results. An exploratory analysis of 1,450 IPF 
patients participating in a Phase III trial found no asso-
ciation between statin use and IPF progression [16]. Sim-
ilarly, a review of a health management database, which 
included 6,665 individuals with possible or likely intersti-
tial lung disease (ILD) and 26,660 controls, failed to find 
a connection between statin use and ILD development 
[17]. Moreover, the impact of novel lipid-lowering agents, 
such as PCSK9 inhibitors and NPC1L1 inhibitors, on IPF 
remains to be elucidated.

Mendelian randomization (MR), a recognized approach, 
is frequently utilized to explore the potential links between 
genetically influenced traits, therapeutic drug targets, and 
disease outcomes [18, 19]. Biological theory posits that 
genetic variations arise through random genetic drift and 
mutation, establishing a foundation for MR approach. 
The fundamental assumption is that these genetic vari-
ants influence phenotypic traits in a manner that is con-
sistent and not significantly modulated by environmental 
influences. This concept signifies that the observed causal 
relationships are not confined to a specific segment of the 
population but are broadly applicable across the same 
racial or ethnic group [18]. For drug-target mendelian ran-
domization, it employs genetic variants situated near or 
within proximity to the gene encoding the targeted protein 
as instrumental variables (IVs) to prognosticate treatment 
efficacy [19]. The causal inferences derived from MR are 
considered less prone to bias and reverse causality [20]. 
The evidential value of MR analysis is ranked just below 
that of RCTs, and it can provide significant insights that 
may presage the findings of RCTs [21–23].

Therefore, our study utilized the Mendelian randomi-
zation method to explore the impact of blood lipid traits 
on IPF risk and to assess the influence of lipid-regulatory 
medications on IPF.

Methods
This study adhered to the Strengthening the Reporting 
of Observational Studies in Epidemiology-Mendelian 
Randomization (STROBE-GE), as detailed in Table  S1 
[24]. The data were derived from publicly available sum-
mary-level data from genome-wide association studies 
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(GWAS) and expression quantitative trait loci (eQTL) 
studies. Comprehensive details regarding these datasets 
are delineated in Table S2. The schematic representation 
of the study design is depicted in Fig.  1. Outline of the 
study design.

Genetic instrumental variables for lipid traits 
and lipid‑modifying targets
The publicly accessible GWAS data for 3 circulating lipid 
traits, including high-density lipoprotein cholesterol 
(HDL-C, N = 291,830), low-density lipoprotein cholesterol 
(LDL-C, N = 318,340), and triglyceride (TG, N = 318,674) 
were obtained from the UK Biobank [25]. The UK Biobank 
is a vast biomedical database and research resource that 
includes genetic, lifestyle, and health information. It is 
demographically diverse, with approximately 9.2 million 
individuals aged 40 to 69 from across England, Wales, and 
Scotland invited to join the cohort, and 5.45% of them 
(500,000 individuals) participated in the baseline assess-
ment [26]. Participants from the UK Biobank underwent a 
uniform standard lipid testing procedure, with laboratory 
results reported as continuous variables. The raw lipid 

measurements were fitted to linear regression models 
adjusted for covariates, including age, sex, among others 
[26, 27]. Genetic variants linked to these lipid traits were 
selected, meeting a linkage disequilibrium (LD) clumping 
threshold of r2 < 0.001 and a physical distance threshold of 
1,000 kb.

We selected 20 prevalent lipid-lowering drugs and 
innovative therapeutics in accordance with recent guide-
lines for dyslipidemia management [28, 29]. Utilizing the 
DrugBank database (https:// go. drugb ank. com/) and per-
tinent scholarly articles, we undertook gene identifica-
tion for the pharmacological targets of these medications 
[30, 31]. Comprehensive details regarding each target 
gene are delineated in Table S3. Based on their principal 
pharmacological effects, these genes are categorized into 
lowering LDL-C (i.e. HMGCR, PCSK9, LDLR, APOB, 
NPC1L1, ABCG5, ABCG8, CETP) and lowering TG (i.e. 
LPL, ANGPTL3, APOC3).

To simulate the lipid-lowering impact of these genes, 
we identified single nucleotide polymorphisms (SNPs) 
located within a region extending ± 100 kilobases (kb) 
around the gene of interest. And these SNPs should 

Fig. 1 Outline of the study design

https://go.drugbank.com/
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also show a significant association with lipid levels on 
a genome-wide scale (p < 5 ×  10−8) [32]. To optimize 
the power of the tool, SNPs were permitted to be in 
weak linkage disequilibrium of less than 0.30 with one 
another.

To reinforce the robustness of the results, we under-
took extra analyses using a novel suite of genetic tools 
that incorporated both Apolipoprotein A (Apo-A) and 
Apolipoprotein B (Apo-B). Apo-A serves as a criti-
cal transporter of HDL-C. Apo-B plays a crucial role in 
the formation of LDL-C and TG. Apo-A was utilized to 
develop tools for measuring CETP and LPL. Apo-B was 
employed to create genetic tools targeting HMGCR, 
PCSK9, LDLR, APOB, NPC1L1, ABCG5, ABCG8, LPL, 
ANGPTL3, and APOC3. The GWAS data for both Apo-B 
and Apo-A were also sourced from the UK Biobank, 
comprising 317,412 and 290,198 samples, respectively.

eQTL data
We used publicly available eQTL data from the Geno-
type-Tissue Expression (GTEx-V8) project and eQTLGen 
(https:// www. eqtlg en. org/). The GTEx project encom-
passes eQTL data across 54 distinct human tissues, 
with participant numbers ranging from 73 to 670 [33]. 
Approximately 84.6% of these samples originate from 
individuals of European descent. The eQTLGen Con-
sortium has conducted cis-eQTL on up to 31,684 blood 
samples from 37 datasets [34]. Cis-eQTLs refer to genetic 
variations that have a significant link with the expres-
sion of specific genes affected by medications. These 
cis-eQTLs must meet the significance level of a P-value 
lower than 5 ×  10−8 and adhere to the linkage disequilib-
rium criterion with an r2 value less than 0.1.

Outcome GWAS
The GWAS data for IPF were obtained from the FinnGen 
Release 10 (https:// r10. finng en. fi/). The FinnGen study is 
an extensive genomics initiative that correlates genetic 
variations with health data. It brings together Finnish 
universities, hospitals and hospital districts, the national 
institute for health and welfare, the Finnish biobank con-
sortium, along with hundreds of thousands of Finns. 
As of December 2023, this consortium has enrolled 
over 412,000 participants (230,310 females and 181,871 
males), analyzed more than 21.31 million genetic vari-
ants, and covered 2,408 distinct disease phenotypes. IPF 
cases are identified using the diagnostic code J84.1 from 
the International Classification of Diseases, 10th Edition 
(ICD-10), which included 2189 individuals with IPF and 
407,609 control subjects. Of the 2189 IPF cases included, 
732 were female and 1457 were male. The median age 
(years) at first onset of IPF was 37.54 (Females = 36.46, 
Males = 40.62). To affirm the efficacy of the selected 

genetic markers, supplementary analysis was conducted 
with coronary heart disease (CHD) as the benchmark 
outcome, serving as a positive control in our study. Sum-
mary statistics for CHD were also sourced from the 
FinnGen project, with 46,959 cases and 365,222 control 
individuals (Table  S2). The GWAS data from FinnGen 
database utilized sex, age, genotyping batch, and ten 
principal components as covariates. Cases of missing 
data were addressed by exclusion, and all participants 
were of European ancestry.

Statistical analysis
Mendelian randomization utilizes SNPs as instruments 
to explore the connection between exposure and out-
come variables. The MR must adhere to three funda-
mental assumptions: (1) Correlation assumption: The 
IVs demonstrate a significant connection with exposure 
(p < 5 ×  10−8). The F-statistic is also used to evaluate the 
hypothesis of correlation by quantifying the magnitude of 
each genetic variant. A larger F statistic (> 10) suggests a 
little chance of weak instrumental variable bias [21, 22]; 
(2) Independence assumption: The IVs should be uncon-
founded, meaning they are unrelated to factors that could 
affect both exposure and outcome, ensuring that the 
observed associations are uniquely due to the exposure 
under investigation; (3) Exclusivity assumption: The IVs 
do not have a direct correlation with the outcome, nor 
any other means apart from exposure to correlate with 
the outcome [35].

The principal MR analysis was executed utilizing 
the inverse variance weighted (IVW) method, which 
has been shown to have the most pronounced statisti-
cal impact. Following the statistical methods similar to 
previous studies, three additional MR methods (MR-
Egger, weighted median, and weighted mode) were also 
implemented as complementary approaches [36–39]. 
The MR-Egger regression is a method that accounts 
for potential pleiotropy by including an intercept in 
the regression model. The assumptions checked in this 
method include linearity, homogeneity and directional 
pleiotropy. It allows for the possibility of directional 
pleiotropy and aims to control for this by including 
an intercept term in the regression model [37]. The 
weighted median method offers robustness against 
violations of the pleiotropy-free assumption, as long 
as pleiotropic variants constitute a minor fraction of 
the instruments [38]. This method operates under the 
assumption of equal effect sizes, positing that all valid 
genetic instruments impart a uniform influence on 
the outcome, thus representing a stronger assump-
tion compared to that of the MR-Egger regression. In 
contrast, the weighted mode method allocates greater 
influence to the most prevalent genetic instrument 

https://www.eqtlgen.org/
https://r10.finngen.fi/
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while still maintaining the assumption of majority valid 
instruments—that the majority of genetic instruments 
are valid and only a minority are invalid. It also assumes 
equal effect sizes, suggesting that all valid instruments 
have an identical impact on the outcome. To improve 
the strength of the results, the contamination mixture 
method (ConMix) and robust adjusted profile score 
(RAPS) were also utilized. Compared with other meth-
ods, ConMix had the lowest mean squared error [40]. 
MR-RAPS considers special pleiotropicity and can pro-
vide reliable inferences for MR analysis utilizing weak 
instrumental variables [41]. Considering our repeti-
tive calculations, we applied Benjamini–Hochberg 
false-discovery rate (FDR) procedure to adjust the raw 
p-values [42]. The results of all estimates are typically 
presented as odds ratio (OR) along with its 95% confi-
dence interval (CI).

In this study, we initially utilized two-sample MR anal-
ysis to explore the causal effect between lipids and IPF 
risk, after harmonizing the alleles for consistency. Sub-
sequently, we employed drug-targeted mendelian ran-
domization to ascertain whether a relationship exists 
between genetically proxied lipid-modifying interven-
tions and IPF. For drug targets showing suggestive sig-
nificance, we carried out a summary-data-based MR 
(SMR) analysis to explore the association between gene 
expression and IPF, synthesizing data from GWAS and 
eQTL studies.

To reinforce the validity of the MR model’s assump-
tions and support the reliability of findings, we undertook 
a series of extra sensitivity analyses. Methods included 
MR-Pleiotropy Residual Sum and Outlier (MR-PRESSO) 
for horizontal pleiotropy; MR-Egger intercept tests for 
directional pleiotropy [37, 43]; Cochran’s Q test for het-
erogeneity [44]; and leave-one-out MR analyses to evalu-
ate whether a single SNP has an excessive impact on MR 
analysis [45]. Scatter plot was also used for visual inspec-
tion of outliers in SNP-specific causal estimates. Then, 
we used the online tool mRnd (http:// cnsge nomics. com/ 
shiny/ mRnd/) to calculate statistical power [46]. Input 
parameters for power calculations in this tool include 
sample size, type-I error rate, proportion of cases in the 
study, odds ratio, and proportion of variance explained 
for the association between the SNP. A statistical power 
greater than 0.8 typically indicates that a study has a high 
detection capability, effectively countering the impact of 
sampling error and random variation, and reducing the 
risk of Type II errors (i.e., false negatives) [46]. In the 
context of the SMR method, we applied the heterogene-
ity in dependent instruments (HEIDI) test to appraise the 
robustness and reliability of the results. A P-value cut-
off of less than 0.05 was set to suggest that the observed 
association may be a result of linkage disequilibrium.

The statistical procedures outlined above were con-
ducted using the R programming language (version 
4.3.0), with the aid of the packages “TwoSampleMR” and 
“MR-PRESSO”. Findings at a P-value threshold below 
0.05 were deemed statistically meaningful.

Results
Lipid traits and IPF risk
In the MR study, 237 SNPs were selected for HDL-C, 
225 SNPs for LDL-C, 215 SNPs for TG, 213 SNPs for 
Apo-A, and 220 SNPs for Apo-B as IVs (Tables S4-8). 
The IVW method indicated that genetically predicted 
HDL-C with an OR of 0.978 and 95%CI from 0.849 to 
1.127 (P = 0.761), LDL-C with an OR of 0.927 and 95% 
CI from 0.801 to 1.071 (P = 0.302), TG with an OR of 
0.908 and 95% CI from 0.777 to 1.060 (P = 0.221), Apo-A 
with an OR of 0.993 and 95% CI from 0.860 to 1.147 
(P = 0.924), and Apo-B with an OR of 0.990 and 95% CI 
from 0.856 to 1.145 (P = 0.895) were not related to IPF 
risk (Fig. 2. Forest plots of the association between blood 
lipid traits and IPF. Five additional MR methods also 
yielded consistent results (Table  S9). Fig. S1 displayed 
scatter plots showing the assocaition between lipid traits 
and IPF. Each SNP had an F-statistics value above the 
threshold of 10, as detailed in Table S4-8. The heteroge-
neities for HDL-C  (PMR-Egger = 0.017,  PIVW = 0.017) and 
Apo-B  (PMR-Egger = 0.033,  PIVW = 0.025) were detected 
(Table  S10). No directional pleiotropies were found in 
sensitivity analyses.

Lipid‑lowering drugs and IPF risk
We selected SNPs that predict the lipid-modifying effect 
of genes responsible for the targets affected by lipid-
lowering medications as IVs. A total of 21 SNPs as IVs 
in HMGCR, 5 SNPs in NPC1L1, 33 SNPs in PCSK9, 
30 SNPs in APOB, 22 SNPs in ABCG5, 23 SNPs in 
ABCG8, 42 SNPs in LDLR, 11 SNPs in CETP, 23 SNPs 
in ANGPTL3, 31 SNPs in APOC3, and 49 SNPs in LPL 
were identified (Table  S11). The positive control assess-
ment revealed a substantial association between drug 
target inhibitors and lower CHD risk, indicating the effi-
cacy of genetic tools, except for APOB inhibitors (Fig. S2, 
Table S12). Scatter plots are shown in Fig. S3.

The association between genetic metabolites influ-
enced by 12 lipid-modifying drugs and IPF is shown in 
Fig.  3. Forest plots of the association between geneti-
cally proxied lipid-modifying drug and IPF using pri-
mary effect. The IVW-MR analysis showed that the 
reduced LDL-C level by inhibitors or enhancements of 
NPC1L1, PCSK9, ABCG5, and ABCG8 increased IPF 
risk (OR = 2.74, 95% CI: 1.05 – 7.12, P = 0.039; OR = 1.36, 
95% CI: 1.02 – 1.82, P = 0.037; OR = 1.66, 95% CI: 1.12 – 
2.48, P = 0.011; OR = 1.68, 95% CI: 1.14 – 2.48, P = 0.009). 

http://cnsgenomics.com/shiny/mRnd/
http://cnsgenomics.com/shiny/mRnd/
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Inhibition of APOC3, similar to the decrease in Apo-B 
level, was significantly correlated with an increased IPF 
risk (OR = 1.42, 95% CI: 1.20 – 1.67, P = 3.17 ×  10–5). The 
result using other five supplementary methods remained 
directionally concordant with IVW. Conversely, the 
MR analyses did not reveal any causal influence on the 
risk of IPF from genetic mimicries of HMGCR, LDLR, 
APOB, LPL, ANGPTL3, CETP, and PPARA inhibi-
tors (all P > 0.05) (Fig.  3. Forest plots of the association 
between genetically proxied lipid-modifying drug and 
IPF using primary effect, Table S13). After FDR correc-
tion, ABCG5, ABCG8 and APOC3 were found to be 
signifcantly associated with IPF risk  (PFDR < 0.05, Fig. 3), 

NPC1L1 and PCSK9 had a suggestive effect on IPF risk. 
The F statistics of each genetic tool range from 29.94 
to 3712.59 (Table  S11). Scatter plots of the association 
of lipid-modifying gene targets with IPF risk were pre-
sented in Fig. S4. Drug targets such as NPC1L1, ABCG5, 
ABCG8, APOC3, and PPARA exhibit high statistical 
power, with values ranging from 0.88 to 1.00, which pro-
vides robustness to our findings. However, targets like 
APOB, CETP, and LPL show lower statistical power, 
underscoring the need for a cautious interpretation 
of the associated results. Refer to Table  S14 for details 
regarding the statistical power associated with the MR 
analyses.

Fig. 2 Forest plots of the association between blood lipid traits and IPF

Fig. 3 Forest plots of the association between genetically proxied lipid-modifying drug and IPF using primary effect
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Similar results were also obtained from the genetic 
mimicry analysis with secondary effects on Apo-B 
and Apo-A. The decreased Apo-B level mediated 
by NPC1L1, PCSK9, ABCG5, ABCG8, and APOC3 
gene targeted drugs were respectively associated with 
a higher IPF risk (OR = 3.46, 95% CI: 1.13 – 10.60, 
P = 0.030; OR = 1.39, 95% CI: 1.02 – 1.91, P = 0.038; 
OR = 1.85, 95% CI: 1.19 – 2.87, P = 0.006; OR = 1.88, 
95% CI: 1.21 – 2.91, P = 0.005; OR = 2.25, 95% CI: 1.54 
– 3.29, P = 2.82 ×  10–5) (Fig. 4. Forest plots of the asso-
ciation between genetically proxied lipid-modifying 
drug and IPF using alternative effect). After FDR cor-
rection, ABCG5, ABCG8 and APOC3 were found to be 
signifcantly associated with IPF risk  (PFDR < 0.05). Other 
genetic mimicries of drug targets showed no significant 
association with IPF (Table S15). The F statistics values 
for each SNP exceeded 30 (Table S16). Drug targets like 
NPC1L1, ABCG5, ABCG8, APOC3 showed high statis-
tical power (> 0.8), while APOB, ANGPTL3, and LPL 
show lower statistical power (Table S17).

The MR-Egger intercept examination did not uncover 
any indications of pleiotropy, which enhances the cred-
ibility of causal inferences (Tables S18-S19). Leave-one-
out analyses showed that the IVW method consistently 
produced results in line with the overall estimate even 
after excluding each SNP sequentially (Figs. S5-S6). Fur-
ther analyses were carried out using stricter LD thresh-
olds (r2 < 0.2, r2 < 0.1, r2 < 0.01, and r2 < 0.001) for these 
genes. These analyses did not significantly change the 
direction of the beta values, although the statistical power 
was reduced by excluding multiple SNPs (Table S20).

Gene expression and IPF risk
Given that the NPC1L1, PCSK9, ABCG5, ABCG8, and 
APOC3 genes showed an association with IPF, genetic 
variants linked to these gene expressions in blood and 
relevant tissues were used as IVs for additional valida-
tion. However, the limited sample size of eQTL data pre-
vented us from identifying eligible cis-eQTLs for APOC3 
in related tissues.

SMR analysis results suggested that a higher expres-
sion level of PCSK9 in whole blood was associated 
with a lower risk of IPF (OR = 0.71, 95% CI: 0.50 – 0.99, 
P = 0.043) (Table S20). SMR analysis also found that there 
was a tendency towards significance in the connection 
between high expression of the NPC1L1 gene in adipose 
subcutaneous and lower IPF risk (OR = 0.85, 95% CI: 0.73 
– 1.00, P = 0.051) (Table S20). No significant association 
was detected between the ABCG5 gene expression levels 
in the spleen (OR = 1.11, 95% CI: 0.99 – 1.24, P = 0.087), 
ABCG8 expression in colon transverse (OR = 1.04, 95% 
CI: 0.86 – 1.25, P = 0.713) and IPF risk. The HEIDI test 
results demonstrated that the observed associations were 
unlikely to be due to linkage disequilibrium (p > 0.05) 
(Table S21).

Discussion
To our best knowledge, this study represents the inaugu-
ral application of MR analysis to explore the relationship 
between lipids, lipid-modifying pharmacological inter-
ventions, and IPF. Our results offer genetic corroboration 
for the proposition that PCSK9 inhibitors may elevate the 
risk of IPF. Notably, no evidence was found to suggest that 

Fig. 4 Forest plots of the association between genetically proxied lipid-modifying drug and IPF using alternative effect
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lipid traits have a causal association with IPF risk, which 
implies that the mechanism by which PCSK9 inhibitors 
influence IPF risk may be distinct from its effects on lipid 
metabolism. Additionally, the study uncovered prelimi-
nary evidence hinting at a potential positive association 
between NPC1L1 inhibition and a higher IPF risk. The 
discovery of these results illuminates the possible adverse 
effects linked to the use of lipid-modifying drugs and 
offers an understanding of potential risk factors that may 
be investigated for IPF management.

Two previous MR studies have explored the asso-
ciation between blood lipid traits and IPF [47, 48]. An 
MR analysis led by Sizheng Steven Zhao presented a 
seemingly paradoxical finding: a higher LDL levels and 
statins-use were associated with reduced IPF risk [47]. In 
contrast, the MR analysis by Yan Jiang found that there 
is a causual effect between Apo-B and IPF risk [48]. We 
argue that the reasons our MR findings differ from those 
in previous studies are as follows. Firstly, the impact of 
sample size and sample overlap cannot be ignored. These 
two MR analyses included a larger scale of blood lipid 
trait data and both used the same IPF GWAS data as 
outcome. This IPF GWAS data pooled the meta-analysis 
results of 4,125 IPF cases and 20,464 control individuals 
[48]. The IPF meta-analysis data came from five cohort 
studies, including two studies that specifically included 
IPF cases from the UK population [48]. However, in Siz-
heng Steven Zhao’s MR analysis, the data on statins-use 
came from the UK Biobank, and in Yan Jiang’s study, the 
blood lipid trait data also came from the UK Biobank. 
Neither of these two MR studies assessed the degree 
of overlap between the exposure and outcome samples 
and its potential impact on the study results. Secondly, 
the impact of horizontal pleiotropy and confound-
ing factors may have caused bias in causal inference. In 
the sensitivity analysis of the relationship between LDL 
and IPF, Cochran’s Q test suggested the possible exist-
ence of horizontal pleiotropy (Q p-value = 6.13E-05), 
which may distort the inference of the causal relation-
ship [47]. In addition, in Sizheng Steven Zhao’s study, 
it was also found that the BMI is a risk factor for IPF. 
Given the close connection that may exist between 
statins-use, LDL levels, and BMI, the specific impact of 
BMI as a confounding factor and its interpretation are 
still unclear [47]. Lastly, the data on the use of statins 
depends on self-reports, which may introduce recall 
bias and reporting bias, thereby affecting the accuracy of 
causal inference.

Although the current evidence did not support serum 
lipid traits as causal risk factors for IPF, the result should 
be interpreted with caution. Firstly, lipids are catego-
rized into four primary groups, including glycerides, 

fatty acids, non-glycerides, and lipoproteins. The plasma 
lipid traits predominantly featured in this MR study per-
tain to the lipoprotein class. However, extant literature 
suggests that dysregulation of phospholipid and sphin-
golipid metabolism is a more substantial contributor to 
IPF pathophysiology [9, 49, 50]. A lipidomics analysis has 
revealed that alterations in the plasma lipid profile of IPF 
patients are predominantly within the glycerophospho-
lipid class. Among the 159 glycerolipids examined, 30 
exhibited significant disparities between the IPF group 
and controls [50]. Moreover, the lung, being a lipid-rich 
organ, engages in intricate lipid metabolic processes. 
Compared with blood lipids, alveolar lipid levels may 
provide a more precise reflection of metabolic distur-
bances. Despite a paucity of research directly compar-
ing lipidomics profiles between bronchoalveolar lavage 
fluid and blood samples from IPF individuals, the work 
of Marissa O ’Callaghan et  al. offers some valuable 
insights. This study observed a marked increase in total 
lipid content within the lung tissue of IPF individuals 
relative to controls [51]. In addition, they also assessed 
pulmonary fat attenuation volume through chest CT 
images  (CTPFAV). The median  CTPFAV in IPF was greater 
compared to controls, however, there was no association 
observed with serum lipids and body mass index [51]. 
These findings imply that extracellular lipids within the 
lung may have a closer relationship with IPF than blood 
lipid traits. Future MR studies could explore the bidirec-
tional causality between intrapulmonary lipid traits and 
IPF.

The MR study we conducted revealed a suggestive 
association between PCSK9 inhibitors and IPF. Contrary 
to manifesting as a protective effect, this association was 
characterized as a risk factor, which contradicts findings 
from previous studies. PCSK9, an enzyme, is essential for 
regulating cholesterol metabolism and maintaining car-
diovascular health. Recent studies have shown that the 
PCSK9 gene may be implicated in the fibrotic processes 
of the liver, heart, kidney, and other organs. A study by 
Stefania Grimaudo revealed that increasing PCSK9 
expression in male mice led to faster progression of liver 
fibrosis [52]. This research also described a protective 
role for the PCSK9 loss-of-function mutation against 
the progression of liver fibrosis. Subsequent research has 
indicated that anti-PCSK9 treatment may hold the poten-
tial to mitigate liver fibrosis by modulating the AMPK/
mTOR/ULK1 signaling pathway, thus reducing hypoxia-
induced autophagy in hepatocytes [53]. Another in vitro 
experiment showed that increasing PCSK9 levels could 
enhance the transition of cardiac fibroblasts into myofi-
broblasts, impacting fibrosis post-myocardial infarction 
[54]. Similar protective effects were also observed in 
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renal fibrosis. Danyu Wu et  al. developed a therapeutic 
vaccine targeting PCSK9. The results indicated that this 
vaccine could ameliorate kidney fibrosis by controlling 
fatty acid β-oxidation [55].

We postulate that several reasons may account for the 
inconsistent results observed. Firstly, the pathogenesis of 
IPF is highly complex, and the role of PCSK9 is also not 
singular. Previous research has concentrated on the anti-
fibrotic effect of PCSK9 inhibitors in different organs 
through autophagy and oxidative regulation, rather than 
its impact on lipid levels. The balance between the anti-
fibrotic effects of PCSK9 inhibitors through similar path-
ways or the pro-fibrotic effect through other pathways 
in lung tissue requires further investigation. Secondly, 
the expression levels of target genes can vary in differ-
ent tissues, as evidenced by our SMR analysis of PCSK9 
gene expression across different tissues. This variabil-
ity can influence the therapeutic efficacy of drugs in a 
tissue-specific manner. Thirdly, drug-target Mendelian 
randomization analysis primarily models impact of gene 
inhibitors or blockers on outcomes using SNPs within 
the gene-specific action range (± 100  kb). It provides 
information on the trends of connections rather than 
the tangible therapeutic advantages of drugs in practi-
cal situations. Numerous factors, such as drug dosage, 
when the drug is given, how inter-individuals metabolize 
drugs, and how well drugs attach to their intended tar-
gets, need to be further considered. Consequently, fur-
ther RCTs are essential to confirm these observational 
findings.

Our findings also imply that there is a potential for 
increased IPF risk with exposure to NPC1L1 inhibitors, 
although the SMR analysis only suggested a near-posi-
tive result. Ezetimibe is known as the primary drug for 
NPC1L1 inhibitors, which are responsible for facilitating 
the absorption of dietary cholesterol by NPC1L1 protein 
[29]. To date, limited research has examined the influ-
ence of ezetimibe on the onset of IPF. Chanho Lee et al. 
conducted a retrospective study of the medical records 
across three different hospitals and discovered that indi-
viduals with IPF who consistently used ezetimibe had 
lower all-cause mortality and lung function decline rates 
[56]. They also found that ezetimibe could prevent mice 
from developing bleomycin-induced pulmonary fibro-
sis by suppressing mTORC1 activity in  vitro study. The 
enhancement of autophagy in mouse lung fibroblasts 
mediates the anti-fibrotic effect of ezetimibe, rather than 
through lipid-lowering properties [56]. There may exist 
differences in the pathogenesis between drug-induced 
pulmonary fibrosis and IPF, which could account for the 
discrepancies between our MR findings and the in vitro 
results.

This MR research also has some limitations. Firstly, 
despite the numerous sensitivity analyses conducted that 
have reinforced the reliability of our results, the possibil-
ity of horizontal pleiotropy cannot be entirely dismissed. 
Although the original P-value may suggest an associa-
tion between NPC1L1 and PCSK9 with IPF, the adjusted 
P-value indicates that this association may not be signifi-
cant enough to rule out chance. Thus, the results should 
be interpreted with caution. Further research is needed 
in the future to validate the original findings, or a larger 
sample size may be required to provide sufficient statisti-
cal power to overcome the impact of multiple compari-
sons. Secondly, the sample size of eQTL data is limited, 
and there are no eligible eQTLs for NPC1L1, ABCG5, 
ABCG8, and APOC3 in hepatic and pulmonary tissues, 
which are the primary organs involved in lipid metabo-
lism. This limitation may result in an underestimation 
of the role these genes play in the pathogenesis of IPF. 
Thirdly, the initial GWAS data did not categorize by spe-
cific subtypes (such as the extent of LDL-C elevation). 
Consequently, this study was constrained from perform-
ing a stratified analysis. Furthermore, the reliance on 
diagnostic codes to define IPF within the FinnGen study 
may not fully encapsulate the clinical and pathological 
nuances of the disease. This approach could inadvertently 
include cases that do not actually represent IPF, poten-
tially skewing the analysis. Consequently, the estimated 
strength of association between IPF and specific genetic 
variants might be subject to overestimation or underes-
timation. An approach that should be contemplated with 
the availability of more specific datasets in the future. 
Lastly, the IPF GWAS data was obtained from an iso-
lated European population. We lack a validation cohort 
because other GWAS data for IPF may have sample over-
lap with lipid exposure. When extrapolating these results 
to different ethnic groups, caution should be exercised. 
Additional research encompassing a diverse array of pop-
ulations is necessary.

Conclusions
In summary, this study does not support blood lipid 
traits (i.e., TG, LDL-C, HDL-C, Apo-A, and Apo-B) as a 
direct risk factor for IPF and should be interpreted with 
caution. An increased expression level of the PCSK9 
gene was found to correlate with a lower risk of IPF. 
Conversely, the use of PCSK9 inhibitors was associated 
with an elevated risk of IPF. Further studies are essen-
tial to gain a more comprehensive understanding of the 
underlying mechanisms and to assess the possible effect 
of PCSK9 inhibitors in IPF progression through a series 
of preclinical and clinical trials.



Page 10 of 12Cai et al. Lipids in Health and Disease          (2024) 23:237 

Abbreviations
IPF  Idiopathic pulmonary fibrosis
MR  Mendelian randomization
SMR  Summary-data-based MR
OR  Odds ratio
95%CI  95% Confidence interval
RCTs  Randomized controlled trials
ILD  Interstitial lung disease
GWAS  Genome-wide association studies
eQTL  Expression quantitative trait loci
HDL-C  High-density lipoprotein cholesterol
LDL-C  Low-density lipoprotein cholesterol
TG  Triglyceride
Kb  Kilobases
Apo-A  Apolipoprotein A
Apo-B  Apolipoprotein B
LD  Linkage disequilibrium
SNP  Single nucleotide polymorphism
GTEx-V8  Genotype-Tissue Expression project
CHD  Coronary heart disease
IVW  Inverse-variance-weighted
IVs  Instrumental variables
ConMix  Contamination mixture method
RAPS  Robust adjusted profile score
MR-PRESSO  MR-Pleiotropy Residual Sum and Outlier
HEIDI  Heterogeneity in dependent instruments
CTPFAV  Pulmonary fat attenuation volume through chest CT images

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s12944- 024- 02218-6.

Additional file 1: Table S1. STROBE-MR checklist. Table S2. Phenotype 
descriptions and distributions. Table S3. Lipid-lowering drug classes, 
substances, and target genes. Table S4. Genetic variants that were used as 
instrumental variables for high-density  lipoprotein cholesterol. Table S5. 
Genetic variants that were used as instrumental variables for low-density 
lipoprotein cholesterol. Table S6. Genetic variants that were used as instru-
mental variables for triglyceride. Table S7. Genetic variants that were used 
as instrumental variables for apolipoprotein A. Table S8. Genetic variants 
that were used as instrumental variables for apolipoprotein B. Table S9. 
Association of genetically proxied lipid traits with risk of IPF. Table S10. 
Heterogeneity and pleiotropy tests of instrument effects （lipid traits on 
IPF). Table S11. Characteristics of lipid-modifying genetics variants in target 
genes using primary effect. Table S12. Association of genetically proxied 
lipid-modifying drugs with risk of CHD. Table S13. Association of geneti-
cally proxied lipid-modifying drugs with risk of IPF using primary effect. 
Table S14. Statistical power estimates for drug-target MR analyses using 
primary effect. Table S15. Association of genetically proxied lipid-modify-
ing drugs with risk of IPF using alternative effect. Table S16. Characteristics 
of lipid-modifying genetics variants in target genes using alternative 
effect. Table S17. Statistical power estimates for drug-target MR analyses 
using alternative effect. Table S18. Heterogeneity and pleiotropy tests of 
instrument effects (primary lipid-modifying effect). Table S19. Heterogene-
ity and pleiotropy tests of instrument effects (alternative lipid-modifying 
effect). Table S20. Association of genetic mimicry of lipid-modifying 
drugs with risk of IPF accounting for LD structure. Table S21. Association 
between gene expression in tissues of identified targets and IPF in the 
SMR analysis.

Additional file 2: Fig. S1. Scatter plots of the association between lipid traits 
and IPF; A. High-density lipoprotein cholesterol on idiopathic pulmonary 
fibrosis; B. Low-density lipoprotein cholesterol on idiopathic pulmonary 
fibrosis; C. Triglyceride on idiopathic pulmonary fibrosis; D. Apolipoprotein 
A on idiopathic pulmonary fibrosis; E. Apolipoprotein B on idiopathic 
pulmonary fibrosis.

Additional file 3: Fig. S2. Forest plots of the association between geneti-
cally proxied lipid-modifying drug and CHD risk.

Additional file 4: Fig. S3. Scatter plots of the association between 
genetically proxied lipid-modifying gene targets and CHD. A. HMGCR on 
coronary heart disease; B. NPC1L1 on coronary heart disease; C. PCSK9 
on coronary heart disease; D. APOC on coronary heart disease; E. ABCG5 
on coronary heart disease; F. ABCG8 on coronary heart disease; G. LDLR 
on coronary heart disease; H. CETP on coronary heart disease; I. ANGPTL3 
on coronary heart disease; J. APOC3 on coronary heart disease; K. LPL on 
coronary heart disease; L. PPARA on coronary heart disease.

Additional file 5: Fig. S4. Scatter plots of the association between 
genetically proxied lipid-modifying gene targets and IPF. A. HMGCR 
on idiopathic pulmonary fibrosis; B. NPC1L1 on idiopathic pulmonary 
fibrosis; C. PCSK9 on idiopathic pulmonary fibrosis; D. APOC on idiopathic 
pulmonary fibrosis; E. ABCG5 on idiopathic pulmonary fibrosis; F. ABCG8 
on idiopathic pulmonary fibrosis; G. LDLR on idiopathic pulmonary fibro-
sis; H. CETP on idiopathic pulmonary fibrosis; I. ANGPTL3 on idiopathic 
pulmonary fibrosis; J. APOC3 on idiopathic pulmonary fibrosis; K. LPL on 
idiopathic pulmonary fibrosis; L. PPARA on idiopathic pulmonary fibrosis.

Additional file 6: Fig. S5. Plots of “leave-one-out” analyses for MR analyses 
of the causal effect of lipid-modifying drugs on IPF using primary effect. A. 
Genetic mimicries of NPC1L1 inhibitor on idiopathic pulmonary fibrosis; 
B. Genetic mimicries of PCSK9 inhibitor on idiopathic pulmonary fibrosis; 
C. Genetic mimicries of ABCG5 enhancement on idiopathic pulmonary 
fibrosis; D. Genetic mimicries of ABCG8 enhancement on idiopathic 
pulmonary fibrosis; E. Genetic mimicries of APOC3 blocker on idiopathic 
pulmonary fibrosis.

Additional file 7: Fig. S6. Plots of “leave-one-out” analyses for MR analyses 
of the causal effect of lipid-modifying drugs on IPF using alternative effect. 
A. Genetic mimicries of NPC1L1 inhibitor on idiopathic pulmonary fibrosis; 
B. Genetic mimicries of PCSK9 inhibitor on idiopathic pulmonary fibrosis; 
C. Genetic mimicries of ABCG5 enhancement on idiopathic pulmonary 
fibrosis; D. Genetic mimicries of ABCG8 enhancement on idiopathic 
pulmonary fibrosis; E. Genetic mimicries of APOC3 blocker on idiopathic 
pulmonary fibrosis.

Acknowledgements
The authors extend sincere thanks to the participants of the UK Biobank, the 
FinnGen project, the GTEx-V8 project and the other included cohorts for their 
invaluable contributions. We also appreciate the dedication of the numerous 
investigators and research personnel who have played a pivotal role in the 
data acquisition phase of this study.

Authors’ contributions
SLY designed the study and contributed to the data analysis. CGX and LJJ pre-
pared the first draft of the manuscript. CMS organized the tables and figures. 
Each author has thoroughly reviewed the content, providing their endorse-
ment to the final version of the manuscript.

Funding
No funding was received for this study.

Availability of data and materials
No datasets were generated or analysed during the current study.

Declarations

Ethics approval and consent to participate
No participants were directly engaged in the overall progression of our inves-
tigation. Solely publicly accessible data served as the foundation of our study.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

https://doi.org/10.1186/s12944-024-02218-6
https://doi.org/10.1186/s12944-024-02218-6


Page 11 of 12Cai et al. Lipids in Health and Disease          (2024) 23:237  

Author details
1 Department of Respiratory and Critical Care Medicine, The First Affiliated 
Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China. 

Received: 8 May 2024   Accepted: 15 July 2024

References
 1. Moss BJ, Ryter SW, Rosas IO. Pathogenic mechanisms underlying Iidi-

opathic pulmonary fibrosis. Annu Rev Pathol. 2022;17:515–46.
 2. Hamanaka RB, Mutlu GM. Metabolic requirements of pulmonary fibrosis: 

role of fibroblast metabolism. FEBS J. 2021;288:6331–52.
 3. Rajesh R, Atallah R, Bärnthaler T. Dysregulation of metabolic pathways in 

pulmonary fibrosis. Pharmacol Ther. 2023;246: 108436.
 4. Justet A, Klay D, Porcher R, Cottin V, Ahmad K, Molina Molina M, et al. 

Safety and efficacy of pirfenidone and nintedanib in patients with idi-
opathic pulmonary fibrosis and carrying a telomere-related gene muta-
tion. Eur Respir J. 2021;57:2003198.

 5. Behr J, Nathan SD, Wuyts WA, Mogulkoc Bishop N, Bouros DE, Antoniou 
K, et al. Efficacy and safety of sildenafil added to pirfenidone in patients 
with advanced idiopathic pulmonary fibrosis and risk of pulmonary 
hypertension: a double-blind, randomised, placebo-controlled, phase 2b 
trial. Lancet Respir Med. 2021;9:85–95.

 6. Lederer DJ, Martinez FJ. Idiopathic pulmonary fibrosis. N Engl J Med. 
2018;378:1811–23.

 7. Saito S, Alkhatib A, Kolls JK, Kondoh Y, Lasky JA. Pharmacotherapy and 
adjunctive treatment for idiopathic pulmonary fibrosis (IPF). J Thorac Dis. 
2019;11:S1740–54.

 8. Zhao X, Kwan JYY, Yip K, Liu PP, Liu F-F. Targeting metabolic dysregulation 
for fibrosis therapy. Nat Rev Drug Discov. 2020;19:57–75.

 9. Burgy O, Loriod S, Beltramo G, Bonniaud P. Extracellular lipids in the lung 
and their role in pulmonary fibrosis. Cells. 2022;11:1209.

 10. Tian Y, Duan C, Feng J, Liao J, Yang Y, Sun W. Roles of lipid metabolism and 
its regulatory mechanism in idiopathic pulmonary fibrosis: a review. Int J 
Biochem Cell Biol. 2023;155:106361.

 11. Xu Y, Mizuno T, Sridharan A, Du Y, Guo M, Tang J, et al. Single-cell RNA 
sequencing identifies diverse roles of epithelial cells in idiopathic pulmo-
nary fibrosis. JCI Insight. 2016;1:e90558.

 12. Reyfman PA, Walter JM, Joshi N, Anekalla KR, McQuattie-Pimentel AC, 
Chiu S, et al. Single-cell transcriptomic analysis of human lung provides 
insights into the pathobiology of pulmonary fibrosis. Am J Respir Crit 
Care Med. 2019;199:1517–36.

 13. Chen R, Dai J. Lipid metabolism in idiopathic pulmonary fibrosis: from 
pathogenesis to therapy. J Mol Med (Berl). 2023;101:905–15.

 14. Jang HJ, Lee DY, Loloci G, Jeong J, Choi W-I. Association between the 
use of statins and risk of interstitial lung disease/idiopathic pulmonary 
fibrosis: time-dependent analysis of population-based nationwide data. 
Eur Respir J. 2023;62:2300291.

 15. Kreuter M, Bonella F, Maher TM, Costabel U, Spagnolo P, Weycker D, et al. 
Effect of statins on disease-related outcomes in patients with idiopathic 
pulmonary fibrosis. Thorax. 2017;72:148–53.

 16. Kreuter M, Lederer DJ, Cottin V, Kahn N, Ley B, Vancheri C, et al. Concomi-
tant medications and clinical outcomes in idiopathic pulmonary fibrosis. 
Eur Respir J. 2019;54:1901188.

 17. Saad N, Camus P, Suissa S, Ernst P. Statins and the risk of interstitial lung 
disease: a cohort study. Thorax. 2013;68:361–4.

 18. Smith GD. Mendelian randomization for strengthening causal inference 
in observational studies: application to gene × environment interactions. 
Perspect Psychol Sci. 2010;5:527–45.

 19. Schmidt AF, Finan C, Gordillo-Marañón M, Asselbergs FW, Freitag DF, Patel 
RS, et al. Genetic drug target validation using Mendelian randomisation. 
Nat Commun. 2020;11:3255.

 20. Smith GD, Ebrahim S. “Mendelian randomization”: can genetic epide-
miology contribute to understanding environmental determinants of 
disease? Int J Epidemiol. 2003;32:1–22.

 21. Davies NM, Holmes MV, Davey SG. Reading Mendelian randomisation 
studies: a guide, glossary, and checklist for clinicians. BMJ. 2018;362:k601.

 22. Williams DM, Finan C, Schmidt AF, Burgess S, Hingorani AD. Lipid 
lowering and alzheimer disease risk: a mendelian randomization study. 
Ann Neurol. 2020;87:30–9.

 23. Reay WR, Cairns MJ. Advancing the use of genome-wide association 
studies for drug repurposing. Nat Rev Genet. 2021;22:658–71.

 24. Skrivankova VW, Richmond RC, Woolf BAR, Yarmolinsky J, Davies NM, 
Swanson SA, et al. Strengthening the reporting of observational stud-
ies in epidemiology using Mendelian randomization: The STROBE-MR 
statement. JAMA. 2021;326:1614–21.

 25. Sinnott-Armstrong N, Tanigawa Y, Amar D, Mars N, Benner C, Aguirre M, 
et al. Genetics of 35 blood and urine biomarkers in the UK Biobank. Nat 
Genet. 2021;53:185–94.

 26. Fry A, Littlejohns TJ, Sudlow C, Doherty N, Adamska L, Sprosen T, et al. 
Comparison of sociodemographic and health-related characteristics 
of UK biobank participants with those of the general population. Am J 
Epidemiol. 2017;186:1026–34.

 27. Fry A, Littlejohns TJ, Sudlow C, Doherty N, Allen NE. OP41 The 
representativeness of the UK Biobank cohort on a range of sociode-
mographic, physical, lifestyle and health-related characteristics. J 
Epidemiol Community Health. 2016;70:A26–A26.

 28. Mach F, Baigent C, Catapano AL, Koskinas KC, Casula M, Badimon L, et al. 
2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid 
modification to reduce cardiovascular risk. Eur Heart J. 2020;41:111–88.

 29. Duan Y, Gong K, Xu S, Zhang F, Meng X, Han J. Regulation of choles-
terol homeostasis in health and diseases: from mechanisms to targeted 
therapeutics. Signal Transduct Target Ther. 2022;7:265.

 30. Borén J, Taskinen M-R, Björnson E, Packard CJ. Metabolism of triglyc-
eride-rich lipoproteins in health and dyslipidaemia. Nat Rev Cardiol. 
2022;19:577–92.

 31. Ridker PM. LDL cholesterol: controversies and future therapeutic direc-
tions. Lancet. 2014;384:607–17.

 32. Li Z, Zhang B, Liu Q, Tao Z, Ding L, Guo B, et al. Genetic association of 
lipids and lipid-lowering drug target genes with non-alcoholic fatty 
liver disease. EBioMedicine. 2023;90:104543.

 33. GTEx Consortium. The GTEx Consortium atlas of genetic regulatory 
effects across human tissues. Science. 2020;369:1318–30.

 34. Võsa U, Claringbould A, Westra H-J, Bonder MJ, Deelen P, Zeng B, et al. 
Large-scale cis- and trans-eQTL analyses identify thousands of genetic 
loci and polygenic scores that regulate blood gene expression. Nat 
Genet. 2021;53:1300–10.

 35. Emdin CA, Khera AV, Kathiresan S. Mendelian randomization. JAMA. 
2017;318:1925.

 36. Burgess S, Butterworth A, Thompson SG. Mendelian randomization 
analysis with multiple genetic variants using summarized data. Genet 
Epidemiol. 2013;37:658–65.

 37. Bowden J, Davey Smith G, Burgess S. Mendelian randomization with 
invalid instruments: effect estimation and bias detection through 
egger regression. Int J Epidemiol. 2015;44:512–25.

 38. Bowden J, Davey Smith G, Haycock PC, Burgess S. Consistent estima-
tion in Mendelian randomization with some invalid instruments using 
a weighted median estimator. Genet Epidemiol. 2016;40:304–14.

 39. Hartwig FP, Davey Smith G, Bowden J. Robust inference in summary 
data Mendelian randomization via the zero modal pleiotropy assump-
tion. Int J Epidemiol. 2017;46:1985–98.

 40. Burgess S, Foley CN, Allara E, Staley JR, Howson JMM. A robust and effi-
cient method for Mendelian randomization with hundreds of genetic 
variants. Nat Commun. 2020;11:376

 41. Yu K, Chen X-F, Guo J, Wang S, Huang X-T, Guo Y, et al. Assessment of 
bidirectional relationships between brain imaging-derived phenotypes 
and stroke: a Mendelian randomization study. BMC Med. 2023;21:271.

 42. Korthauer K, Kimes PK, Duvallet C, Reyes A, Subramanian A, Teng M, 
et al. A practical guide to methods controlling false discoveries in 
computational biology. Genome Biol. 2019;20:118.

 43. Verbanck M, Chen C-Y, Neale B, Do R. Detection of widespread horizon-
tal pleiotropy in causal relationships inferred from Mendelian randomi-
zation between complex traits and diseases. Nat Genet. 2018;50:693–8.

 44. Hemani G, Bowden J, Davey SG. Evaluating the potential role of 
pleiotropy in Mendelian randomization studies. Hum Mol Genet. 
2018;27:R195-208.



Page 12 of 12Cai et al. Lipids in Health and Disease          (2024) 23:237 

 45. Burgess S, Bowden J, Fall T, Ingelsson E, Thompson SG. Sensitivity analyses 
for robust causal inference from Mendelian randomization analyses with 
multiple genetic variants. Epidemiology. 2017;28:30–42.

 46. Brion M-JA, Shakhbazov K, Visscher PM. Calculating statistical power in 
Mendelian randomization studies. Int J Epidemiol. 2013;42:1497–501.

 47. Zhao SS, Alton P, Rogers K, Hughes DM. Statin use, lipids, and 3-hydroxy-
3-methyl-glutaryl coenzyme a reductase inhibition on risk of idiopathic 
pulmonary fibrosis. Clin Ther. 2024;46:79–81.

 48. Jiang Y, Chen R, Xu S, Ding Y, Zhang M, Bao M, et al. Endocrine and meta-
bolic factors and the risk of idiopathic pulmonary fibrosis: a Mendelian 
randomization study. Front Endocrinol (Lausanne). 2023;14:1321576.

 49. Suryadevara V, Ramchandran R, Kamp DW, Natarajan V. Lipid mediators 
regulate pulmonary fibrosis: potential mechanisms and signaling path-
ways. Int J Mol Sci. 2020;21:4257.

 50. Yan F, Wen Z, Wang R, Luo W, Du Y, Wang W, et al. Identification of the 
lipid biomarkers from plasma in idiopathic pulmonary fibrosis by Lipid-
omics. BMC Pulm Med. 2017;17:174.

 51. O’Callaghan M, Duignan J, Tarling EJ, Waters DK, McStay M, O’Carroll O, 
et al. Analysis of tissue lipidomics and computed tomography pulmonary 
fat attenuation volume (CTPFAV ) in idiopathic pulmonary fibrosis. 
Respirology. 2023;28:1043–52.

 52. Grimaudo S, Bartesaghi S, Rametta R, Marra F, Margherita Mancina 
R, Pihlajamäki J, et al. PCSK9 rs11591147 R46L loss-of-function vari-
ant protects against liver damage in individuals with NAFLD. Liver Int. 
2021;41:321–32.

 53. Ning L, Zou Y, Li S, Cao Y, Xu B, Zhang S, et al. Anti-PCSK9 treatment 
attenuates liver fibrosis via inhibiting hypoxia-induced autophagy in 
hepatocytes. Inflammation. 2023;46:2102–19.

 54. Bao H, Wang X, Zhou H, Zhou W, Liao F, Wei F, et al. PCSK9 regulates 
myofibroblast transformation through the JAK2/STAT3 pathway to 
regulate fibrosis after myocardial infarction. Biochem Pharmacol. 
2024;220:115996.

 55. Wu D, Zhou Y, Pan Y, Li C, Wang Y, Chen F, et al. Vaccine against PCSK9 
improved renal fibrosis by regulating fatty acid β-oxidation. J Am Heart 
Assoc. 2020;9:e014358.

 56. Lee C, Kwak SH, Han J, Shin JH, Yoo B, Lee YS, et al. Repositioning of 
ezetimibe for the treatment of idiopathic pulmonary fibrosis. Eur Respir J. 
2024;63:2300580.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	Exploring the causal effect between lipid-modifying drugs and idiopathic pulmonary fibrosis: a drug-target Mendelian randomization study
	Abstract 
	Background 
	Methods 
	Results 
	Conclusions 

	Introduction
	Methods
	Genetic instrumental variables for lipid traits and lipid-modifying targets
	eQTL data
	Outcome GWAS
	Statistical analysis

	Results
	Lipid traits and IPF risk
	Lipid-lowering drugs and IPF risk
	Gene expression and IPF risk

	Discussion
	Conclusions
	Acknowledgements
	References


