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Abstract

clinical application in predicting treatment outcome.

Transmission, Treatment outcome, Lineage

Mycobacterium tuberculosis (Mtb), the main etiology of tuberculosis (TB), is predominantly an intracellular pathogen
that has caused infection, disease and death in humans for centuries. Lipid droplets (LDs) are dynamic intracellular
organelles that are found across the evolutionary tree of life. This review is an evaluation of the current state of
knowledge regarding Mtb-LD formation and associated Mtb transcriptome directly from sputa.

Based on the LD content, Mtb in sputum may be classified into three groups: LD positive, LD negative and LD
borderline. However, the clinical and evolutionary importance of each state is not well elaborated. Mounting
evidence supports the view that the presence of LD positive Mtb bacilli in sputum is a biomarker of slow growth,
low energy state, towards lipid degradation, and drug tolerance. In Mtb, LD may serve as a source of chemical
energy, scavenger of toxic compounds, prevent destruction of Mtb through autophagy, delay trafficking of
lysosomes towards the phagosome, and contribute to Mtb persistence. It is suggest that LD is a key player in the
induction of a spectrum of phenotypic and metabolic states of Mtb in the macrophage, granuloma and
extracellular sputum microenvironment. Tuberculosis patients with high proportion of LD positive Mtb in
pretreatment sputum was associated with higher rate of poor treatment outcome, indicating that LD may have a

The propensity for LD formation among Mtb lineages is largely unknown. The role of LD on Mtb transmission and
disease phenotype (pulmonary TB vs extra-pulmonary TB) is not well understood. Thus, further studies are needed
to understand the relationships between LD positivity and Mtb lineage, Mtb transmission and clinical types.
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Introduction

Mycobacterium tuberculosis

The genus Mycobacterium encompassed over 170 spe-
cies and the pathogenic species are classified in to three:
Mycobacterium tuberculosis complex (MTBC:
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Mpycobacterium tuberculosis, Mycobacterium africanum,
Mycobacterium bovis, Mycobacterium microti, Mycobac-
terium canettii, Mycobacterium caprae), Mycobacterium
leprae and M. ulcerans. Among the species in MTBC,
Mycobacterium tuberculosis (Mtb) is the main etiological
agent of tuberculosis (TB) and is an intracellular patho-
gen that has ravaged humanity for centuries [1]. The
evolutionary success of Mtb is attributed to its ability to
flip-flop between different metabolic/phenotypic states,
adaptation to diverse microenvironments, inhibition of
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phagolysosome fusion, and formation of necrotic granu-
loma [2, 3]. More than 24.8% of the global human popu-
lation may harbor Mtb [4] in different fatty tissues [5] in
the form of latent TB. Ten million active infections and
1.4 million deaths were reported in 2019 [6]. The lipid-
rich sputum, and its source pulmonary granuloma
microenvironment carries phenotypically heterogeneous
population of Mtb [7].

Lipid and lipid droplet in M. tuberculosis

Lipid is an inclusive term for fats and lipoids. Lipids in-
clude all of the alcohol ether soluble constituents of
protoplasm such as fats, oils, waxes and several complex
lipids (phospholipids, glycolipids, sulfolipids, aminoli-
pids, chromolipids, and fatty acids) [8, 9]. Mycobacteria
contain different types of structural [10, 11] and non-
structural [12] lipids. Lipids are a major source of energy
[13] and play a vital role in virulence, pathogenicity, and
persistence [3]. Unlike other prokaryotes, 60% of Mtb
cell-wall constituents are lipids, mainly mycolic acids.
Moreover, 40% of the dry weight of mycobacteria is de-
rived from lipids. Mtb stores its chemical energy in the
form of neutral lipids by forming emulsion vesicles in-
side the aqueous phase cytoplasm [14]. In general, lipids
are the rations, attire and armor of Mtb [15]; as such,
the diagnosis, treatment, drug resistance [16] and im-
munological lifecycle of Mtb [17] is heavily relies on
membrane and/or cytoplasmic lipids.

Cells store excess lipids inside the cytoplasm and this
stored lipid is known by different names depending on
the type of cells and tissue. These names includes lipid
droplet (LD), lipid body (LB), intracellular lipid inclu-
sions (ILI), oil body (OB), adiposome, spherosome and
oleosome. Lipid droplets are pervasive and dynamic sub-
cellular organelles of diverse morphological and func-
tional diversity [18-21] across evolutionary tree of life.
Lipid droplets comprised of a hydrophobic core of neu-
tral lipids (triacylglycerol, TAG and cholesterol ester,
CE) surrounded by a phospholipid monolayer of phos-
phatidylcholine (PC), phosphatidylethanolamine (PE),
phosphatidylinositol (PI) and lyso-phospholipids; deco-
rated with different types of proteins such as Perilipins
(PLIN) [22, 23] (Fig. 1). For a detailed understanding re-
garding the (cell) biology and biophysics of LD, readers
are advised to refer these excellent reviews [26, 27].

It was demonstrated that the LD of Mtb is derived
from host fatty acids and that isocitrate lyase (encoded
by icl) is the responsible enzyme that catabolizes fatty
acids (FA) through glyoxylate cycle. Triacylglycerol syn-
thase 1 (coded by tgsI) is the primary enzyme involved
in triacylglycerol (TAG) synthesis and that the deletion
of the zgsl gene led to complete loss of TAG accumula-
tion by Mtb [28]. The role of sputum derived LD posi-
tive Mth in treatment outcome and transmission has
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been demonstrated [29]. The presence of LD-positive
Mtb bacilli in sputum is a biomarker of slow growth,
low energy state, lipid degradation, anaerobic metabol-
ism, and non-mutational drug tolerance. Sputum-
derived LD-positive Mtb transcriptome data reveals dis-
tinct patterns of gene expression; displaying up- and
down-regulation of specific metabolic pathways in spu-
tum microenvironment. In general, the LD profile and
transcriptome of Mtb directly from sputa are real-time
metabolic, phenotypic and physiological markers of the
Mtb population diversity and dynamics. However, the
relationships between Mtb LD with Mtb lineages, Mtb
transmission capacity and clinical pathology (i.e., pul-
monary TB vs extra pulmonary TB) are not well studied
or understood. We hypothesize that LD-loaded Mtb cells
in sputum are like “rocket blast off for planned orbital
mission”. Thus, this review synthesized the current state
of Mtb LD knowledge and showed gaps for fueling fu-
ture areas of research.

Advent of M. tuberculosis lipid droplet research
The presence of fatty material inside the cytoplasm of
prokaryotic cells was first demonstrated in 1946 by Bur-
don using the technique of Sudan black intracellular
staining [30]. According to this classic experiment, no-
ticeable amounts of LD were found in the majority of
studied bacteria [30]. At that time, more LDs were ob-
served in saprophytic and Mycobacterium leprae than in
Mtb species [30]. With the aim of determining the pre-
cise organization of lipids in the envelope domain of liv-
ing Mycobacteria, Christensen et al 1999 [31] developed
an improved (fluorescent lipophilic probes) technique
that is less disruptive than detergents [32] or ultra-
sonication [33]. After probe labeling of cultivated Mtb,
cells were observed by phase-contrast and epifluores-
cence microscopy. Using this technique, distinct lipid
domains of Mycobacteria were visualized, including the
envelope and LDs [31]. Generally, the lipid domains of
Mycobacteria are comprised of three parts; the annular
envelope, internal peripheral deposits contiguous with
the envelope, and distinct LDs that are not associated
with the envelope [31].

Following Burdon [30] and Christensen et al [31], Gar-
ton and colleagues [29] advanced the field through bio-
chemically characterizing LD in M. smegmatis and Mtb,
and by analyzing factors affecting lipid formation, and
the synthesis pathways in these mycobacterial species.
The effects of various chemicals and growth conditions
on LD were examined using Youmans' and Middle
brook 7H10 culture medias. Cells were stained with
Auramine-O followed by Nile red and then stained re-
gions were detected by epifluorescence microscope. Im-
ages were captured using a microcomputer controlled
CCD camera [29]. The findings showed that, in low-
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Fig. 1 A:Necrotic granuloma, B: Foamy macrophages that contain LD-positive Mtb in granuloma tissue, phagocytosed Mtb C: Lipid droplet. A:
The necrotic granuloma is a cryptic infectious immunopathological architecture and compacted collection phagocytic cells. It is the hallmark of
tuberculosis [24]. Evidence showed that, except macrophages which serve as a feeder for new Mtb infection, innate immunity has only a little
role in the initiation of granuloma formation and bacterial virulence factors such as trehalosdimycolate and ESX-1 are the driving factors for
priming granuloma formation [25]. Once it is primed, dendritic cells migrate to regional lymph nodes, activate Th cells making the granuloma
mature through layering of cells (macrophage, foamy macrophage, epithelioid, T cells and fibroblasts) [25]. The macrophage is the predominant
phagocytic cell which occurs in differentiated forms. These are epithelioid, multinucleated giant cells, foamy macrophages and ruffled membrane
macrophages [24]. Mtb might be found in the granuloma microenvironment due to rupture of phagosome and foamy macrophages. When the
granuloma ruptures Mtb will be seeded to the environment through coughing, sneezing and talking. The metabolism and the level of stress in
each microenvironment is different, driving Mtb into at least three distinct phenotypic and metabolic states; actively replicating (green), Lipid
droplets (LD) loaded persister phenotype (red) and borderline between the two states (yellow). B: A macrophage that ingests Mtb through
phagocytosis may harbor multiple Mtb phenotypes and may become a warehouse of lipid and serving as an energy reserve. These lipid-loaded
macrophages are called foamy macrophages). C: Lipid droplets are composed of a hydrophobic core of neutral lipids (triacylglycerol, TAG and
cholesterol ester, CE) surrounded by a phospholipid monolayer (phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol
(Pl) and lyso-phospholipids) decorated with different proteins. LD is an efficient energy storage organelle, as the most compacted and efficient
means to store excess lipid in cells. Figures are created with BioRender.com
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carbon Youmans’ broth (YB), M. smegmatis showed high  identified the chemical composition of LD in M. smeg-
annular pattern and low level of LD. In contrast, in low-  matis. For this, the non-polar lipids were extracted and
nitrogen YB, the annular labelling was lost and promin- analyzed using thin layer chromatography, Proton Nu-
ent LDs were observed. In addition, this study proved clear = Magnetic  Resonance (NMR) and gas
that LDs were formed during stationary-phase of growth.  chromatography-mass spectrometry (GC-MS). The re-
Furthermore, this study confirmed apparent indifference  sults showed that TAG was the principal component.
to carbon sources such as glucose vs glycerol on LDs  Extending the M. smegmatis research above into patho-
formation. However, addition of exogenous fatty acids genic Mtb isolated from TB patients’ sputa confirmed
(oleic or palmitic) promoted the formation of LD, con- the presence of LD in Mtb from sputum, and from sta-
firming the decisive role of fatty acids for Mtb energy tionary phase of cultured Mtb [29]. LD synthesis path-
systems and structural carbon sources. Further analysis way analysis showed that TAG might be imported
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directly from macrophages or synthesized de novo [12,
13]. For a detailed understanding of LD nucleation,
readers are advised to refer to excellent reviews else-
where [34-36].

Lipid droplets in macrophage and Mtb
evolutionary arms race

Mtb can exist extracellularly in the granuloma microen-
vironments, or in the cytoplasm or phagosome of
(foamy) macrophages (FM). Several hypotheses have
been proposed regarding the survival strategies of Mth
inside the acidic phagosome of macrophage [37]. From
these, the majority of studies support the view that Mtb
survives inside the hostile phagosome environment by
avoiding the fusion of lysosome with phagosome [38-
41]. Briefly, Mtb avoids phagolysosome amalgamation
through retaining immature phagosome markers (Rab5,
Rab11l and Coroninl/TACO) and blocking the recruit-
ment of mature endosome markers (Rab7, CD63 and
Cathepsin D) at phagosome surfaces [37].

A second view suggests that phagolysosome fusion oc-
curs, but that Mtb resides inside the hostile phagosome
environment through upregulation of serine proteases
such as Mycobacterial acid resistance Protease (MarP)
[42]. MarP is an acid tolerance and virulence factor. The
seminal experiment was carried out by Botella et al.
(2017) to differentiate whether Mtb survival is via acid
tolerance or phagolysosome fusion avoidance. To resolve
this issue, two transposon mutants were prepared;
marP:Tn (acid susceptible) and ptpA:Tn (flysosomal
trafficking for enhancing lysosomal action). The study
confirmed that, marP:Tn mutants became hypersuscep-
tible to lysosomal content and growth attenuation oc-
curred. Furthermore, 25 times higher attenuation rate
was observed among marP:Tn (acid susceptibility) than
ptpA::Tn (phagolysosome fusion) mutants. This showed
that lysosomal acid tolerance was a more significant de-
terminant than avoidance of phagosome-lysosome fusion
[42]. Botella and colleagues further elaborated the mech-
anism of action of MarP. Accordingly, RipA, a peptido-
glycan hydrolase is a substrate for MarP and acid
tolerance is achieved when MarP cleaves RipA for its
biological function [43].

The third hypothesis suggests that Mtb survives inside
the phagosome through its interaction with host LD.
Host LD helps Mtb-phagosome evading the macro-
phage’s defense systems [44]. In this survival pathway,
the different Mtb cell wall components are participated.
For instance, lipoarabinomannan (LAM) block endo-
some maturation and phosphatidylinositol mannosides
(PIM) nourish the pathogen [44]. Additionally, the LucA
protein from Mtb forms a complex with Mcel and
Mce4 fatty acid transporters to scavenge cholesterol and
fatty acids from the cytoplasm of the macrophage [45].
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The conclusion is that two or more of these survival
strategies are employed by Mtb. Figure 2 below illus-
trates these Mtb survival strategies.

Whether macrophage LD formation is in favor of
pathogen survival or part of the host defense is a sub-
ject of on-going debate. Some studies suggest that
host LD gives an evolutionary advantage to the bacilli
by serving as depot of chemical energy [28, 44, 48]
and shelter [49, 50]. In Barisch et al (2017) review,
host LD is found in close apposition to the Mth
phagosome, serving as a lipid supply for Mtb LD for-
mation via fusion, coalescence or lipophagy-dependent
internalization [48]. Peyron et al (2008) supported this
hypothesis [51], showing that FM formation is a
unique feature of pathogenic Mycobacteria (Mtb, M.
avium) and oxygenated mycolic acid played a role in
the differentiation of macrophages into FM. Peyron
and colleagues infect macrophages with Mtb and
scanned the formation of the granuloma at days 3
and 11 using electron microscopy. At 3-days after in-
fection, Mtb was found only inside the phagosome or
around the granuloma microenvironment but not in-
side the cytoplasm of FM. At 11-days post infection,
the FM population increased from 9% (day ® post in-
fection) to 41%, the size of LD of FM were also in-
creased (>5 LD/FM), and 1-20 phagocytosed Mtb
were observed. While 60% of phagosomes were evenly
distributed in the cytoplasm of FM, nearly 21% of
phagosomes were stationed in close proximity to the
EM-LD and progressive engulfment was observed.
This study also noted that only Mtb that transferred
from the phagosome to FM-LD became LD positive,
thereby proposing that Mth LD may be derived from
FM-LD [51]. According to Daniel et al. (2011), hyp-
oxia is also another key factor for macrophage LD
formation, where host LD in the form of TAG were
incorporated into Mtb LD [28]. Taken together, these
studies support the view that, host and Mtb LDs
benefit the evolutionary success of the pathogen.

In apparent contradiction to the above research, a
study by Knight et al. (2017) suggested that host LD for-
mation is entirely dependent on IFN-y/HIF-1a activation
and few LDs are observed without these cytokines. For
instance, when primary murine bone marrow derived
macrophages were infected with Mtb, very few, (average
of <1) LD were formed by macrophages. However, a
large number of LD (average of >10 LDs/macrophage)
were formed when these Mitb-infected macrophages
were treated with IFN-y; 100% of macrophages accumu-
lated LD. Additionally, the authors showed that Mtb can
extricate different types of lipid from the host. Knight
et al. concluded that Mtb LD and host LD formation are
two opposing and uncoupled phenomena; where Mth
LD are synthesized as means of Mtb survival, whereas
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Fig. 2 Survival strategies of M. tuberculosis inside the phagosome environment. This figure illustrates the mechanisms proposed to allow Mtb to
survive inside the phagosome or Mtb escaping mechanisms from host defense. (1) Mtb survives inside the hostile phagosome by expressing
Mycobacterial acid resistance Protein (MarP), a protein that buffers the acidic milieu. (2) Mtb survives inside the phagosome and evades the host
immune response by residing apposition to the host lipid droplet. (3) Mtb avoids phagosome maturation and phagolysosome fusion by tagging
early endosome markers (Rab5, Rab11, coronin1/TACO) and avoiding attachment and activation of several others (Rab7, CD63, lysosomal
hydrolase, cathepsin D), which inhibits the proton—-ATPase activity. Mtb accomplishes this by expressing various virulent factor lipoproteins (Man
LAM, secreted phosphatase, lipid phosphatidylinositol 3 phosphate, phosphatase ptpA, TDM). (4) Mtb exits the phagosome and replicates inside
the cytoplasm by rupturing the phagosome expressing ESX-1, DIM/PDIM, and phospho lipase A2 [46]. This phagosomal escape is advantageous
to the pathogen for acquiring essential amino acids (arginine, methionine, or leucine), replication and dissemination [47]. Mtb: M. tuberculosis;
Man LAM: Mannosylated lipoarabinomannan; TDM: Trehalose-6,6-dimycolate; ESX-1: Early secretary antigenic target 6 (ESAT6) secretion system
like protein; TACO: tryptophan aspartate containing coat protein, also named P57, Coronin1; DIM/PDIM: phthiocerol dimycocerosates. Figure is
created with BioRender.com
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host LD synthesis is a mechanism of host defense [52]. molecular patterns (PAMP) [60, 61]. The host LD and
Other studies have also reported that the accumulation  the Mtb cell wall lipid components are also essential for
of LD in the macrophage cytoplasm is part of a coordi- Mtb survival by avoiding autophagy and delaying lyso-
nated host defense mechanism [52-54]. somal trafficking towards the phagosome [62, 63].

The up-regulation of Mtb genes (hspX, icll, tgsl, dosR,
lipY, pckA) related to LD metabolism and hypoxia in the  Clinical relevance of M. tuberculosis lipid droplets
granuloma and inside the phagosome environment con-  Dynamics and role of LD positive Mtb during TB
firmed the rescue function of Mth-LD [55]. Taken to- treatment
gether, the evidence supports the view that Mth LD  Sloan et al 2015 hypothesized that the proportion of LD-
formation serves the pathogen, and may act as a source  positive Mtb in sputum influences the outcome of TB
of chemical energy [12, 56], shelter of genomic DNA  treatment. To address this, sputum culture and
[50], scavenger of toxic free fatty acids [12], creating Auramine-LipidTox staining of sputum smears were car-
non-mutational phenotypic heterogeneity [7] such as ried out on consecutively collected samples through the
formation of antibiotic tolerance [55, 57-59] and evad- treatment period and the treatment outcome was re-
ing host immune cells by hiding its pathogen associated corded as good or bad [64]. The study found a higher
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proportion of LD-positive Mtb among patients with poor
treatment outcome [64]. Kayigire et al (2015) assessed
the dynamics of LD positive Mtb in sputum over treat-
ment period. The study identified three types of Mtb in
TB patients; vegetative cells that stained positively with
Auramine-O (green), LD-positive Nile-red stained Mtb
(red) and Mtb cells stained by both (cream cells; that
were borderline between the two), whose relative pro-
portions changed over the course of treatment. Prior to
the start of anti-TB treatment, green cells predominate
and LD-positive cells (red) shared a small proportion of
all Mtb. As treatment proceeded, there was a clear shift
towards fewer replicating/green Mtb cells and more bor-
derline and red LD-positive cells [65]. Taken together,
these data suggested the value of LD staining techniques
for monitoring treatment outcomes. Since LD-positive
Mtb appear to be drug-tolerant (or drug-resistant) and
refractory to staining with Auramine O, techniques tar-
geting these phenotypes might have higher resolution
and become a sensitive biomarker for treatment moni-
toring and predicting treatment outcome. More-
over, such studies may combine with drug discovery
programs that target drug-tolerant populations of Mtb
[66-68].

The role of Mtb-LD in TB transmission

The role of LD in Mtb transmission is a controversial
issue that warrants further scrutiny [29, 69]. Jones-Lépez
and colleagues determined the variation in Mtb trans-
mission from infected households to their close contacts.
The finding showed significant heterogeneity of AMtb
transmission among human living together in a single
household. This study classified isolates into Mtb high
transmission (Mtb-HT) and Mtb low transmission (Mtb-
LT) strains [69]. According to this study, Mtb-LT iso-
lates showed an increased LD accumulation than Mtb-
HT isolates. Moreover, in Animal model study by Verma
et al, Mtb-LT isolates showed high growth rate. Further-
more, diffused inflammatory lung pathology, high CD8+
T cells, high inflammatory response and high mortality
rate were observed among TB patients infected with
Mtb-LT isolates. On the contrary, well defined circum-
scribed lesions, high degree of granuloma, caseous ne-
crosis, cavitary lesion and high transmission rate were
found among patients infected with Mtb-HT isolates.
Hence, this study suggest that the presence of LD per se
does not confer a specific transmission fitness and trans-
mission phenotype [70], a result in contrast with the
Garton et al study [29]. Collectively, TB transmission
rate is deduced to be driven by several factors and TB
transmission study should consider clinical presentation,
host immunity, pathogen and environmental axis. Since
sputum derived Mtb are phenotypically and metabolic-
ally heterogeneous, which phenotypes (containing
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differing proportions of LD positive Mtb, LD negative,
border line or all types) are more transmissible is un-
known and further study is required.

LD-positive Mtb in pulmonary and extra pulmonary TB
Little is known about the relationship between Mtb-LD
formation and clinical manifestation of disease as pul-
monary TB (PTB) versus extra-pulmonary TB (EPTB).
Lung is the primary site of TB disease initiation and
lymph node is the primary site of adaptive immune initi-
ation. Initiation of an adaptive immune response to Mtb
depends on the transport of live bacteria from the lung
to the mediastinal lymph nodes, and delay of this
process may be advantageous for the pathogen [71].
Ganchua et al (2018) suggested that the lymph node
(LN) provides an ecological niche for Mtb, based on evi-
dence of higher survival of Mtb in the LN than in lung
granuloma. This may be because granulomas that form
in LNs lack B cell-rich tertiary lymphoid structures.
With this, LNs are not only sites of antigen presentation
and immune activation during infection, but also a niche
that is protected from adaptive immune-mediated re-
sponses [72]. Severe diseases like EPTB is the outcome
of a co-evolutionary mismatch [73]. The pathogen’s fit-
ness depends on its ability to cause a high level of dam-
age to its human host [73, 74]. Little is known about
relative proportions of LD-positive Mtb in pulmonary
parenchymal and lymph node tissue. In this regard, Maji
and colleagues analyzed the transcriptome of tubercular
lymphadenitis tissue and observed downregulation of
host lipid metabolism related genes, in contrast to pul-
monary tissue. This study confirmed the differential ex-
pression of lipid metabolic signatures between TB
lymphadenitis and PTB [75]. However, the Mtb-LD re-
lated transcriptome and the proportion of LD positive
Mtb among PTB and EPTB was not determined. The
observation of a shift from predominant pulmonary TB
to predominant LN-associated TB in certain geographic
regions like Ethiopia, is provocative. The link between
Mtb lineages and type of TB (PTB Vs EPTB) is unclear
[76, 77] and some association between Mycobacterium
africanum (MAF) and EPTB [78-80] have been re-
ported. In general, LD formation profiling among Mtb
and MAF isolates disaggregated by types of TB (EPTB
Vs PTB) might narrow the existing knowledge gap.

Lipid droplets formation and Mtb lineages

The Beijing lineage (lineage 2) of Mtb appears to be the
slowest in time to culture conversion after the start of
anti-TB treatment [81]. A study comparing the phenolic
glycolipid (PGL), TAG and dosR regulon of Beijing line-
ages with lineage 3 and lineage 4 showed striking vari-
ation among lineages [82]. Briefly, while 10, 60 and 80%
isolates under Beijing lineages (groups 3, 4 and 5
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respectively) contain PGL, other strains from Beijing and
non-Beijing lineages did not produce PGL. Additionally,
while all the 36 isolates from Beijing lineages included in
the analysis produced TAG, the 18 non-Beijing lineages
included in the analysis failed to synthesize detectable
amounts of TAG during in vitro aerobic culture [82].
However, while the authors reported 100% TAG produc-
tion in Beijing lineage (L2 strains), they reported no ac-
cumulation of TAG in L3 and L4 Mtb isolates, a result
that seems very unlikely. The culture conditions might
be one factor leading to this discrepancy.

Diarra et al (2018) conducted a prospective cohort
study to determine whether M. africanum (MAF, L6) re-
sponds faster to TB treatment more quickly than Mth-
L4, using Auramine O and Fluorescein Diacetate (FDA)
viability stains. The authors found that MAF responded
better to TB treatment but time kill kinetics was slower
for MAF than L4 [81]. One would predict that slow
smear conversion might lead to more transmission and
drug resistance, however, based on clustering and drug
resistance data, rates of transmission and drug resistance
were not higher for MAF compared with Mtb [83, 84].
The link between poor treatment outcome, drug toler-
ance and LDs is well explained elsewhere [28, 64, 65].
The slow growth rate [79, 81, 85] and slow clinical re-
covery rate associated with MAF strains among TB cases
has also been reported elsewhere [86]. Similar to MAF,
Mtb lineage 7, which is restricted to Ethiopia and the
Horn of Africa, grew more slowly in vitro and produced
smaller colonies on solid media [87] in comparison to
other Mtb strains. It is not known whether any of these
characteristics correlate with LD. Collectively, the pro-
pensity of Mtb LD formation among lineages is known
and a simple LD comparative analysis might provide
insight regarding the differential LD formation among
Mtb lineages.

The proportion of LD-positive Mtb in sputum

The clinical relevance of LD-positive Mtb bacilli in spu-
tum was first elucidated by Garton and colleagues [29,
88]. These studies concluded that the proportion of LD-
positive Mtb in sputum lies between 3 and 86%, with 2—
8 LDs/bacilli [29]. Growth rate is significantly associated
with the proportion of LD-positive Mtb bacilli in sputum
[29]. Garton and colleagues concluded that the replicat-
ing phenotypes of Mtb in sputum were a minor compo-
nent, and LD-positive Mtb bacilli were predominant.
This report contrasted with that of the cell culture study
by Daniel et al [28]. Daniel et al characterized dynamic
of Mtb LD formation inside the hypoxic FMs incubated
under 1% O, After 0, 3, and 5 days of incubation from
this hypoxic state, Mtb recovered from FMs were stained
with dual Auramine-O and Nile red staining techniques.
It was found that the fraction of the Mtb population
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positive for Auramine O staining decreased from ~ 86%
at day-0 to ~40% at day-5, while Nile Red-positive LD-
positive cells increased with time from ~ 35% prior to
hypoxic treatment to ~ 81% at day-5 of 1% O, (hypoxia)
treatment, more than two-fold increment [28]. Taken to-
gether, studies which could determine the Mtb popula-
tion (LD positive, LD negative, borderline) dynamic is
desirable.

Transcriptome profile of M. tuberculosis from
patient sputa

The spectrum of Mth metabolic reprogramming is better
studied through transcriptome profiling. This is because
the transcriptome of sputum-derived Mtb provides
genome-wide information on the real time metabolic
state of Mtb populations. In addition, the state of Mtb
metabolic reprogramming is more readily ascertained
from transcriptome data than from genomic data,
through quantifying the changing expression levels of
Mtb transcripts in distinct physiological conditions.
Hence, evidences on this subtopic are synthesized from
the transcriptome of sputum-derived Mtb in comparison
with the transcriptomes of Mtb grown in vitro culture
and over the course of TB treatment. This section
reviewed only original articles and the methodology of
the studies are summarized in Table 1.

The key findings of the individual studies referred in
Tables 2. The transcriptome data showed distinct tran-
scriptome profiles which might be explained by differ-
ences in the technique, study populations and number
of genes targeted. The sputum-derived Mtb transcrip-
tome relatively mirrored the lung/ broncho alveolar lav-
age (BAL) derived Mtb transcript profile. The slight
differences between the two (sputum and BAL) might be
due to the higher hypoxic state of the lung than upper
respiratory tracts such as bronchi and oral cavity. Hence,
sputum Mtb transcriptome profiling might be a substi-
tute for the BAL transcriptome for assessing Mtb patho-
genesis and treatment conditions [93]. Comparing the
Mtb transcriptome in lipid and dextrose rich medium
did not showed significant differential expression [60].
The sputum-derived Mtb transcriptome is quite different
from exponentially growing Mtb in animal models and
in-vitro.

Relative to pretreatment expression, the mRNA abun-
dance decreased by 50% over 12 h during the first 2 days
of anti-TB treatments shots [94]. Over the course of
anti-TB treatment, genes encoding drug activating en-
zymes such as a catalase peroxidase (katG), nicotinami-
dase/pyrazinamidase (pncA), and Ethionamide activator
(ethA) showed repression, indicating that majority of the
Mtb populations are dying and entered into drug related
stress tolerance state [94]. Genes related to persister
phenotypes such as triacylglycerol synthases and, ATP-
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Table 1 Transcriptome profiling and validation techniques used for Mtb sputum transcriptomics
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Comparative transcriptomics of SMtb RNA profiling method Validation #Transcript Reference
SMtb vs culture with 7H10 agar /7H9 broth/Dubos ° Microarray qRT-PCR 516 [29]
SMtb vs culture Microarray gRT-PCR 557 [89]
SMtb vs MAF/Mtb gRT-PCR 2179 [90]
SMtb vs Exponential phase of liquid culture Dual RNA seq Nano String 198 [91]
SMtb vs Stationary phase of liquid culture Dual RNA seq Nano String 392 [91]
Sputum vs MGIT 460 culture Microarray gRT-PCR 1083 [92]
SMtb at Day 3 vs SMtb at day0 treatment Microarray gRT-PCR 109 [92]
SMtb at Day7/14 vs day 0 treatment Microarray gRT-PCR 39 [92]
Lipid rich Dubos broth® vs Dextrose rich Dubos broth® RNA seq gRT-PCR - [60]
SMtb/ BAL-Mtb vs 7H9/ DTAS culture gRT-PCR - [93]
SMtb before Rx vs SMtb after Rx gRT-PCR gRT-PCR 2411 [94]
Sputum Mtb vS culture H37Rv Microarray gRT-PCR - [95]

#7H10 agar with oleic acid-albumin-dextrose-catalase supplement or in 7H9 broth with albumin-dextrose-catalase supplement, 0.2% glycerol and 0.05% Tween-80.
Hypoxic (non-replicating persistence) cultures M. tuberculosis strains H37Rv and CH were grown in Dubos Tween albumin broth. ®Dubos broth (Difco), without
glycerol, containing 0.5% albumin, supplemented with either 0.2% dextrose or a lipid mixture (oleic acid, palmitic acid, stearic acid, at final concentration of
0.001% each, plus 0.01% cholesterol). “7H9 media (0.05% Tween 80, 0.2% glycerol, 10% ADC supplement)/ DTA: Dubos Tween albumin; for the NRP-2 model was
grown in 100 mL Dubos Tween albumin (DTA). SMtb sputum-derived M. tuberculosis, Mtb Mycobacterium tuberculosis, vs versus, Rx treatment, MAF
Mycobacterium africanum, L4 Lineage 4, gRT-PCR Real-Time Quantitative Reverse Transcription PCR, RNA seq RNA-sequencing, DTA Dubos Tween, BAL Broncho

alveolar lavage

binding cassette transporter and toxin molecules were
induced [94].

In terms of energy utilization, the ATP synthase op-
eron in sputum was downregulated and the transcrip-
tome of sputum-derived Mth was more similar to the
transcriptome of Mtb during stationary phase growth
than during exponential growth of Mtb in-vitro. De-
crease in abundance of phoP and esx transcripts indi-
cated a switch to lipolysis and decreased virulence [91].
PhoPR a two-component system is essential for viru-
lence through its secretary function and its mutation
leads to a loss of virulence [96]. Because the Mtb in spu-
tum has originated from a granuloma rich in lipid, it is
not unexpected that the transcriptome of sputum-derived
Mtb microenvironment is enriched for transcripts in-
volved in lipid metabolism [91, 92], microaerophilic res-
piration, low energy state, and persistence [29, 94].

The DosR regulon (dosR) which constitutes over 50 genes
[4] is activated by low oxygen tension [97] and accumula-
tion of oxygen byproducts such as H,O, CO, NO, and
ethanol [98]. The dosR regulon is over expressed in sputum
and during anti-TB treatment [92, 94] compared with log
phase in vitro culture [92, 93]. The expression of the dosR
regulon is likely a general indicator of bacteria’s tolerance
to oxygen and may have no direct role in LD metabolism.
Hence, while expression of the dosR regulon is observed in
both growing and persister populations of Mtb [29, 99], its
expression is dependent on the degree of the hypoxic state.
Comparatively upregulation of dosR regulon was observed
among Lineage 2 Mtb than Lineage 4 Mtb from sputum
[91] and among Mth-L4 than among MAF-L6 [90]. These
results suggest that upregulation of the dosR regulon is an

indicator of the aerophilic state of Mtb/MAF rather than a
marker of metabolic states linked to LD.

M. tuberculosis genes such as dosR regulon, hspX,
mprAB and PE/PPE and those involved in the glyoxylate
shunt, methylcitrate cycle, cholesterol catabolism, nitrate
reduction metabolism were upregulated relative to log
phase control H37Rv cells grown in vitro [29, 89, 91,
92]. In contrast, the tricarboxylic acid (TCA) cycle, elec-
tron transport chain (ETC), polyketide synthase, ESX se-
cretion apparatus, mycolic acid synthesis, NADH
dehydrogenase and cytochrome c reductase were down-
regulated in sputum-derived Mtbh compared to log phase
aerobic in vitro culture [91, 92]. During treatment,
downregulation of ESX secretion and anti-TB drug acti-
vating enzymes were noticed compared with pre-
treatment sputum Mtb [94]. When under extreme stress,
NRP-2 state, anaerobic respiration and dosR were upreg-
ulated and genes involved in growth and metabolism
were repressed [93] (Table 2). Garcia et al concluded
that the transcriptomes of BAL and sputum-derived Mtb
reflect a moderate level of hypoxia approximately mid-
way on a spectrum of the hypoxic state between aerobic
growth and NRP-2 [93]. En masse, the majority of genes
from the information pathway, cell wall and cell pro-
cesses, virulence, detoxification, adaptation, secretion,
transport, intermediary metabolism and respiration [89]
are repressed in Mtb from direct sputum.

Anti-TB treatment is typically monitored by microscopy
and culture conversion. However, such techniques are inad-
equate for the detecting non-replicating drug-tolerant Mtb,
which is important for predicting treatment duration, treat-
ment outcome and drug resistance. Techniques measuring
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Table 2 The summary of transcriptomes of M. tuberculosis in sputum versus other conditions, 2021

Transcriptome In vitro URG in sputum Mtb DRG in sputum Mtb Ref
condition comparator
SMtb vs Culture  7H10 agar  dosR, icll, hspX, nark2, tgs1, PE/PPE nuoB, qcrC, and ctaD [29]
/7H9 broth/
Dubos?
SMtb Vs Culture  No Conserved Hypotheticals. mprAB: dosR is stable pks15/1, pks10 [89]
information Pks12, phoP, ESX 1-ESX-5
SMtb Vs Culture  Liquid ACOD1/IRGT, GLUTT, MCT4, ESX-3, Rv0106, Rv2990c, TCA cycle, ETC, NADH dehydrogenase, pentose [91]
culture ESX-3, mprA phosphate pathway (PPP), NAPDH, ROS. PhoP, small
RNA mcr7, pks12, esat-6 and cfp-10, phoP
SMtb Vs Culture  MGIT 460 Glyoxylate shunt, methylcitrate cycle (ic, proC and gltA2, kgd, mdh, korA/B, sucC, nv0247c¢/48c, fumC and [92]
rv1129c), catabolism of cholesterol and fatty acids, and ~ mqo), FAS-1 (fas), FAS-Il, mmaA2/3/4, cmaA2, pcaA,
tgs; Nitrate reduction (nark2/3). dosR nrdZ, narKk2, fadD32 and pks13, NADH dehydrogenase, cytochrome
rv1738, pfkB, hspX, hrp1,rv3126¢ and rv3128¢ C reductase
SMtb Vs culture  7H9/ DTAS  sputum and BAL had significant up-regulation of the Ribosomal genes and primary metabolism genes [93]
dosR regulon
Day 7-14days  None Anaerobic respiration, PE/PPE genes, is, TCA cycle, ATP synthesis, ribosomal proteins, pks, £SX,  [94]
Vs dayO applicable  dosRtranscriptional factors, oxidative stress, sigma replication, efflux pumps, drug-activating enzymes &
factors, toxin-antitoxin modules, drug targets
SMtb at day 3/ None Mtb responses at 7 and 14 daysduring chemotherapy ~ methylcitrate [92]
7/14Vs day O applicable  were most similar to that of bacillibefore drug therapy
Rx had begun
Day14 Vs day2  None tgs, and ATP-binding cassette transporter and toxin. ESX and ribosomal genes, drug-activating enzymes [94]
applicable Rv1258¢, bacA, and mmr, rpoB. TA modules, sigma katG, pncA, and ethA, gyrase, bedaquiline target atpE
factors
BAL vs sputum  7H9/ DTAS  dosR regulon expression was higher in BAL than in BAL had lower expression of ribosome proteins [93]
sputum
Lipid-NRP1 Vs Dubos Higher virulence, detoxification & adaptation, lipid Insertion sequences & phages [60]
Dextrose-NRPT  broth® metabolism, intermediary metabolism& respiration,
regulatory protein
In NRP-2 state  7H9/ DTAS  dosR regulon, oxidative stress responses, anaerobic Growth and metabolism [93]

respiration

The list of genes up /down regulated is not exhaustive, only common genes listed

27H10 agar with oleic acid-albumin-dextrose-catalase supplement or in 7H9 broth with albumin-dextrose-catalase supplement, 0.2% glycerol and 0.05% Tween-80.
Hypoxic (non-replicating persistence) cultures M. tuberculosis strains H37Rv and CH were grown in Dubos Tween albumin broth. ®Dubos broth (Difco), without
glycerol, containing 0.5% albumin, supplemented with either 0.2% dextrose or a lipid mixture (oleic acid, palmitic acid, stearic acid, at final concentration of
0.001% each, plus 0.01% cholesterol). “7H9 media (0.05% Tween 80, 0.2% glycerol, 10% ADC supplement)/ DTA: Dubos Tween albumin; for the NRP-2 model was
grown in 100 mL Dubos Tween albumin (DTA). SMtb Sputum Mtb, Mtb Mycobacterium tuberculosis, URG Up regulated genes, DRG Down regulated genes, BAL
Broncho alveolar lavage, NRP None replicating persistent state, Vs versus, Rx treatment, dosR Dormancy survival regulator, hspX a-crystallin homologue, nark2
nitrate/ nitrite transporter, gcrC cytochrome bc1 complex, ctaD aa3-type cytochrome c oxidase, ic/1 isocitrate lyase gene, nuoB type-l NADH dehydrogenase, Pks12

Polyketide synthase, PDIMs Phthiocerol dimycocerosates, PGLs phenolic glycolipids

16 s rRNA or pre-rRNA promise to add new depth to our
understanding of the efficacy of drug combinations in pa-
tients [100, 101]. Demirci and colleagues assessed the diag-
nostic accuracy of Mthb-mRNA-based RT-qPCR technique,
with the BACTEC MGIT 960 method used as the gold
standard. The findings were encouraging, in that the
mRNA-based method appeared to be more sensitive and
specific than other methods [102]. However, additional in-
formation is needed before this technique can be translated
into clinical practice. In particular, questions with regard to
Mtb persistence and dormancy need to be addressed and
defined [12, 29, 103-105].

Study strength and limitations
This review summarized pertinent information regarding
the role of Mtb LD on host-pathogen interactions,

diagnosis, treatment and transmission. As such, the re-
view highlighted conflicting reports and advised future
research areas. However, our literature search strategy is
not complete and the quality of included articles were
not appraised.

Conclusions

The role of LD in the co-evolutionary arms race, granu-
loma formation, and treatment outcome of TB must be
recognized. The power of LD in determining the distinct
metabolic, physiological, phenotypic state from sputum-
derived Mtb is described. The presence of LD is ob-
served universally in prokaryotes including Mtb. How-
ever, LD are more common and more abundant: 1) in
BAL-derived Mtb than in sputum-derived Mtb, 2) after
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anti-TB drug therapy, and 3) during stationary phase
than exponential phase of growth in vitro culture.

LD are a source of chemical energy and phenotypic
heterogeneity. They can also delay lysosomal trafficking
towards phagosomes, block autophagy, promote immune
cell evasion and scavenge toxic metabolites and signal-
ing. The influence of LD on transmissibility and viru-
lence of Mtb is less well understood. Multiple factors
from the pathogen, host and environment axis might in-
fluence Mtb transmission, however some evidence links
overproduction of LD in the Mtb Beijing lineage 2 and
some Mtb lineage 4 isolates with higher transmissibility/
virulence.

Several different transcriptome profiles were detected
in LD-positive Mtb, which could reflect sample-to-
sample variation, differences in methodology or other
experimental conditions. Nevertheless, we conclude that
Mtb in sputum exists in a variable phenotypic and meta-
bolic states. The dynamics of gene expression in LD-
positive Mtb from sputum provides clinically-important
information on the evolution and pathogenicity of Mtb.
Further studies are needed to investigate the relation-
ships between intracellular LDs and Mtb lineages, Mtb
transmission capacity, clinical phenotype and Mth
pathophysiology.

Transcriptomic analysis of sputum-derived LD-
positive Mtb cells could prove to be useful in clinical
and research settings. For instance, lipophilic staining
targeting LD-positive Mtb might be more sensitive and
specific than current methods, such as ZN/ FM micros-
copy, which only detects actively growing Mtb. Finally,
lipid metabolism-associated genes are upregulated in
LD-positive Mtb. Based on this observation, it may be
possible to develop an mRNA based diagnostic test that
is sensitive and specific for the detection of LD-positive
Mtb. Such a test could be valuable for TB diagnostics
and to monitor treatment of TB. This exciting possibility
will be explored in future research.
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