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Introduction
Head and neck squamous cell carcinoma (HNSCC) is 
a heterogeneous disease and includes squamous cell 
carcinomas derived from pharynx. Its incidence rate 
ranks 7th among common cancers worldwide. The inci-
dence of HNSCC continues to rise and is anticipated to 
increase by 30% by 2030 [1]. More than 50% of HNSCC 
patients suffered from recurrence and metastasis within 
three years [1, 2]. Lung is the most frequent site of dis-
tant metastasis in HNSCC, accounting for 70–85% of the 
cases [3]. Some major pathogenic factors of HNSCC have 
been recognized in the past several decades. The occur-
rence of HNSCC is commonly related to prior infection 
with oncogenic virus of human papillomavirus (HPV) 
which is a part of the tumor ecosystem [4]. Although 
surgery, radiation therapy (RT), and chemotherapy are 
the main treatment strategies for HNSCC patients, the 
5-year survival rate for HNSCC has barely improved 
over the past 30 years [5]. Few options available to treat 
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Abstract
The development of head and neck squamous cell carcinoma (HNSCC) is a multi-step process, and its survival 
depends on a complex tumor ecosystem, which not only promotes tumor growth but also helps to protect tumor 
cells from immune surveillance. With the advances of existing technologies and emerging models for ecosystem 
research, the evidence for cell-cell interplay is increasing. Herein, we discuss the recent advances in understanding 
the interaction between tumor cells, the major components of the HNSCC tumor ecosystem, and summarize the 
mechanisms of how biological and abiotic factors affect the tumor ecosystem. In addition, we review the emerging 
ecological treatment strategy for HNSCC based on existing studies.
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recurrent or metastatic (R/M) HNSCC also contributes 
to its poor prognosis [2].

The high malignancy and poor prognosis of HNSCC 
are closely related to the complexity of its ecosystem. 
Cancer is increasingly recognized as a “tumor ecosystem,” 
in which tumor cells work with other tumor cells and 
host cells in their microenvironment to adapt to varying 
conditions [6, 7]. From a holistic perspective, the tumor 
ecosystem can be viewed as an intersection of the host-
tumor ecosphere. In this ecosphere, “living organisms” 
and their local/distal “living habitats” together with inte-
rior/exterior stimuli (Table 1) jointly promote the aggres-
siveness and progression of cancers [8, 9]. In HNSCC, 
tumor cells cooperate with living organisms/abiotic fac-
tors to facilitate progression of cancer cells. Therefore, 
deciphering the complexity of HNSCC and its ecosystem 
maybe the foundation for establishing early diagnosis and 
creating effective and precise treatments.

Herein, we focus on recent advances in the main com-
ponents of the HNSCC tumor ecosystem and the cross-
talk between them. Through a detailed interpretation of 
the tumor ecosystem, we summarized the ecologically 
rational strategies for HNSCC treatment and their pos-
sible deficiencies.

The components of the ecosystem in HNSCC
In view of the heterogeneity of cell phenotypes and cel-
lular relationships in HNSCC, the entire tumor ecosys-
tem should be taken into consideration when classify 
and treat patients. However, different cell types which 
express certain genes cannot be identified by traditional 
RNA sequencing (RNA-seq) which can only provide a 
virtual average of the various cellular components [10]. 
Single-cell RNA-seq (scRNA-seq), a valid method devel-
oped in recent years, which allows researchers to reveal 
the function and state of individual cell, enables the dis-
section of heterogeneous tumors and elucidation of 
the components within the tumor ecosystem [11–14]. 
Individual tumors are characterized by cellular diver-
sity, i.e., as malignant or stromal cells [15]. Based on 
scRNA-seq, researchers discovered that non-malignant 
cells in HNSCC were grouped into eight main clusters: 
cancer-associated fibroblasts (CAFs), tumor-associated 
macrophages (TAMs), T cells, B/plasma cells, mast cells, 
dendritic cells, endothelial cells, and myocytes [16].

HNSCC consists of heterogeneous cell types, each of 
them plays a role in tumorigenesis including native and 
disease-causing cells, and in this case, cancer cells as 
well as other cells within the microenvironment, includ-
ing immune cells, nonimmune cells, and extracellu-
lar components [17–19]. Specifically, immune cells are 
composed of T cells, B cells, natural killer (NK) cells, 
myeloid-derived suppressor cells (MDSCs), TAMs, 
and so on, whereas nonimmune cells mainly consist of 

CAFs. In addition, biological factors such as bacteria 
and viruses also affect the tumor ecosystem of HNSCC. 
Indeed, abiotic factors (e.g., extracellular matrix [ECM], 
energy, oxygen, and therapeutic interventions) are also 
key conditions for maintaining the stability of the tumor 
ecosystem. A summary of components of the HNSCC 
ecosystem is shown in Fig. 1.

The interaction of various components in HNSCC
The tumor ecosystem is composed of various living 
organisms and abiotic factors, which interact with each 
other and affect the occurrence and development of 
tumors through different mechanisms.

Biological factors
Cancer stem cells
Cancer stem cells (CSCs) are a subgroup of cells in het-
erogeneous tumor masses with self-renewal and dif-
ferentiation capabilities.  CSCs play a vital role in 
tumorigenesis, tumor progression, drug resistance, and 
maintenance of heterogeneity [20]. The protection of 
CSCs by the tumor ecosystem is manifested by maintain-
ing their survival and self-renewal ability, helping them 
resist chemoradiotherapy, and even inducing normal and 
non-CSCs to transform into CSCs [21, 22]. Epithelial–
mesenchymal transition (EMT) has been confirmed as 
one of the significant mechanisms for the acquisition of a 
CSC-like phenotype in non-CSCs through transforming 
growth factor β (TGF-β) [23, 24].

The crosstalk between CSCs and the tumor ecosys-
tem is complex and dynamic. It has been demonstrated 
that endothelial interleukin 6 (IL-6) enhances the self-
renewal of CSCs through the activation of Bmi-1 and 
downstream signal transducer and activator of tran-
scription 3 (STAT3) signaling in human HNSCC, while 
humanized anti-IL-6R antibody (tocilizumab) signifi-
cantly inhibits CSC-mediated tumorigenic ability [25, 
26]. The maintenance of some characteristics (e.g., EMT) 
of CSCs depend on the involvement of CAF-derived fac-
tors affecting CSCs and their surrounding immune cells. 
It was found that TGF-β1, a well-known inducer of EMT, 
was consistently elevated in nasopharyngeal carcinoma 
tissue CAFs compared with normal mucosal fibroblasts 
and dermal fibroblasts [27]. In addition, CSCs can be 
modulated directly by TAMs, including regulation of 
sex determining region Y box 2 (SOX2), a transcription 
factor highly related to stemness [28]. TAM increased 
the availability of hyaluronic acid, and in turn, increased 
phosphatidylinositol-3-kinase (PI3K)-eukaryotic transla-
tion initiation factor 4E-binding protein (4EBP1)-SOX2 
signaling and the CSC fraction by binding to CD44 [29]. 
Due to the pivotal role of CSCs in tumor ecosystem, 
the CSC-targeting strategies have become a novel con-
ceptual framework for HNSCC. CSC subpopulation in 
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Table 1  Various cytokines in the tumor ecosystem of HNSCC
Stimu-
lating 
factors

Secreting cells Biological functions Activating mechanisms Refs

Chemokine
CCL2 Tumor cell Drive macrophages to M2-type transformation -  [51]

CCL13 TAM Promote tumor metastasis -  [53]

CCL18 TAM Promote tumor metastasis and invasion -  [54]

CXCL1 CAF Promote tumor metastasis -  [175]

CXCL8 Tumor cell Improve the survival rate and angiogenic potential of endothelial cells AKT signaling pathway  [95]

CXCL12 CAF Recruit TAMs, drive macrophages to M2-type transformation -  [176]

CXCL13 Follicular den-
dritic cell

Recruit B cells -  [177]

Chemokine receptor
CCR2 Tumor cell Drive macrophages to M2-type transformation -  [51]

CXCR2 Monocyte Recruit neutrophils -  [88]

Growth factor
BDNF CAF Promote tumor metastasis TrkB signaling  [178]

EGF Tumor cell Improve the survival rate and angiogenic potential of endothelial cells ERK signaling pathway  [95]

EREG CAF Promote tumor invasion JAK2-STAT3 signaling pathway  [179]

HGF CAF Promote tumor metastasis HGF/c-Met signaling pathway  [180]

TGF-β CAF Induce EMT -  [24, 27]

Drive macrophages to M2-type transformation -  [45]

Promote tumor metastasis SOX9  [181]

TAM Promote tumor invasion -  [55]

Mediate immunosuppression -  [57]

B cell Anti-tumor immunity -  [77]

MDSC Promote PMN formation and metastasis -  [83]

Tumor cell Promote inflammation, angiogenesis, and epithelial hyperproliferation -  [97]

VEGF TAM Stimulate angiogenesis -  [51]

MDSC Promote PMN formation and metastasis -  [83]

Tumor cell Enhance the migration of tumor cells and protect them from apoptosis AKT/ERK signaling pathway  [182]

Mediate M2 TAMs -  [98]

Inflammatory cytokine
IL-1β CAF Promote tumor invasion -  [175]

Tumor cell Promote activation between CAFs and tumor cells CXCL1

Immune cell Increase Th17 cells -  [67]

IL-6 Endothelial cell Enhance the survival, self-renewal and tumorigenic potential of CSCs STAT3 signaling pathway  [25]

promote tumorigenesis JAK2/STAT3 signaling pathway  [44]

TAM Drive macrophages to M2-type transformation -  [52]

Tumor cell Increase plasma NETs -  [92]

Improve the survival rate and angiogenic potential of endothelial cells STAT3 signaling pathway  [95]

IL-10 CAF Drive macrophages to M2-type transformation -  [45]

TAM -  [51]

Mediate immunosuppression -  [57, 59]

B cell Anti-tumor immunity -  [77]

IL-23 Tumor cell and 
TIL

Increase Th17 cells -  [67]

IL-35 B cell Anti-tumor immunity  [77]

MIF Tumor cell Recruit neutrophils -  [88]

TNF-α Macrophage Increase plasma NETs -  [92]
CAF, cancer-associated fibroblast; CSC, cancer stem cell; MDSC, myeloid-derived suppressor cell; NET, neutrophil extracellular trap; PMN, pre-metastatic niche; TAM, 
tumor-associated macrophage; Th17, T helper 17; TIL, Tumor infiltrating lymphocyte
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HNSCC overexpresses αvβ5 which is associated with 
angiogenesis and lymphangiogenesis [30]. The installa-
tion of cyclic Arg-Gly-Asp (cRGD) peptide on cisplatin-
loaded nanomedicines can target αvβ5 effectively [31], 
which is an advantageous method for targeting CSCs in 
HNSCC. Besides, valproic acid, a histone deacetylase 
inhibitor, could downregulate the expression of stem-
ness markers (e.g., CD44) of oral cancer stem cells [32]. A 
Phase II clinical trial about valproic acid in combination 
with cisplatin and cetuximab in R/M HNSCC is ongoing 
(NCT02624128).

Stromal cells
CAFs are the most abundant stromal cells in HNSCC and 
play a crucial role in tumor angiogenesis, invasion, and 
metastasis [33, 34]. In the tumor ecosystem, fibroblasts 
convert to CAFs via TGF-β and IL-1β signaling pathways 
[35, 36]. The possible CAF subtypes in HNSCC were iden-
tified, termed CAF-D and CAF-N [16, 37]. CAF-D (CD44+ 

CD90+ α-SMAhigh/BMP4 low) synthesized TGF-β1 that 
are essential for cancer invasion, whereas CAF-N (CD44+ 
CD90+ α-SMAlow/BMP4 high) included intrinsically motile 
fibroblasts [37, 38]. There are many avenues that CAFs can 
take to influence HNSCC tumor cell behaviors, as shown 
in Fig.  2. Researchers have discovered exosomal microR-
NAs (miRNAs) and their functional significance [39–42]. 
Once internalized, CAF-exosomes lead to increased 
malignant features by altering the respective miRNA levels 
in recipient cancer cells. CAF-exosomes are rich in miR-
196a targeting ING5 and CDKN1B mRNAs, which lead 
to the reduction of their encoded proteins, respectively, 
thereby promoting tumor cell proliferation and inhibit-
ing cell apoptosis [40]. CAF-exosomes lack miR-34a-5p 
and miR-3188, leading to the activation of Axl, and BLC2, 
thereby facilitating tumor cell migration, invasion, and 
EMT [41, 42]. In contrast, how tumor cells affect CAFs 
has been less reported. Wang et al. found that HPV-pos-
itive HNSCC-derived exosomal miR-9-5p inhibits TGF-β 

Fig. 1  Tumor ecosystem in HNSCC. The tumor is a complex ecosystem composed of various cell types and microorganisms (e.g., HPV and bacterium). 
Besides biological factors, ECM, energy, oxygen, and therapeutic interventions (e.g., radiation) serve as abiotic factors that also shape the tumor ecosys-
tem. Abbreviations: CAF, cancer-associated fibroblast; DC, dendritic cell; ECM, extracellular matrix; HPV, human papillomavirus; HNSCC, head and neck 
squamous cell carcinoma; MDSC, myeloid-derived suppressor cell; NK, natural killer; TAM, tumor-associated macrophage
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signaling-mediated phenotypic transformation of fibro-
blasts through NADPH oxidase 4 (NOX4), reducing CAF 
infiltration in HNSCC [43]. Other cells within the tumor 
ecosystem are also affected by the interaction with CAFs. 
On the one hand, CAFs can induce apoptosis of T cells. 
CAFs inhibit CD8+ T cell function by inducing IL-6 auto-
crine loops and interacting with T helper 17 (Th17) cells 
[44]. On the other hand, CAFs alone or in concert with 
tumor cells differentiate monocytes into the protumor 
macrophage phenotype that exert an inhibitory effect on T 
cells by secreting IL-10, TGF-β, and arginase I [45]. In view 
of malignant features of CAFs, efforts have been paid to 
turn foes to friends. One of the feasible strategies for CAF-
targeting ecotherapy is altering CAF activation or func-
tion. Current study found that gold nanoparticles (GNPs) 
enhanced the expression of lipogenesis genes in CAFs, 
thereby transforming activated CAFs to a quiescence 

state [46]. Another study demonstrated that CAF-induced 
tumor progression was suppressed by TGF-β receptor 
inhibitor LY2109761. Given the essential role of TGF-β in 
the activation of CAFs, targeting TGF-β signaling appears 
to be a potential ecotherapy of HNSCC.

TAMs are the most important stromal cell in the tumor 
ecosystem in HNSCC, and can orchestrate tumor-pro-
moting inflammation [47]. TAMs differ from tissue-res-
ident macrophages in that they are modified in the tumor 
ecosystem, causing some of them to lose their ability to 
phagocytose and present tumor antigens to T cells [48, 
49]. Activated macrophages are divided into M1 and M2 
macrophages. The M1 phenotype promotes Th1 response 
and displays anti-tumor properties, whereas the M2 phe-
notype mediates Th2 responses [50]. In HNSCC, tumor 
cells can recruit and drive macrophages to M2 pheno-
type by producing C–C chemokine ligand 2 (CCL2)/ CC 

Fig. 2  Crosstalk between CAFs and tumor cells in the tumor ecosystem. CAFs can mediate tumor progression and transformation by interacting with 
tumor cells through secreting multiple chemokines, cytokines, and other effector molecules such as IL-1β, MMP2, EREG. Notably, CAFs can be activated 
by tumor cells through signals including IL-1β. Abbreviations: BDNF, brain-derived neurotrophic factor; CAF, cancer-associated fibroblast; CCL2, C–C 
chemokine ligand 2; CSC, cancer stem cell; CXCL12, C-X-C chemokine ligand 12; CXCR2, C-X-C motif chemokine receptor 2; ECM, extracellular matrix; 
Gal-1, galectin-1; HAS2, hyaluronan synthase 2; EREG, epiregulin; HGF, hepatocyte growth factor; IL-1β, interleukin-1β; JAK2-STAT3, janus kinase 2-signal 
transducer and activator of transcription 3; MAPK/AKT, mitogen-activated protein kinase/ protein kinase B; MCP-1, monocyte chemoattractant protein-1; 
c-Met, cellular-mesenchymal epithelial transition factor; MFAP5, microfibrillar associated protein 5; MMP2, matrix metalloproteinase 2; PTK7, protein tyro-
sine kinase 7; SOX9, sex determining region Y box 9; TGF-β, transforming growth factor-beta; TIMP1, tissue inhibitor matrix metalloproteinase 1
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chemokine receptor 2 (CCR2) [51], IL-6 [52], and IL-10 
[51]. TAMs promote tumor progression by producing/
expressing a variety of immunosuppressive molecules 
(e.g.,CCL13 [53], CCL18 [54], matrix metalloproteinase 
9 [MMP9], osteonectin [51], TGF-β [55], programmed 
death-ligand 1 [PD-L1] [56], human leucocyte antigen-G 
[HLA-G] [45], TGF-β, and IL-10 [57]), and stimulating 
angiogenesis by producing vascular endothelial growth 
factor (VEGF) [51] (Fig.  3). CCL18 derived from M2 
TAM promotes metastasis by inducing EMT and stem-
ness in HNSCC in vitro [54]. Interestingly, cancer cells 
themselves are also able to produce CCL18, as demon-
strated in oral squamous cell carcinoma (OSCC) [58]. In 
addition, it has been shown that M2 TAM inhibits anti-
tumor immunity by downregulating M1 through the 
secretion of anti-inflammatory cytokines, including IL-10 
[59]. Strategies targeting TAM have been thoroughly 
investigated, including inhibition of macrophage recruit-
ment/survival, re-polarization of TAMs to M1-like status, 
and recovering macrophage-mediated phagocytosis of 
cancer cells. CD47 is a “don’t eat me” signal against mac-
rophages, which is elevated in the tumor cells [49]. Up to 
now, the activity of targeting CD47 monoclonal antibody 
(mAbs) alone have been demonstrated in solid tumors, 
and combining with pembrolizumab shows remarkable 
efficacy [60]. Thus, bispecific antibodies (BsAbs) tar-
geting CD47 is emerging. In HNSCC, PF-07257876 is a 
CD47-PD-L1 bispecific antibody, and a Phase I clinical 

trial is underway (NCT04881045). Besides, ALX148, a 
novel CD47 blocking agent, in combination with pem-
brolizumab and/or chemotherapy has entered clinical tri-
als (NCT04675333, NCT04675294).

T cells are an essential part of the adaptive immune 
response system. In HNSCC, four sub-clusters of T 
cells were divided, including two cytotoxic CD8+ T cell 
populations (CD8+ T and CD8+ Texhausted), regulatory 
T cells (Tregs), and conventional CD4+ T helper cells 
(CD4+ Tconv). Interestingly, higher proportions of Tregs 
than other T cell subsets were strongly associated with 
favorable survival outcomes in HNSCC. However, low 
CD8+ T cells were likely correlated with improved sur-
vival [9]. Dysfunctional tumor infiltrating lymphocytes 
(TILs) in HNSCC is characterized by the upregulation of 
several immune checkpoint markers, such as cytotoxic 
T lymphocyte antigen-4 (CTLA-4) [61], programmed 
cell death protein-1 (PD-1) [62], T cell immunoglobu-
lin mucin-3 (TIM-3) [63], lymphocyte activated gene-3 
(LAG-3) [64], fibrinogen-like protein 1 (FGL1) [65], 
Glucocorticoid-induced tumor necrosis factor recep-
tor family-related protein (GITR) [66], and V-domain Ig 
suppressor of T cell activation (VISTA) [64]. Immune 
checkpoint blockade is conductive to the heightened 
functionality of their cytotoxic T cells. The elevated levels 
of tumor infiltrated Tim-3+ Tregs also lead to CD8+ T cell 
dysfunction in HNSCC [63, 67]. In contrast, Th17 cells 
showed antitumor activity by impairing the proliferation 

Fig. 3  Overview of protumor effects of TAMs in head and neck squamous cell carcinoma. TAMs promote tumor progression by participating in tumor 
invasion, metastasis, and angiogenesis as well as immunosuppression. Abbreviations: CCL2, C–C chemokine ligand 2; CCR2, CC chemokine receptor 2; 
ECM, extracellular matrix; HLA-G, human leucocyte antigen-G; IL-6, interleukin-6; MMP9, matrix metalloproteinase 9; PD-L1, programmed death-ligand 1; 
TAM, tumor-associated macrophage; TGF-β, transforming growth factor-beta; VEGF, vascular endothelial growth factor
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and angiogenesis of HNSCC [67]. The increase in Th17 is 
mainly due to the secretion of IL-23 and -6 from tumor 
cells and TILs, and IL-1β released by immune cells in 
HNSCC [67]. In the late phase of HNSCC, tumor cells 
promote skew toward Treg owing to the decrease lev-
els of IL-23. Accordingly, a shift in the cytokine milieu 
from the Th17 sustaining pro-inflammatory IL-23 toward 
TGF-β may decrease the ratio of Th17 to Tregs [68, 69]. 
This decrease induces tumor-promoting Treg differen-
tiation and increases production of the anti-inflamma-
tory cytokine IL-10 in HNSCC, which is favorable to 
cancer progression (Fig.  4) [70]. Currently, rejuvenating 
exhausted T cell by immune checkpoint inhibitors (ICIs), 
such as anti-PD-1 and anti-PD-L1 antibodies, show 
promising effectiveness in solid tumors, which can be 
expected to improve the prognosis and overall survival 
in patients with R/M HNSCC. Consequently, strategies 
for breaking Treg/Th17 balance toward antitumor status, 
uncovering novel ICIs such as TIGIT, and the combina-
tion of ICIs with treatments including RT/chemotherapy 
would be favorable to HNSCC patients.

B cells are the second batch of adaptive immune cells 
discovered in the TME and is elevated in HNSCC [71]. 
The chemokine, C-X-C chemokine ligand 13 (CXCL13), 
produced by follicular dendritic cells, is important for B 
cell recruitment in the tumor ecosystem [72]. However, 
most studies analyzing TILs in HNSCC did not include 
tumor-associated B cells. Recently, studies have shown 
that B lymphocytes and their subsets are associated 

with the positive prognosis of many cancers, including 
HNSCC [73]. In HPV-positive HNSCC, infiltrations of 
memory B cell and plasma cell are increased, and high B 
cell infiltration is associated with better prognosis [74–
76]. The main reason is that it can produce IL-10, TGF-β, 
and IL-35 in anti-tumor immunity [77]. Antibody-secret-
ing cells and germinal center B cells, as well as plasma 
cells, can also be found in the tumor ecosystem of HPV-
positive HNSCC [71]. But it remains unclear to what 
extent these cells secrete tumor-antigen-specific anti-
bodies which has a direct anti-tumor effect. In ovarian 
cancer, polyclonal immunoglobulin A (IgA) antibodies 
derived from tumor-associated B cells bind IgA receptors 
on the surface of tumor cells, which can result in tumor 
proliferation inhibition [78]. This finding portends that 
ecotherapy that augments B cell responses could be an 
alternative strategy for HNSCC treatment.

MDSCs are the most important protector of the tumor 
ecosystem, preventing tumor cells from immune surveil-
lance. MDSCs not only produce reactive oxygen species 
(ROS), but also continuously inhibit T cell activation 
[79]. They interact with each other to catalyze the nitri-
fication of T cell receptors, thereby inducing T cell toler-
ance [79]. In HNSCC, elevated MDSC levels have been 
reported to upregulate inflammatory mediators, such as 
IL-6, rendering the ecosystem unfavorable for antigen-
presenting cell maturation and thus indirectly promoting 
tumor cell growth [80]. In addition, inhibition of janus 
kinase 2 (JAK2)/STAT3 was found to reduce MDSCs in 

Fig. 4  Crosstalk between tumor cells and T cells. IL-23 and -6 secreted by tumor cells recruit Th17, whereas the ratio of Th17 and Tregs influence HNSCC 
progression. Abbreviations: IL-6, interleukin-6; FGL1, fibrinogen-like protein 1; LAG-3, lymphocyte activated gene-3; PD-1, programmed cell death pro-
tein-1; PD-L1/2, programmed death-ligand 1/2; Th17, T helper 17; TIM-3, T cell immunoglobulin mucin-3
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the tumor ecosystem through the inhibition of VEGFA 
and casein kinase 2 (CK2) in HNSCC transgenic mouse 
models [81]. Elimination of MDSC improves the abil-
ity of the host immune system to attack cancer cells and 
improves the effectiveness of immunotherapy [80]. Inter-
estingly, organs of future metastasis seem to be prepared 
before the arrival of tumor cells. MDSCs are consid-
ered the key determinants of this pre-metastatic niche 
(PMN) [82]. Expanding experimental evidence indicates 
that MDSC-derived TGF-β, calprotectin (S100A8/A9), 
and VEGF promote PMN formation and metastasis by 
communicating with the immune system, endothelial 
cells, fibroblasts, and hepatic stellate cells [83], although 
the exact mechanism in HNSCC remains to be con-
firmed. Accumulating evidences support that reduc-
tion of MDSC level is beneficial to augment anti-tumor 
immunity. Inhibiting MDSCs trafficking by CXCR1/2 
inhibitor significantly enhances NK-cell immunotherapy 
in head and neck cancer [84]. Of note, a recent clinical 
study pointed out that β-glucan therapy can disrupt the 
suppressive function of MDSCs, thereby promoting anti-
tumor immunity and increasing recurrence-free survival 
rate in OSCC patients [85].

Neutrophils are key players in inflammatory cell infil-
tration in cancer.  They can exert anti-tumor and pro-
tumor activities, and exhibit unexpected functional 
plasticity [86]. Like TAMs, it is polarized in different 
activation states: an anti-tumor N1 or a protumor N2 
phenotype. The anti-tumor effect of N1 neutrophils is 
related to their cytotoxicity and the regulation of anti-
tumor immune responses, while N2 neutrophils induced 
by tumor-derived signals can promote the prolifera-
tion, migration, and invasion of tumor cells and mediate 
immunosuppression [87]. In HNSCC, tumor cells pro-
duce macrophage-inhibiting factor, which recruits neu-
trophils through the engagement of CXCR2 [88]. Another 
interesting ability of neutrophils is to induce cell death 
termed NETosis, a process by which neutrophils release 
cytotoxic molecules shaping a neutrophil extracellu-
lar trap (NETs) [89]. NETs have been recognized as the 
first line of defense to mediate the response of the host 
[90]. The development of NETs has potential relevance 
to tumor initiation, progression, recurrence, and metas-
tasis, and plays an essential regulatory role in the tumor 
ecosystem. NET-related gene signatures are related to 
prognosis and immunotherapy response of patients with 
cancers. NIFK, a novel NET-related gene, was found to 
be significantly upregulated in HNSCC patients that had 
poor prognoses. The level of NIFK was relevant to regu-
lating cell cycle and DNA replication as well as WNT and 
p53 signaling pathways [91]. Besides, tumor cells are also 
able to escape immune surveillance by the NETs [90]. In 
OSCC, patients in late stages exhibit elevated NET levels 
compared to early stages [92]. Furthermore, the depletion 

of IL-6, IL-8, and tumor necrosis factor-alpha (TNF-α) 
contributes to the reduction of plasma NETs [92]. Cur-
rently, the safety and tolerance of HuMax-IL8 as an IL-8 
inhibitor has been demonstrated [93]. Given the above 
knowledge, it is valuable to investigate the effect of IL-8 
inhibitors on NETs and tumor progression.

Vasculature
Angiogenesis is a biological process that carries oxygen 
and nutrition to body tissues and organs, and constantly 
nourishes diseases such as cancer. It is a basic step in the 
transformation from benign to malignant tumor and 
is thought to result from the imbalance between pro/
anti-angiogenic factors caused by malignant and nor-
mal cells [94]. At present, the poor prognosis of HNSCC 
mainly lies in the incurable R/M diseases, and angiogen-
esis plays a key role in lymph node infiltration and dis-
tant metastasis. Interestingly, there is close molecular 
crosstalks between tumor cells and endothelial cells in 
HNSCC. IL-6, CXCL8, and epidermal growth factor 
(EGF) secreted by tumor cells improve the survival rate 
and angiogenic potential of endothelial cells through the 
activation of STAT3/ protein kinase B (AKT)/extracel-
lular signal-regulated kinase (ERK) signaling pathways, 
respectively [95], while VEGF secreted by endothelial 
cells can enhance the migration of tumor cells and pro-
tect them from apoptosis [96]. Besides, overexpression 
of TGF-β1 in HNSCC leads to inflammation, angio-
genesis, and epithelial hyperproliferation [97]. Immune 
cells are also linked to angiogenesis. Studies have shown 
that M2 TAMs mediated mainly by hypoxia-inducible 
factor-2α (HIF-2α) and VEGF under a hypoxic ecosystem 
can promote angiogenesis in OSCC [98]. To date, there 
are an increasing number of pre-clinical and clinical 
studies evaluating the safety and efficacy of VEGFR-tar-
geted strategies. Axitinib, a potent inhibitor of VEGER, 
improved 6-month overall survival compared with con-
trols in unresectable R/M HNSCC [99].

Virus
HPV has emerged as a risk factor for HNSCC [100]. 
HPV-16 is the main pathogenic group in over 200 types 
of HPVs [101]. HPV-16 is an 8  kb virus, which consists 
of seven early genes (E1-E7) and two late genes (L1 and 
L2). Early genes are involved in viral genome replica-
tion and late genes encode viral capsid proteins [102]. 
Among them, E6 and E7 are two major oncogenes that 
lead to malignant transformation. E6 and E7 mediate 
cell cycle loss, promote uncontrolled cell proliferation, 
and induce chromosomal instability by degrading tumor 
suppressor gene p53 and retinoblastoma proteins [103]. 
HPV-positive oropharyngeal SCC (OPSCC) has a high 
cure rate with a better prognosis, whereas HPV-nega-
tive HNSCC tends to have a non-ideal prognosis [100]. 
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Tumor-infiltrating immune cells ascertain the malignant 
evolvement of tumors and are a source of significant 
prognostic factors for patients [104]. A study showed that 
better prognosis was positively correlated with the infil-
tration of CD4+ T cells, CD8+ T cells, follicular helper T 
cells, and Tregs [105]. Based on HPV status, the extent 
and features of intratumoral immune cell infiltration in 
HNSCC patients vary significantly. Compared with HPV-
negative tumor tissues, HPV-positive HNSCCs exhibited 
higher scores for various immune cell types, includ-
ing plasma cells, basophils, T cells, and B cells [106, 
107]. Hence, HPV may influence prognosis by affecting 
immune cell infiltration. Comparison of tumor-infiltrat-
ing immune cells between HPV-positive and HPV-nega-
tive HNSCC with normal tissue is listed in Table 2 [108, 
109]. Though HPV is an oncogenic factor for HNSCC, 
HPV-positive HNSCC patients shows better outcomes 
OS (9.1 months vs. 7.7 months) with anti-PD-1 therapy 
compared with that in HPV-negative patients [110, 111].

Microbiota
There are more than 750 kinds of the oral microbi-
ome, including bacteria, protozoa, and fungi [112]. In a 
healthy state, these species maintain a relative balance 
of a certain proportion. However, once the oral ecology 
is dysregulated, this balance is disrupted, which induces 
tumorigenesis by suppressing immune responses and 
mediating chronic inflammation [113]. After antibiotic 
treatment in mice, the tumor formation rate was sig-
nificantly reduced, and the reconstruction of HNSCC 
microbes can promote the development of tumors in 
germ-free mice [114]. Interestingly, another study found 
that increased oral abundance of commensal Coryne-
bacterium and Kingella was related to decreased risk of 
HNSCC [115]. Recently, researchers preformed an over-
all analysis of the tumor microbiome of 1526 tumors and 

adjacent normal tissues and found that intratumor bac-
teria are mainly intracellular and are present in all can-
cer cells [116]. In OSCC, Parvimonas, Peptoniphilus and 
Fusobacterium are the dominant genera [117]. Notably, 
depletion of intratumor bacteria reduced lung metastasis 
in breast cancers. During metastasis, intratumor bacte-
ria enhanced resistance to blood stress by activating the 
RhoA-POCK signaling pathway to reorganize the actin 
cytoskeleton, which contributed to tumor cell survival 
[118]. Recently, GeoMx digital spatial profiling platform 
found that intratumoral bacteria-colonized microniches 
had immunosuppressive effect by excluding CD3+ T cells 
and recruiting neutrophils [117]. Thus, a deeper under-
standing of these effects may provide avenue for novel 
ecotherapy options for HNSCC patients. Recent studies 
found that Bifidobacterium breve and exopolysaccharide 
which were isolated from a new Bifidobacterium breve 
strain displayed anti-tumor effect on HNSCC [119, 120], 
which is expected to be a new and acceptable therapeutic 
method in the future.

Abiotic factors
In addition to biological factors, ECM, energy, and oxy-
gen serve as abiotic factors that also shape the tumor 
ecosystem. The ECM of HNSCC is a highly heteroge-
neous network of cross-linked extracellular molecules 
with a variety of cytokines, intermediate metabolites, 
nutrients, hormones, and chemokines secreted by tumor 
and stromal cells [121]. Increased expression of ECM 
molecules by CAFs elevates tumor stiffness, which acti-
vates oncogenic intracellular signaling pathways, such as 
β-catenin, Akt, PI3K, and focal adhesion kinase (FAK) 
pathways, and silences tumor suppressor genes, such as 
phosphatase and tensin homolog [122]. Stiffness exerts 
behavioral effects on the adjacent tumor cells, affecting 
cell proliferation, migration, and invasion, and in turn, 
impacts the metastatic process [123]. In OSCC, scRNA-
seq revealed that matrix-producing CAFs were abundant 
in the prominent stromal compartment of most tumors 
examined [16]. Collagen I is the most represented protein 
in the ECM and is often increased in OSCC [124]. Col-
lagen I contains two CYP1 chains (COL1A1) and a single 
CYP2 chain (COL1A2). COL1A1 binding with the recep-
tor tyrosine kinase discoidin domain receptor 1 activates 
the proliferation and migration of HNSCC cells [125]. 
Meanwhile, COL1A2 chain binding with integrin αvβ8 
promotes EMT by activating the FAK/mitogen-activated 
protein kinase (MEK)/ERK signaling pathway, leading to 
higher tumor cell aggressiveness in OSCC [126]. Fibro-
nectin is another fibrillar ECM molecule and laminins 
are one of the primary components of the basement 
membrane (BM) [127]. As the molecular marker of BM 
degradation, laminin expression can be important for 
evaluating the aggressiveness of OSCC [128]. Laminin-5 

Table 2  Changes of major immune cell infiltration compared 
with normal tissue
Cell types HPV-positive HPV-negative
CD4+ T cells ↑ ↓
Th1 cells ↑ ↑
Th2 cells ↑↑ ↑↑
Tregs ↑ -

CD8+ T cells ↑↑ ↑
B cells ↑↑ -

DCs - -

NK cells - ↓
NKT cells ↑↑ ↑
Neutrophils - -

Monocytes - -

Macrophages ↑↑ ↑
Plasma cells ↑↑ -
Th1 cell, T helper 1 cell; DC, dendritic cell; NK cell, natural killer cell
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expression is related to high-intensity tumor budding, 
suggesting that it is associated with the establishment 
of an invasive phenotype [129]. Of particular interest, 
laminin-5 and α6β4 integrin is downregulated by miR-
29s to inhibit tumor survival and invasion [130]. HPV-
positive HNSCC has corresponding changes in ECM 
components, such as increased expression of MMPs 
[131], which promote ECM remodeling and lead to the 
release of growth factors and active fragments. Of note, 
19-Nor-2α-(3-hydroxypropyl)-1α,25(OH)2D3 (MART-10) 
as a novel synthesized vitamin D analog can significantly 
repress HNSCC cells migration and invasion through 
inhibiting MMP9 activity [132], supporting a potential 
value of ECM remodeling as an ecotherapy.

To meet the demand for active cell growth, tumor 
cells need a lot of energy and macromolecules from the 
extracellular environment. External signals can then be 
transduced into the cells and the number of core meta-
bolic pathways, including glycolysis, lipid and amino acid 
anabolism/catabolism, and mitochondrial metabolism, 
can be selected to support cell survival [133–135]. Can-
cer cells increase glucose uptake and ferment it into lactic 
acid even in the presence of abundant oxygen, which is 
deemed as the Warburg effect [136]. Lactic acid accu-
mulation is a characteristic of the tumor ecosystem. It 
facilitates polarization of M2-like macrophage, which 
promotes immune suppression and tumor progression 
in human HNSCC [137, 138]. HNSCC also has specific 
metabolic features. For example, compared with adjacent 
normal tissues, a higher cellular retinoic acid-binding 
protein expression was detected in tumor tissues [139], 
which can exert a positive effect on cell proliferation 
[140]. Compared with concentrations derived from the 
corresponding primary lesions, glutathione was enriched 
in metastatic tumors in HNSCC [141], suggesting a pos-
sible effect of glutathione metabolism on metastases in 
HNSCCs.

Oxygen is a pivotal factor in the tumor ecosystem and 
is essential for maintaining homeostasis and cellular 
metabolism through the production of adenosine-5’-tri-
phosphate (ATP). Cancer cells and stromal components 
often have difficulty accessing nutrients and oxygen 
during tumor development and progression. Hypoxia 
stimulates complex carcinogenic changes in tissue [142]. 
Oxygen deprivation in cancerous tissue often results 
in the formation of dysfunctional blood vessels, leading 
to tumor growth and invasion [143]. It has been associ-
ated with resistance to radiation and decreased immune 
infiltration in HNSCC, which can lead to a poor progno-
sis [144]. HIF-1α is a direct response factor to hypoxia 
that controls the expression of hypoxia-responsive genes 
to regulate biological functions of tumor cells, such as 
apoptosis, CSC formation, migration, angiogenesis, and 
response to chemotherapy and RT [145]. Studies have 

demonstrated that hypoxia promotes EMT of HNSCC 
through HIF-1α [146–149]. Overexpressed HIFs were 
highly related to mortality risk in HNSCC [150].

Therapy for the tumor ecosystem
Conventional treatment for HNSCC patients mainly 
includes surgical resection, RT, and chemotherapy. In 
addition, cetuximab is the main approved drug for tar-
geted therapy, to combine with RT for the treatment of 
cisplatin-unfit and locally advanced patients or che-
motherapy for R/M patients [151–154]. As a chimeric 
EGFR IgG1 mAb, cetuximab can block EGFR signaling 
pathway, inducing cell apoptosis, and reduce the pro-
duction of MMP and VEGF [155]. Unfortunately, due 
to the tissue diversity and high genetic heterogeneity of 
HNSCC, the effectiveness of various therapies is limited 
[156]. Changes in autonomous and involuntary ecosys-
tems affect the effectiveness of antitumor therapy. The 
development of drug resistance may due to the cancer-
centered mutations of tumor cells during the treatment. 
Thus, the tumor ecosystem helps to identify elements 
of effective therapeutic value resulting from tumor-host 
interactions.

For the HNSCC ecosystem, three conventional treat-
ments represent three classic ecologic ways to eradicate 
tumors. For more aggressive tumors, more powerful 
strategies are indispensable to warrant further tumor 
control. In natural ecosystems, the most effective way 
to kill a species is to alter its biospheres, such as habitat 
intervention, disruption of matter/energy flow, and intro-
duction of predators. Similarly in the tumor ecosystem, 
the most effective way to destroy tumor cells may be to 
change their environment, including anti-angiogenic 
metabolism modulators and immunotherapy [157]. The 
drugs currently in clinical trials for the above suggested 
modalities are summarized in Table 3. Some drugs have 
been used in other diseases but are still being tested in 
HNSCC. However, some cells in the tumor ecosystem, 
such as CAFs, TAMs, and MDSCs, remain poorly char-
acterized, and clinical drugs targeting these cells are 
yet to be developed. Of note, the presence of immature 
immune cells in the tumor ecosystem is a turning point 
in tumor evolution. Therefore, the ability of the immune 
system to fight cancer can be enhanced by anti-tumor 
immune cell maturation agents [107].

Emerging model for ecosystem research
An in-depth understanding of the HNSCC tumor eco-
system will provide an opportunity for the development 
of more reasonable and effective ecological treatment 
strategies to control tumor metastasis and improve the 
prognosis of patients. The models of tumor ecosystem 
have been used to parameterize the complexity of the 
HNSCC ecosystem. Patient-derived xenografts (PDXs) 
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provide exceptional opportunities to explore the cellular 
and molecular mechanisms of tumor progression and 
therapy resistance [158]. Yao et al. revealed biomarkers 
of cetuximab resistance and clonal architecture changes 
underlying acquired resistance in HNSCC using a PDX-
based study [159]. However, PDXs have several limita-
tions. The tumor ecosystem of HNSCC is constantly 
changing, which restrains drug response detection in 
PDXs. Mouse PDX models are not appropriate to study 

tumor-associated immune cells and immunotherapy due 
to the use of immunodeficient mice. However, geneti-
cally engineered mouse model (GEMM) allows tumor to 
evolve within an immunocompetent and autochthonous 
environment, which makes it fit for immune-oncology 
research, including HNSCC [160]. The tumor ecosystem 
comprises a large arsenal of immune cells, nonimmune 
cells, and extracellular components with tumor cells to 
regulate tumor progression. GEMMs play a pivotal role 

Table 3  Anti-tumor ecological therapy in HNSCC
Target Drugs Phase Patient enrolled Trial ID
Inhibit tumor angiogenesis
EGFR BIBW 2992 Phase 2 Metastatic (stage IVc) or recurrent HNC NCT00514943

VEGFR-1, -2 and -3 Axitinib Phase 2 Unresectable R/M HNSCC NCT02762513

EGFR, HER2 and HER4 Poziotinib 
(HM781-36B)

Phase 2 R/M HNSCC after failure of or unfit for platinum-
containing therapy

NCT02216916

- Endostatins Phase 3 R/M HNSCC not suitable for operation or 
radiotherapy

NCT02630264

EGFR Panitumumab Phase 2 R/M HNC incurable by surgery or radiotherapy NCT00446446

EGFR Zalutumumab Phase 2 HNSCC incurable with standard therapy NCT00542308

EGFR Lapatinib Phase 2 R/M HNC NCT00114283

VEGFR Cediranib Phase 2 Recurrent or newly diagnosed metastatic HNC NCT00458978

Disrupt metabolic homeostasis
Metformin Early Phase 

1
Stage II-IVB HNSCC NCT02402348

Anti-tumor immunity
PD-1 Cemiplimab-Rwlc Phase 2 HNSCC after completion of chemotherapy and 

radiation treatment
NCT04831450

PD-1/PD-L1 Durvalumab Phase 1 Non-metastatic, suitable for surgical resection, 
and stage II-IVB oral cavity, stage III-IVB larynx and 
hypopharynx, or stage III-IVB HPV/p16 negative 
intermediate-high risk oropharynx HNC

NCT03635164

PD-1 Pembrolizumab Phase 2 R/M HNSCC NCT03813836

PD-L1 Atezolizumab Phase 2 Resectable HNSCC NCT04939480

PD-L1/ TGF-β Bintrafusp alfa Phase 2 Operable and untreated HNSCC NCT04428047

PD-L1/ CD47 PF-07257876 Phase 1 Advanced or metastatic HNSCC, non-small cell lung 
cancer, and ovarian cancer

NCT04881045

CD47 Evorpacept in 
combination with 
pembrolizumab, 
cisplatin/carboplatin 
and 5-FU

Phase 2 Advanced HNSCC NCT04675333

CD47 Evorpacept in 
combination with 
pembrolizumab

Phase 2 Advanced HNSCC NCT04675294

IL-1β, IL-2, IL-6, IL-8, GM-CSF, INFγ, TNF-α IRX-2 Phase 2 Untreated and resectable HNSCC NCT00210470
EGFR, epidermal growth factor receptor; HER2, human epidermal growth factor receptor 2; HNC, head and neck cancer; HNSCC, head and neck squamous cell 
carcinoma; IL, Interleukin; INFγ, interferon γ; PD-1, programmed cell death protein-1; PD-L1, programmed death-ligand 1; R/M, recurrent or metastatic; TGF-β, 
transforming growth factor-beta; TNF-α, tumor necrosis factor-α; VEGFR, vascular endothelial growth factor receptor

Table 4  Comparison of emerging model for ecosystem research
Model type Degree of visualization Cost Assay duration Number of cells per experiment Drug screening throughput
Mouse PDX Medium High Weeks to months 105-106 Low

GEMM Low High Months - Low

Zebrafish PDX High Low 2–7 days 102-103 High

Organoid High Medium Weeks to months 102-103 Very high
GEMM, genetically engineered mouse model; PDX, patient-derived xenograft
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in studying how the tumor ecosystem shapes a range of 
stages of tumor evolvement. Besides, zebrafish has many 
inherent traits (e.g., direct visualization, low cost, short 
assay duration, facile analysis and quantification, and 
high accuracy), facilitating tumor ecosystem studies that 
are difficult to execute with immunocompromised mouse 
models [161]. Zebrafish xenograft models were used to 
study metastasis of tumor cells from site of injection to 
the tail. In HNSCC, the therapeutic effect of anti-cancer 
drugs was evaluated by assessing the proliferation/migra-
tion in a zebrafish metastasis model [162–164]. Organoid 
cultures are essential for a basic understanding of tumor 
biology and drug resistance [165]. A recent study sug-
gested that tumor-derived HNSCC organoids have the 
potential for personalized therapy [166]. As an in vitro 
tool, it is a promising model to select the right therapy for 
the right patient, albeit costly and time-consuming.

Conclusion and perspective
In summary, tumor cells dynamically interact with bio-
logical and abiotic factors to shape a self-sustainable 
tumor ecosystem of HNSCC. With the advances in tech-
nologies and the surge of big data, more specific char-
acteristics of tumor ecosystem in various dimensions 
become disclosed. Emerging single-cell RNA-seq/pro-
teomics allow us to identify different cell subpopulations 
and signals in the tumor ecosystem, and characterize cel-
lular genomic mutations and copy number aberrations, 
which have powerful implications for the diagnosis and 
treatment of HNSCC [167, 168]. While single-cell omics 
uncovers a range of cell subpopulations, the spatial infor-
mation is limited. Spatial transcriptomics extend our 
understanding of cellular localization and interaction 
in the tumor ecosystem [169]. Recent advances in data 
management technologies, such as artificial intelligence 
and deep learning, are important for visualizing the 
dynamics of the tumor ecosystem and predicting cancer 
treatment [170–173]. Specifically, the deep learning seg-
mentation model designed by convolutional neural net-
works can automatically segment the tumor, so that more 
accurate biopsies can be obtained for the research of its 
ecosystem in OSCC [174].

Nevertheless, research on the tumor ecosystem of 
HNSCC is still lacking. The molecular mechanisms of the 
various cells in the tumor ecosystem are not well under-
stood, which makes it difficult to target the ecosystem 
for therapy in HNSCC. A more detailed comprehension 
of the pathological mechanisms of how tumor metabo-
lism of HNSCC is engaged in tumorigenesis and tumor 
maintenance is required. To further explore whether 
there are other components in the ecosystem of HNSCC 
and whether they play an essential role in the tumor is 
an urgent task. With a deeper understanding of the 
tumor ecosystem, it is tempting to look forward to that 

a new era of tumor ecotherapy targeting vulnerability of 
HNSCC will dawn.
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