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Abstract

Background: Various risk factors influence obesity differently, and environmental endocrine disruption may increase
the occurrence of obesity. However, most of the previous studies have considered only a unitary exposure or a set
of similar exposures instead of mixed exposures, which entail complicated interactions. We utilized three statistical
models to evaluate the correlations between mixed chemicals to analyze the association between 9 different
chemical exposures and obesity in children and adolescents.

Methods: We fitted the generalized linear regression, weighted quantile sum (WQS) regression, and Bayesian kernel
machine regression (BKMR) to analyze the association between the mixed exposures and obesity in the participants
aged 6–19 in the National Health and Nutrition Examination Survey (NHANES) 2005–2010.

Results: In the multivariable logistic regression model, 2,5-dichlorophenol (2,5-DCP) (OR (95% CI): 1.25 (1.11, 1.40)),
monoethyl phthalate (MEP) (OR (95% CI): 1.28 (1.04, 1.58)), and mono-isobutyl phthalate (MiBP) (OR (95% CI): 1.42
(1.07, 1.89)) were found to be positively associated with obesity, while methylparaben (MeP) (OR (95% CI): 0.80 (0.68,
0.94)) was negatively associated with obesity. In the multivariable linear regression, MEP was found to be positively
associated with the body mass index (BMI) z-score (β (95% CI): 0.12 (0.02, 0.21)). In the WQS regression model, the
WQS index had a significant association (OR (95% CI): 1.48 (1.16, 1.89)) with the outcome in the obesity model, in
which 2,5-DCP (weighted 0.41), bisphenol A (BPA) (weighted 0.17) and MEP (weighted 0.14) all had relatively high
weights. In the BKMR model, despite no statistically significant difference in the overall association between the
chemical mixtures and the outcome (obesity or BMI z-score), there was nonetheless an increasing trend. 2,5-DCP
and MEP were found to be positively associated with the outcome (obesity or BMI z-score), while fixing other
chemicals at their median concentrations.
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Conclusion: Comparing the three statistical models, we found that 2,5-DCP and MEP may play an important role in
obesity. Considering the advantages and disadvantages of the three statistical models, our study confirms the
necessity to combine different statistical models on obesity when dealing with mixed exposures.

Keywords: Obesity, Adolescent, Child, Weighted quantile sum (WQS) regression, Bayesian kernel machine
regression (BKMR)

Introduction
The continuous increase in obesity has become an im-
portant worldwide health problem in the past 30 years
[1]. In 2016, about 18% of children and adolescents aged
5–19 were overweight or obese [2]. Obesity in children
increases the risk of health conditions, such as coronary
heart disease, diabetes mellitus, hypertension, and heart
failure, and those obese children or adolescents can be-
come obese adults [3–5]. Therefore, it is vital to identify
potential risk factors contributing to obesity to reduce
the prevalence and mortality rates in obesity-related dis-
eases. Although genetic predisposition, physical activity,
and diet play an essential role in the occurrence of obes-
ity, there is still a need for further explanation. More evi-
dence indicates that environmental endocrine-disrupting
chemicals might increase the occurrence of obesity [6–
9]. Twum et al. demonstrated an underlying relation be-
tween exposure to 2,5-dichlorophenol (2,5-DCP) and
obesity in children [4]. A significant association was
found between bisphenol A (BPA) and general and ab-
dominal obesity [10]. Deierlein showed that phthalates—
specifically low-molecular weight phthalates (monoethyl
phthalate [MEP], a metabolite of diethyl phthalate
(DEP); mono-n-butyl phthalate [MBP], a metabolite of
di-n-butyl phthalate (DBP), and mono-isobutyl phthalate
[MiBP], a metabolite of di-isobutyl phthalate (DiBP))—
had slight associations with girls’ anthropometric out-
comes [11]. These substances are readily present in our
daily lives, since consumer products usually use para-
bens as preservatives, building and food packaging mate-
rials use phthalates as plasticizers, and the production of
pharmaceutical and agricultural products uses 2,5-DCP
as a chemical intermediate [12–14]. We can easily con-
tact these environmental endocrine-disrupting chemicals
via gastrointestinal intake, dermal contact, and applying
products that contain these chemicals [15, 16]. However,
most of the previous research studied only a unitary ex-
posure or a set of similar exposures [17–19]. We are ex-
posed to all kinds of chemical exposures simultaneously,
which can result in complicated interactions. Therefore,
it is necessary to use a suitable statistical model for risk
assessment of exposure and obesity [20–22].
We collected data on urinary chemicals or metabolites

that had been reported to have an effect on obesity in the
National Health and Nutrition Examination Survey

(NHANES) from 2005 to 2010. We studied 9 chemical ex-
posures including phenols (BPA, benzophenone-3 (BP-3)),
parabens (methylparaben (MeP), propyl paraben (PrP)),
pesticides (2,5-DCP, 2,4-DCP) and phthalate metabolites
(Mono-benzyl phthalate (MBzP), MEP, MiBP). We se-
lected three statistical methods, including generalized lin-
ear regression, weighted quantile sum (WQS) regression,
and Bayesian kernel machine regression (BKMR) models,
to better analyze multi-exposures’ co-function on adoles-
cent obesity. Among them, BKMR model can resolve the
non-linear and complicated interactions between chemical
exposures and get more accurate results comparing with
the generalized linear regression [23]. All of these three
methods have their own advantages and disadvantages,
and we expected that this comprehensive analysis would
yield insightful and fruitful conclusions.

Methods
Study sample
The NHANES is a cross-sectional nationally representa-
tive program, aiming to collect information on adults’
and children’s health and nutritional condition in the
United States, which is reviewed and approved by the
National Center for Health Statistics, as one of the de-
partments of Centers for Disease Control and Prevention
(CDC). The NHANES program was conducted in the
early 1960s and released the data in biennial datasets. In
order to get the unbiased national health information on
the non-institutionalized population of the United
States, the NHANES used a considerate, multi-stage
stratification probability sampling design [24]. We col-
lected publicly accessible data from 2005 and 2010. We
selected participants between 6 and 19 years old, with at-
tainable measurements of urinary phenols, parabens,
pesticides, and phthalate metabolites Body mass index
(BMI) and waistcircumference simultaneously (n = 2629)
and excluded the participants whose data on covariates,
including age, gender, race, education level, family
income-to-poverty ratio, caloric intake, serum cotinine,
and urinary creatinine, were missing (n = 257). Finally,
2372 participants were included in our study.

Measurement of chemical exposures
Urinary samples were collected and stored at − 20 °C.
They were sent to the National Center for
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Environmental Health, the Organic Analytical Toxicol-
ogy Branch, for analysis. BPA, BP-3, MeP, PrP, 2,4-DCP,
and 2,5-DCP,were extracted by on-line solid-phase ex-
traction (SPE). They were measured by high-
performance liquid chromatography as well as tandem
mass spectrometry (MS/MS). MBzP, MEP, and MiBP
were measured by high-performance liquid
chromatography-electrospray ionization-tandem mass
spectrometry (HPLC-ESI-MS/MS). The limit of detec-
tion (LOD) for the compounds to be analyzed, including
BPA, BP-3, MeP, PrP, 2,4-DCP, and 2,5-DCP, were 0.4
ng/mL, 0.4 ng/mL, 1.0 ng/mL, 0.2 ng/mL, 0.2 ng/mL, 0.2
ng/mL in the data from 2005 to 2010, respectively. And
the LOD for MBzP, MEP, and MiBP were 0.3 ng/mL,
0.8 ng/mL, and 0.3 ng/mL in the data from 2005 to 2008
and 0.2 ng/mL, 0.4 ng/mL, and 0.2 ng/mL in the data
from 2009 to 2010. These values below the limit of de-
tection were divided by the square root of 2 to replace
the original values. As one study recommended [25], we
treated urinary creatinine as a covariate to explain the
urinary dilution. Urinary creatinine was measured by a
Beckman Synchron CX3 Clinical Analyzer. The NHAN
ES provides detailed information on the measurement
method in the section on laboratory methods on its
website [26, 27].

Anthropometric variables
Trained health technicians measured the body weight
and height according to the standardized protocol. The
BMI was calculated using each person’s weight in kilo-
grams to divide the square of their height in meters.
However, because the standard BMI shows differences
for the different ages and gender among children, meas-
uring BMI percentiles and the BMI z-score was more
appropriate. The BMI z-score was calculated in regards
to the children’s age, gender, and BMI. An appropriate
standard was used, which reflected the number of SDs
differing from the mean of the BMI with reference to
the same age and gender. The methodology to calculate
the BMI z-score specifically for different ages and gender
was provided by the CDC [28]. We defined a child to be
obese when their BMI was above or equal to the 95th
percentile for their age and gender in accordance with
the CDC recommendations [29].

Covariates
Covariates, including age, gender, race, education level,
family income-to-poverty ratio, caloric intake, serum co-
tinine, and urinary creatinine, were collected by inter-
view or laboratory detection by NHANES. Race was
grouped into Mexican American, Other Hispanic, Non-
Hispanic White, Non-Hispanic Black, and Other Race.
Education level was categorically grouped into ≤ 5 grade,
6 − 8 grade, 9 − 12 grade, or High School Graduate with

No Diploma, High School Graduate and GED or Equiva-
lent, or More than high school. The family income-to-
poverty ratio was divided into three groups: ≤ 1.30, 1.31
− 3.50, and > 3.50. The caloric intake was dichotomously
divided into normal intake and excessive intake, accord-
ing to the Dietary Guidelines for Americans 2010 [30].
Serum cotinine indirectly reflected the exposure to en-
vironmental tobacco. Serum cotinine, age, and urinary
creatinine were considered to be continuous variables.

Statistical analysis
We used the χ2 test and the t-test to analyze categorical
variables and continuous variables, respectively. And for
the serum cotinine and urinary creatinine, we used wil-
coxon rank-sum test. We calculated the descriptive sta-
tistics on BPA, BP-3, MeP, PrP, 2,4-DCP, 2,5-DCP,
MBzP, MEP, and MiBP. Because the distributions of the
chemical exposures were skewed, we log-transformed
the concentrations of all chemical exposures. We used
the Pearson correlation to calculate the correlation coef-
ficients among all chemical exposures. p < 0.05 was con-
sidered to be statistically significant.

Generalized linear regression
We conducted multivariable logistic regression to
analyze each chemical exposure and the odds ratios
(ORs) of obesity in different quartiles. We also fitted a
multivariable linear regression model to assess the asso-
ciation between each chemical exposure and the con-
tinuous variable of the BMI z-score in different
quantiles. In addition, we fitted the models, adjusting for
all the chemical exposures. All the regression models
were adjusted by age, gender, race, education level, fam-
ily income-to-poverty ratio, caloric intake, serum cotin-
ine, and urinary creatinine. We used log-transformed
urinary creatinine as an independent covariate instead of
the creatinine-adjusted concentration [25].

Weighted quantile sum (WQS) regression
The WQS model scored all the chemical exposures into
quantiles and estimated the weight index:

ℊ μð Þ ¼ β0 þ β1
Xc

i¼1

ωiqi

 !
þ z

0
φ;

where ℊ() represents any monotonic link function, μ is
the predictable variable, ω is the weight of the ith com-
ponents to be estimated, qi refers to different quantiles,

and ðP
c

i¼1
ωiqiÞ represents the weight quantile sum of the

set of c components of interest. Furthermore, β1 denotes
the regression coefficient for the weight quantile sum, β0
is the intercept, z′ refers to the covariates, including risk
factors and confounders, and φ is the coefficients for the
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covariates. The weights were estimated between 0 and 1,
and added up to 1. In this study, we divided the data
into the training set (40%) and the validation set (60%),
we also set β1 to be positive and the seed was set to be
2019. Besides, we also constrained β1 to be negative to
find if there was a significant relationship in this way.
We bootstrapped the training set 10,000 times and got
the estimated weights, which maximized the likelihood
of the non-linear model. A significant level (p < 0.05)
was set to test the significance of the weights in each
bootstrap. We calculated the ωi to estimate the weight
quantile sum:

WQS ¼
Xc

i¼1

ωiqi

ωi ¼ 1=nBð Þ
XnB

j¼1

ωij;

where nB represents the number of bootstraps in which
β1 was significant. The estimated WQS was then deter-
mined using the validation set. All the chemical expo-
sures were included in the model, and a specific weight
was calculated for each component, representing their
contribution to the WQS index. The chemical exposures
included were constrained to have the same effect with
the outcome (all positive or all negative) [31].

Bayesian kernel machine regression (BKMR)
The BKMR model utilizes a non-parametric approach to
flexibly model the association between chemical expo-
sures and healthy outcomes, including the nonlinear
and/or interactions in the exposure-outcome association.
A high-dimension exposure-response relationship in-
duced by multiple variables incorporated in the model
would make it difficult to ascertain the basis function.
Thus, we used a kernel machine regression:

Y i ¼ h zið Þ þ xiβþ ϵi;

where Yi is the health outcome, i refers to the individual
(i = 1, 2, 3…n), zi is the chemical exposures, xi is the po-
tential confounders, and β represents the effect of the
covariates. ϵi is the residual that obeys the normal distri-
bution N (0, σ2). h() is the function that fits the exposure
and the outcome considering nonlinear and interactions
between the exposures. We grouped the chemical expo-
sures into three groups (group1: BPA, BP-3, MeP, and
PrP; group2: 2,5-DCP and 2,4-DCP; group3: MBzP,
MEP, and MiBP), according to their source and correl-
ation (chemical exposures with high correlation were
grouped) with each other. A hierarchical variable selec-
tion approach was used to estimate the posterior inclu-
sion probability of highly correlated variables, which was
based on our prior knowledge. The model was fit with

10,000 iterations using a Markov chain Monte Carlo
(MCMC) method. The parameter r.jump2 was separately
set to 0.2 (in the BMI z-score model) and 0.001 (in the
obesity model) to get suitable acceptance rates.
We also analyzed the association between the quan-

tiles of the chemical exposures and binary healthy out-
come (obesity and non-obesity) using a probit BKMR
model:

Φ − 1 μið Þ ¼ h zið Þ þ xiβ;

where Φ−1 is the link function and μi is the probability
of the binary outcome [22, 23].
Trace plots of parameter in both BMI z-score and

obesity model were visualized to investigate the
convergence.
All of the statistical analysis were conducted using R

software (version 3.6.0).

Results
There were 2372 children and adolescents included in
our study. The general characteristics of the participants
are presented in Table 1. The prevalence of obesity was
20.53%. It showed that the mean age of obesity and non-
obesity is close: approximately 12-and-a-half years old.
About half (44.98%) of the participants were ≤ 5 grade,
and 53.03% had a normal caloric intake. The mean (SD)
BMI and waist circumferences were 30.41 (6.99) and
96.17 (18.05) cm in the obesity group and 19.68 (3.66)
and 69.79 (11.36) cm in the non-obesity group, respect-
ively. The mean (SD) BMI z-scores were 2.12 (0.32) in
the obesity group and 0.18 (0.94) in the non-obesity
group. There were significant differences between the
obesity and non-obesity participants in terms of race,
family income, caloric intake, urinary creatinine, BMI,
BMI z-score, and waist circumference.
The LOD and the detection frequency of the chemi-

cals above the LOD are shown in Table 2. The detection
frequency of MEP (99.9%) had the highest detection fre-
quency of chemical exposures and the detection fre-
quency of all chemical exposures was above 90%.
Table 2 also shows the geometric mean, the mean, and
the distribution of the chemical exposures. The highest
and the lowest geometric means of the chemical expo-
sures were related to the MEP (87.12) ng/mL and 2,4,5-
TCP (0.09) μg ∕ L.
We found significant correlations (P < 0.05) among 9

chemicals (Fig. 1), except for the correlation between
BP-3 and 2,4-DCP (P = 0.69). There was a positive cor-
relation between other compounds, except for a nearly
no correlation of BP-3 with 2,5-DCP (r = − 0.06). 2,5-
DCP was found to have a strongly correlation with 2,4-
DCP (r = 0.87). Additionally, a high correlation between
MeP and PrP (r = 0.81) was found.
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The results from the multivariable logistic and linear
regression models adjusted for the covariates are shown
in Tables 3 and 4, respectively. The adjusted multivari-
able logistic regression analysis revealed a statistically
significant association between obesity and MeP (OR
(95% CI): 0.80 (0.68, 0.94)), 2,5-DCP (OR (95% CI): 1.25
(1.11, 1.40)), MEP (OR (95% CI): 1.28 (1.04, 1.58)), and
MiBP (OR (95% CI): 1.42 (1.07, 1.89)), with MeP show-
ing a negative association with dichotomous variable
obesity. PrP was found to have a negative association
with obesity only when comparing the 4th quartile with
the reference quartile (OR (95% CI): 0.69 (0.49, 0.98)).
When comparing the 2nd, 3rd, and 4th 2,5-DCP quar-
tiles with the reference quartile, 2,5-DCP had a higher
odds ratio (OR (95% CI): 1.49 (1.07, 2.07); 1.80 (1.30,
2.51), and 2.06 (1.47, 2.89), respectively) (Table 3). When

comparing the second, third, and fourth quartiles of
MEP with the reference quartile, MEP had a higher odds
ratio (OR (95% CI): 1.04 (0.75, 1.43); 1.28 (0.92, 1.79),
and 1.39 (0.98, 1.98), respectively; Table 3). We used ad-
justed multivariable linear regression to evaluate the re-
lation between 9 chemical exposures and the BMI z-
score (Table 4). We found MeP (second vs. first quartile)
to be negatively associated with the BMI z-score (β (95%
CI): − 0.14 (− 0.27, − 0.01)), and 2,5-DCP (third vs. first
quartile) as well as MEP to be positively associated with
the BMI z-score (β (95% CI): 0.16 (0.02, 0.30); 0.12 (0.02,
0.21), respectively). The second, third, and fourth MEP
quartiles had a higher BMI z-score (β (95% CI): 0.02 (−
0.12, 0.16); 0.12 (− 0.03, 0.27), and 0.14 (− 0.02, 0.30), re-
spectively) compared with the lowest reference quartile
(Table 4).

Table 1 Demographic characteristics of the NHANES 2005–2010 participants (N = 2372), aged 6–19 years

Characteristics Obesity 487 (20.53%) No obesity 1885 (79.47%) P value

Age (y), mean (SD) 12.57 (3.81) 12.51 (4.01) 0.729

Gender 0.931

Male 252 (10.62%) 982 (41.40%)

Female 235 (9.91%) 903 (38.07%)

Race < 0.001

Mexican American 143 (6.03%) 516 (21.75%)

Other Hispanic 52 (2.19%) 152 (6.41%)

Non-Hispanic White 112 (4.72%) 615 (25.93%)

Non-Hispanic Black 157 (6.62%) 491 (20.70%)

Other Race 23 (0.97%) 111 (4.68%)

Education level 0.155

≤5 grade 215 (9.06%) 852 (35.92%)

6–8 grade 118 (4.97%) 409 (17.24%)

9–12 grade, No Diploma 115 (4.85%) 453 (19.10%)

High School Graduate 26 (1.10%) 79 (3.33%)

GED or Equivalent, More than high school 13 (0.55%) 92 (3.88%)

Family income-to-poverty ratio 0.003

≤ 1.30 235 (9.91%) 774 (32.63%)

1.31,3.50 177 (7.46%) 706 (29.76%)

> 3.50 75 (3.16%) 405 (17.07%)

Caloric intake 0.014

Normal intake 283 (11.93%) 975 (41.10%)

Excessive intake 204 (8.60%) 910 (38.36%)

Serum cotinine (ng/mL), GM (SD) 0.13 (10.55) 0.13 (14.48) 0.140*

Urinary creatinine (mg/dL), GM (SD) 119.89 (1.88) 107.53 (2.01) 0.005*

BMI, mean (SD) 30.41 (6.99) 19.68 (3.66) < 0.001

BMI z-score, mean (SD) 2.12 (0.32) 0.18 (0.94) < 0.001

Waist Circumference (cm), mean (SD) 96.17 (18.05) 69.79 (11.36) < 0.001

NHANES: National Health and Nutrition Examination Survey; BMI: body mass index. Data are presented as mean ± SD or Geometric mean ± SD or n (%). The t-test
and χ2 test were between the general obesity and no obesity groups. *Wilcoxon rank-sum test was used for the non-normal distribution data
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In the multivariable logistic and linear regression
models, including all the chemical exposures, adjusting
for the confounding effects of other chemicals, 2,5-DCP,
2,4-DCP, and MEP were found to have a significant as-
sociation with both the dichotomous variable obesity
(OR (95% CI): 1.73 (1.35, 2.24), 0.57 (0.40, 0.82), and
1.35 (1.08, 1.69), respectively) and continuous variate
BMI z-score (β (95% CI): 0.14 (0.04, 0.24), − 0.20 (− 0.36,
− 0.05), and 0.15 (0.05, 0.25), respectively) (see Add-
itional File 1, Tables S1 and S2). We calculated the

variance inflation factors (VIFs) (see Additional File 1,
Tables S3), and none of them was higher than 10.
We fitted the WQS regression model to the data to

evaluate the relationship between the chemical expo-
sures and the outcome in three models, adjusting for dif-
ferent covariates respectively (Table 5). The WQS index
had a significant association with obesity in Model 1
(OR (95% CI): 1.50 (1.19, 1.90)). In Model2, the WQS
index had a significant association with obesity (OR
(95% CI): 1.51 (1.19, 1.91)). In Model 3, the WQS index
also had a significantly positive association with obesity
after being adjusted for all covariates (OR (95% CI): 1.48
(1.16, 1.89)). We also calculated the estimated chemical
weights of the dichotomous variable obesity in obesity
model, which are presented in Fig. 2a. The highest
weighted chemical in the fully adjusted obesity model
was 2,5-DCP (weighted 0.41), followed by BPA and MEP
(weighted 0.17 and 0.16, respectively). We also treated
the BMI z-score as a continuous variable and fitted the
BMI z-score model (Table 5). However, we did not find
any significant association between the exposures and
the BMI z-score in all three models. The estimated
chemical weights of BMI z-score are presented in Fig. 2b.
The highest weighted chemical in the BMI z-score
model was 2,5-DCP (weighted 0.30). Next to this were
BP-3 and MEP, weighted 0.28 and 0.18, respectively. In
addition, we also fitted WQS model including all covari-
ates with β1 constrained to be negative. However, no
statistical difference was found in this way. (see Add-
itional File 1, Tables S4).
We grouped 9 chemical exposures into three groups,

according to their source and correlation with each
other, and fitted the BKMR model to analyze the

Table 2 Distribution of the chemical exposures in NHANES 2005–2010 (N = 2372)

Chemical exposures LOD (ng/mL) DF (%) GM Mean Min P5 P25 P50 P75 P95 Max

Phenols (ng/mL)

BPA 0.4 95.7% 2.36 4.27 0.28 0.40 1.28 2.30 4.20 12.99 241.00

BP-3 0.4 99.3% 16.49 272.60 0.28 1.40 4.90 12.40 40.60 543.40 94,100.00

Paraben (ng/mL)

MeP 1.0 99.4% 62.66 278.80 0.71 4.50 17.00 58.10 228.20 1119.00 14,900.00

PrP 0.2 95.5% 7.32 59.44 0.14 0.20 1.40 6.50 38.18 283.45 4150.00

Pesticides (μg/L)

2,5-DCP 0.2 99.1% 16.15 255.10 0.14 0.80 3.50 12.20 54.63 955.45 19,400.00

2,4-DCP 0.2 93.5% 1.38 7.01 0.14 0.14 0.50 1.10 2.80 25.58 1230.00

Phthalate metabolites (ng/mL)

MBzP 0.3a 99.7% 13.78 30.19 0.15 1.51 6.54 14.83 31.54 93.26 3806.57

MEP 0.8a 99.9% 87.12 252.60 0.37 11.42 33.84 76.73 209.97 1027.72 11,810.04

MiBP 0.3a 99.7% 9.98 20.38 0.21 1.50 5.20 10.81 20.31 51.62 6286.00

NHANES National Health and Nutrition Examination Survey, LOD Limit of detection, DF Detection frequency, GM Geometric mean
aThe LOD for MBzP, MEP, and MiBP were 0.3 ng/mL, 0.8 ng/mL, and 0.3 ng/mL in the data from 2005 to 2008 and 0.2 ng/mL, 0.4 ng/mL, and 0.2 ng/mL in the data
from 2009 to 2010

Fig. 1 Pearson’s correlations among the urinary concentrations of 9
chemical exposures or metabolites (N = 2372), NHANES, USA, 2005–
2010. All the correlations were statistically significant (P < 0.05),
except those of BP-3 and 2,4-DCP (P = 0.69). #: P > 0.05
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simultaneous exposure with obesity and BMI z-score. In
the obesity model, the group posterior inclusion prob-
abilities (PIP) of the pesticides group was 0.966, while
the group PIP of phenol and phthalates metabolites was
higher than 0.5 (Table 6). In the pesticides group, 2,5-
DCP seemed to drive the effect of the whole group
(CondPIP = 0.978; Table 6). In the phthalate metabolites
group, MEP drove the main effect of the whole group

(CondPIP: 0.656), while MeP drove the main effect in
the phenols group (CondPIP = 0.903) (Table 6). The
overall association between the chemical mixtures and
the binomial outcome is shown in Fig. 3a. We found a
positive tendency between chemical exposures and the
outcome, in spite of no statistically significant difference.
Figure 4 a illustrates the positive associations of 2,5-
DCP, MEP, and MiBP with obesity in the BKMR models,

Table 3 Association between single exposure and obesity in the NHANES 2005–2010 (N = 2372)

Chemical exposures Quartile 1 Quartile 2 Quartile 3 Quartile 4 Total

OR (95%CI) P value OR (95%CI) P value OR (95%CI) P value OR (95%CI) P value

Phenols

BPA Ref 0.95 (0.70, 1.30) 0.759 0.92 (0.66, 1.27) 0.595 1.05 (0.75, 1.47) 0.770 1.05 (0.80, 1.38) 0.728

BP-3 Ref 1.00 (0.74, 1.34) 0.984 1.18 (0.87, 1.59) 0.282 0.93 (0.68, 1.28) 0.655 0.98 (0.84, 1.12) 0.738

Paraben

MeP Ref 0.69 (0.51, 0.92) 0.013 0.65 (0.47, 0.88) 0.006 0.63 (0.45, 0.88) 0.007 0.80 (0.68, 0.94) 0.006

PrP Ref 1.04 (0.78, 1.40) 0.784 0.82 (0.60, 1.12) 0.218 0.69 (0.49, 0.98) 0.037 0.90 (0.79, 1.03) 0.135

Pesticides

2,5-DCP Ref 1.49 (1.07, 2.07) 0.017 1.80 (1.30, 2.51) 0.001 2.06 (1.47, 2.89) 0.001 1.25 (1.11, 1.40) 0.001

2,4-DCP Ref 0.97 (0.70, 1.35) 0.863 1.04 (0.74, 1.45) 0.829 1.11 (0.79, 1.58) 0.536 1.16 (0.97, 1.37) 0.098

Phthalate metabolites

MBzP Ref 1.07 (0.79, 1.45) 0.683 1.05 (0.76, 1.46) 0.753 0.89 (0.63, 1.27) 0.535 0.96 (0.75, 1.21) 0.705

MEP Ref 1.04 (0.75, 1.43) 0.824 1.28 (0.92, 1.79) 0.140 1.39 (0.98, 1.98) 0.069 1.28 (1.04, 1.58) 0.022

MiBP Ref 1.49 (1.08, 2.07) 0.016 1.43 (1.01, 2.03) 0.045 1.62 (1.11, 2.37) 0.013 1.42 (1.07, 1.89) 0.015

NHANES National Health and Nutrition Examination Survey, OR Odds ratio, CI Confidence interval. Total means continuous chemical variable. Multivariable logistic
regression was conducted, and odds ratios (ORs) were calculated while comparing the second, third, and fourth quartiles of each chemical with reference to the
first exposure quartile (N = 2372). Models were adjusted for age, gender, race, educational levels, family income-to-poverty ratio, caloric intake, serum cotinine and
log-transformed creatinine

Table 4 Association between single exposure and BMI z-score in NHANES 2005–2010 (N = 2372)

Chemical
exposures

Quartile
1

Quartile 2 Quartile 3 Quartile 4 Total

β (95%CI) P value β (95%CI) P value β (95%CI) P value β (95%CI) P value

Phenols

BPA Ref 0.02 (−0.12, 0.16) 0.772 0.01 (−0.14, 0.15) 0.928 −0.01 (−0.15, 0.15) 0.995 −0.06 (−0.19, 0.06) 0.342

BP-3 Ref 0.07 (− 0.07, 0.20) 0.337 0.08 (−0.06, 0.22) 0.259 0.07 (− 0.07, 0.21) 0.325 0.02 (− 0.04, 0.08) 0.541

Paraben

MeP Ref −0.14 (− 0.27, − 0.01) 0.044 − 0.14 (− 0.28, 0.01) 0.060 − 0.14 (− 0.30, 0.02) 0.078 −0.05 (− 0.13, 0.02) 0.155

PrP Ref −0.01 (− 0.15, 0.12) 0.829 − 0.06 (− 0.20, 0.08) 0.406 −0.10 (− 0.26, 0.05) 0.189 −0.03 (− 0.09, 0.03) 0.394

Pesticides

2,5-DCP Ref 0.05 (−0.09, 0.19) 0.465 0.16 (0.02, 0.30) 0.023 0.09 (−0.05, 0.24) 0.214 0.03 (−0.03, 0.08) 0.327

2,4-DCP Ref −0.05 (− 0.19, 0.10) 0.514 0.06 (− 0.09, 0.21) 0.401 − 0.05 (− 0.20, 0.11) 0.568 −0.02 (− 0.10, 0.06) 0.611

Phthalate metabolites

MBzP Ref 0.05 (−0.09, 0.18) 0.519 −0.03 (− 0.18, 0.11) 0.653 − 0.02 (− 0.18, 0.14) 0.826 −0.01 (− 0.12, 0.10) 0.862

MEP Ref 0.02 (−0.12, 0.16) 0.773 0.12 (−0.03, 0.27) 0.108 0.14 (−0.02, 0.30) 0.083 0.12 (0.02, 0.21) 0.017

MiBP Ref 0.14 (−0.01, 0.28) 0.054 0.07 (−0.08, 0.22) 0.376 0.10 (−0.07, 0.27) 0.251 0.05 (−0.08, 0.18) 0.471

NHANES National Health and Nutrition Examination Survey, CI Confidence interval; Total means continuous chemical variable. Multivariable linear regression was
conducted and regression coefficients (β) were calculated while comparing the second, third and fourth quartiles of each chemical with reference to the first
exposure quartile (N = 2372). Models were adjusted for age, gender, race, educational levels, family income-to-poverty ratio, caloric intake, serum cotinine, and
log-transformed creatinine
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while controlling all other chemical exposures at their
median level. MeP demonstrated an inverse association
with obesity, while no other chemical exposures showed
a noteworthy change in slope. We also investigated the
relationship between the outcome and a unitary pre-
dictor in exposures while fixing another predictor in ex-
posures at the 10th, 50th, and 90th quantiles (and
holding the remnant predictors to their median level),
and the results are shown in Fig. 5 a. Since the slopes
were different between 2,5-DCP and obesity, MEP and
obesity while fixing MeP at the 10th, 50th, and 90th
quantiles, potential interactions might exist between 2,5-
DCP and MeP as well as MEP and MeP. In the BMI z-
score model, the values of the group PIP in three groups
were 0.329, 0.256, and 0.707, respectively. (Table 6).
MEP drove the main effect in its group (CondPIP:
0.831). The overall risk of the chemical mixtures on the
outcome are presented in Fig. 3b. Although no statisti-
cally significant difference was found, they revealed a
positive association of the mixed exposures with the
BMI z-score, when we compared all the predictors fixed

Table 5 Association between the WQS index and obesity in
NHANES 2005–2010 (N = 2372)

Outcomes OR/ β 95% CI of OR P value

Obesity

Model 1 1.50 (1.19, 1.90) < 0.001

Model 2 1.51 (1.19, 1.91) < 0.001

Model 3 1.48 (1.16, 1.89) 0.002

BMI z-score

Model 1 0.028 (−0.09, 0.15) 0.643

Model 2 0.033 (−0.09, 0.15) 0.584

Model 3 0.001 (−0.12, 0.12) 0.983

NHANES National Health and Nutrition Examination Survey, CI Confidence
interval. The weighted quantile sum (WQS) regression was fitted for the
obesity and BMI z-score, which scored all the chemical exposures into
quantiles and estimated the weight index. OR estimates represent the odds
ratios of obesity as 1 quartile increased in the WQS index. β estimates
represent the mean differences in the BMI z-score as 1 quartile increased in
the WQS index. Model 1: Adjusted for age, gender, ethnicity, and log-
transformed creatinine. Model 2: Adjusted for age, gender, ethnicity, caloric
intake, serum cotinine, and log-transformed creatinine. Model 3: Adjusted for
age, gender, ethnicity, educational levels, family income-to-poverty ratio,
caloric intake, serum cotinine, and log-transformed creatinine

Fig. 2 WQS model regression index weights for the obesity (a) and BMI z-score (b). Models were adjusted for age, gender, race, education levels,
family income-to-poverty ratio, caloric intake, serum cotinine, and log-transformed creatinine
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at different levels with their 50th percentiles. 2,5-DCP
and MEP had a trend of a positive association with the
BMI z-score, while 2,4-DCP had an inverse association
(Fig. 4 b). No obvious interaction was found in the BMI
z-score model (Fig. 5 b).
To ensure the convergence, we plotted the trace plots,

which showed a more or less homogeneously covered
space and indicated our model had a good convergence.
(see Additional File 1, Fig. 1 and Fig. 2).
For 2,5-DCP and MEP seemed to drive the whole ef-

fect in pesticides group (in obesity model) and in phthal-
ate group (in BMI z-score model), we further modeled 2,
5-DCP and other groups (phenols group, parabens
group, and phthalate group) in obesity model and MEP

and other groups (phenols group, parabens group, and
pesticides group) in BMI z-score model. The credibility
intervals tighten a little (see Additional File 1, Fig. 3 a
and b), which meant 2,4-DCP, MiBP and MBzP showed
little relevance for the outcome.

Discussion
Due to the interactions between chemicals, it would be
inaccurate to fit only the generalized linear regression
model. Therefore, we further used the WQS and BKMR
models, which can deal with the interaction between
chemicals.
The generalized linear regression showed a positive as-

sociation between 2,5-DCP, MEP, and MiBP and obesity;
however, MeP was negative with the outcome. 2,5-DCP
and MEP were significantly associated with the BMI z-
score. In the WQS model, 2,5-DCP, BPA, and MEP were
found to have relatively high weights in the obesity
model, while 2,5-DCP and MEP were found to weight
relatively high in the BMI z-score model. In the BKMR
model, although no significant association was found be-
tween the overall risk of the mixed chemicals and obes-
ity (either obesity or the BMI z-score), there was an
upward trend. 2,5-DCP, MEP, and MiBP were found to
have a positive association in the obesity model, when
fixing others at their median concentration, while in the
BMI z-score model, 2,5-DCP, and MEP were positively
correlated with the BMI z-score. These results point out
the necessity for combining three different models, con-
sidering their various advantages and disadvantages.
The generalized linear model, which is used frequently

to deal with the exposure-response model, has a fast
modeling speed and allowed us to obtain an understand-
able interpretation of the coefficients. Usually, in the
analysis to evaluate the association between exposures
and outcome, a unitary exposure or a set of similar ex-
posures is included [12, 32, 33]. Our study included 9
chemical exposures of different sorts. It should be noted
that the generalized linear model could not analyze the

Table 6 GroupPIP and condPIP in BKMR model in NHANES
2005–2010 (N = 2372)

Chemicals Group Obesity BMI z-score

groupPIP condPIP groupPIP condPIP

Phenols

BPA 1 0.775 0.020 0.329 0.278

BP-3 1 0.775 0.046 0.329 0.233

Paraben

MeP 1 0.775 0.903 0.329 0.322

PrP 1 0.775 0.031 0.329 0.166

Pesticides

2,5-DCP 2 0.966 0.978 0.256 0.500

2,4-DCP 2 0.966 0.022 0.256 0.500

Phthalate metabolites

MBzP 3 0.769 0.016 0.707 0.066

MEP 3 0.769 0.656 0.707 0.831

MiBP 3 0.769 0.328 0.707 0.103

GroupPIP Group posterior inclusion probability, condPIP Conditional posterior
inclusion probability, NHANES National Health and Nutrition Examination
Survey. The three groups in BKMR model were Phenols and paraben (group1),
pesticides (group2), and phthalate metabolites (group3). Models were adjusted
for age, gender, race, educational levels, family income-to-poverty ratio, caloric
intake, serum cotinine, and log-transformed creatinine

Fig. 3 Overall risk (95% CI) of chemical exposures on obesity (a) and BMI z-score (b) when comparing all the chemicals at different percentiles
with their median level. Models were adjusted for age, gender, race, educational levels, family income-to poverty ratio, caloric intake, serum
cotinine, and log-transformed creatinine
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interactions between exposures. The results may be con-
fusing due to the co-linear or interactions between the
exposures.
The WQS mode can include mixed chemicals expo-

sures, with possible high correlations and interactions
that are common in real life. In our analysis, 2,5-DCP
and MEP were weighted highly in the WQS model.
Among these, it is worth noting that BPA and BP-3 were
found to weigh highly in the WQS model, yet was found
to have a negligible relationship with obesity in the other
two models, which may be due to the limitation of the
WQS model. The WQS model may lose the full

exposure information of the chemical exposures using
the quantiles to score the exposures. MeP weighed
slightly in the WQS model, which differed from the re-
sults in the the other two models. This may result from
its negative correlation with the outcome. Since one
limitation of WQS is that all chemical exposures in-
cluded in the model must have the same effective trend
with the outcome, otherwise they will be distributed to a
negligible weight in the WQS model [34]. In addition,
the WQS model may result in a slight weight if a large
number of exposures were included, or if there were
complex interactions within mixed exposures. Two likely

Fig. 4 Association and 95% credible intervals for each chemical exposure with obesity (a) and BMI z-score (b) while fixing other chemical
exposures at their median level. The model was adjusted for age, gender, race, educational levels, family income-to-poverty ratio, caloric intake,
serum cotinine, and log-transformed creatinine
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important exposures would have smaller weights if one
of them was highly correlated with another one that was
assigned a slight weight [31]. However, as for the inter-
actions between chemical exposures, the WQS model
still has a high specificity and sensitivity when dealing
with mixed predictors, considering the correlated high-
dimensional mixtures.
The BKMR model is a new approach to deal with the

complexity of mixed exposures, which can analyze not
only the exposure-response function of the overall risk
of mixed chemical exposures but also the interaction be-
tween two chemical exposures. In our study, 2,5-DCP
and MEP have a positive association with the continuous

variable BMI z-score, which was consistent with the re-
sults of our findings in the other two models. However,
with the non-linear exposure-response function, other
exposures were slightly or negatively associated with the
outcomes, which showed consistency with its slight
weight in the WQS model. Among the three groups, the
MeP was found to have an inverse association with obes-
ity, which is consistent with a previous study [12]. Previ-
ous studies could not reach consensus concerning
phthalate and BPA, [35–37], and further studies are
needed. It is worth noting that MiBP had a positive rela-
tionship with the dichotomous variable of obesity but
had no relationship with the continuous variable. This

Fig. 5 Association between exposure 1 with obesity (a) and BMI z-score (b), while fixing exposure 2 at the 10th, 50th, and 90th quantiles (and
holding the remnant predictors to their median level). The models were adjusted for age, gender, race, educational levels, family income-to-
poverty ratio, caloric intake, serum cotinine, and log-transformed creatinine
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may be due to the misleading information when we arti-
ficially classified the continuous variable into a dichot-
omous variable. Besides, we also found potential
interactions between 2,5-DCP and MeP as well as MEP
and MeP in obesity model, while in the BMI z-score
model there was no oblivious interactions. And further
investigation is needed on these interactions. The BKMR
model also has some limitations. An inconspicuous over-
all risk association may be observed when exposures
which were positive with the outcome or were negative
with the outcome both exist [22].
There were several limitations to our study. First, be-

cause of the design of the cross-sectional survey project,
which collected all of the data at a single time point,
there was a limit to the inference of the causation be-
tween the chemical exposures and obesity. Second, we
used the education level of the individuals themselves in-
stead of their parents’ education level, which can be a
factor, since parental education can change their
intention to alter the obesity risk factor [38]. Third,
chemical concentrations below the limit of detection
were simply replaced by the value of the limit of detec-
tion divided by the square root of 2, which may cause in-
accurate results. Thus, we selected chemical exposures
with a high detection frequency. Fourth, obesity is the
result of a combination of the long-term effects of vari-
ous factors. We determined that the concentration of
various exposures in urine does not justify a full infer-
ence about the mixed chemical exposures on individuals.
Further prospective studies are required to investigate
the long-term exposure.

Conclusion
Our study uses three statistical models to analyze the
mixed chemical exposures with obesity. 2,5-DCP and
MEP were found to have a significant association with
the outcome in all models, these results may lead to a
false conclusion if only one model is considered. Since
all of the models have their own advantages and disad-
vantages, our study confirms the necessity of combining
different statistical models when dealing with the effects
of mixed exposures on obesity.
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