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Abstract

Background: The health-risk assessment paradigm is shifting from single stressor evaluation towards cumulative
assessments of multiple stressors. Recent efforts to develop broad-scale public health hazard datasets provide an
opportunity to develop and evaluate multiple exposure hazards in combination.

Methods: We performed a multivariate study of the spatial relationship between 12 indicators of environmental
hazard, 5 indicators of socioeconomic hardship, and 3 health outcomes. Indicators were obtained from CalEnviroScreen
(version 3.0), a publicly available environmental justice screening tool developed by the State of California
Environmental Protection Agency. The indicators were compared to the total rate of hospitalization for 14
ICD-9 disease categories (a measure of disease burden) at the zip code tabulation area population level. We
performed principal component analysis to visualize and reduce the CalEnviroScreen data and spatial
autoregression to evaluate associations with disease burden.

Results: CalEnviroScreen was strongly associated with the first principal component (PC) from a principal
component analysis (PCA) of all 20 variables (Spearman ρ = 0.95). In a PCA of the 12 environmental variables,
two PC axes explained 43% of variance, with the first axis indicating industrial activity and air pollution, and
the second associated with ground-level ozone, drinking water contamination and PM2.5. Mass of pesticides
used in agriculture was poorly or negatively correlated with all other environmental indicators, and with the
CalEnviroScreen calculation method, suggesting a limited ability of the method to capture agricultural exposures. In a
PCA of the 5 socioeconomic variables, the first PC explained 66% of variance, representing overall socioeconomic
hardship. In simultaneous autoregressive models, the first environmental and socioeconomic PCs were both
significantly associated with the disease burden measure, but more model variation was explained by the
socioeconomic PCs.

Conclusions: This study supports the use of CalEnviroScreen for its intended purpose of screening California
regions for areas with high environmental exposure and population vulnerability. Study results further suggest a
hypothesis that, compared to environmental pollutant exposure, socioeconomic status has greater impact on
overall burden of disease.
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Background
A wide range of factors including demography, socioeco-
nomic status, psychosocial stressors, and environmental
exposures influence health outcomes [1–6]. One often
used approach for addressing a single stressor is a risk
assessment, which focuses on the probability of harm
and is based on a quantitative convolution of exposure
assessment with a dose-response assessment to provide
an overall characterization of risk. But in order to pro-
tect vulnerable individuals and communities, environ-
mental health science has broadened in emphasis from
single-stressor evaluations to include integrated assess-
ment of multiple stressors [1, 6–10]. This integration
among disparate exposures presents a significant meth-
odological challenge, requiring qualitative and less-
formal quantitative methods that address hazard as the
potential for harm [3, 4, 6, 7, 11, 12]. These impact
assessments use metrics of exposure and dose-response
but lack the quantitative direct link of these two factors
that is common in risk assessment. Based on these
methods, environmental justice advocates and health
geographers have developed a variety of maps, indices,
and tools that integrate environmental health hazards
from multiple stressors at varying geographic scales.
These tools incorporate a range of indicators including
pollutant concentration or load estimates, contaminated
sites or other hazards, built environment measures (e.g.,
urbanization, industry, green space, and road and traffic
density), and population characteristics, such as educa-
tional attainment and socioeconomic status [2, 6, 8–10,
12–17]. A particular goal is the identification of geo-
graphic regions where vulnerable populations encounter
environmental exposures, resulting in potential health
impacts [2, 16, 18, 19]. To increase transparency and
potential societal benefits, many integrated hazard as-
sessment programs also engage the community at large
in tool development and assessment, through
community-based participatory research, solicitation of
public commentary, and the provision and use of pub-
licly accessible data [12, 13, 16, 20–22]. Some of these
integration tools and methods also consider the potential
interaction between environmental contributors to risk
and the preexisting vulnerability of exposed populations
to environmental stressors [1, 8, 16, 19, 23].
To complement the development of new methods,

there is an ongoing need to quantitatively examine exist-
ing methods and tools. Critical and impartial evaluations
will ensure that integrated assessment methods are well
characterized, technically defensible, and appropriate for
intended uses. Further, methods and their underlying
data can be analyzed for geographic and statistical pat-
terns of public health hazards [9, 10, 16, 23, 24]. The
correlation among and between environmental expo-
sures, socioeconomic vulnerability, and health outcomes

also warrant investigation. In particular, an understand-
ing of which health stressors (e.g., environmental, social,
economic) are most associated with adverse health
outcomes can aid in resource allocation and health pol-
icy direction across regions and populations [4]. For
example, the relative health impact of environmental
factors (e.g., pollution) versus population attributes
(e.g., socioeconomic status, educational attainment)
warrants examination. Multivariate methods (e.g., or-
dination, principal component analysis) and spatial sta-
tistics [25–27] can be very useful methods for these
questions given the multivariate and spatial nature of
health hazard assessment [9, 10].
An important case study for spatial health hazard

evaluation is the California Communities Environmental
Health Screening Tool version 3.0 (hereafter abbreviated
as CalEnviroScreen). CalEnviroScreen was developed by
the State of California Environmental Protection
Agency’s (CalEPA) Office of Environmental Health
Hazard Assessment (OEHHA) as a “screening method-
ology that can be used to help identify California com-
munities that are disproportionately burdened by
multiple sources of pollution [28].” CalEnviroScreen
generates a numeric score, potentially ranging from 0 to
100. The score is based on 20 indicators: 12 measures of
environmental exposure, 5 of socioeconomic vulnerabil-
ity, and 3 of health outcomes (asthma, low birth weight,
and cardiovascular disease) [13, 23, 24]. In addition to
describing the spatial patterns of hazard, CalEnviroScreen
is also intended to help guide state resource allocation. In
particular, California Assembly Bill 32 (AB32) and Senate
Bill 535 have established a cap and trade program for
greenhouse gas emissions, and AB1550, passed in
September 2016, requires that 25% of the anticipated 1
billion dollars of annual state revenue from this program
be allocated to communities identified by CalEPA as hav-
ing health vulnerabilities. CalEPA used CalEnviroScreen
to identify these vulnerable communities [18, 23, 28].
The methodology for developing CalEnviroScreen has

been detailed elsewhere, and CalEnviroScreen has previ-
ously been shown by the scientific development team to
indicate strong racial disparities in environmental and
socioeconomic vulnerability [23, 24]. The method and
some of the underlying assumptions have also been sub-
ject to scrutiny as part of a public review process [21,
29], and a previous iteration (CalEnviroScreen version
2.0) was employed as a community disadvantage indica-
tor, and found to be significantly associated with ovarian
cancer survival [30]. Despite these applications and their
policy significance, an October 10, 2017 search of all
peer reviewed journal publications in Google Scholar
and in PubMed that include the term “CalEnviroScreen”
revealed no independent evaluation of CalEnviroScreen
in the peer reviewed scientific literature. This is surprising,
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given that the CalEnviroScreen score will be used to de-
cide on the allocation of around 1 billion dollars of state
revenue, annually.
We examined the multivariate associations in the data

underlying CalEnviroScreen (Version 3.0) and the statis-
tical association between the 17 environmental and
socioeconomic variables that describe environmental
hazard and population vulnerability with an indicator of
disease burden. We developed the disease burden indi-
cator using publicly available hospital discharge data at
the zip code scale.

Motivation and specific aims
The literature on model performance evaluation makes
clear the need for systematic efforts to show how a
decision-support model performs relative to its intended
objectives [31]. The work here was motivated by our
observation that in the documentation to date for
CalEnviroScreen, there is limited information regarding
the multivariate associations in the variables used to
construct the overall impact score. For example, there is
no comparison to separate burden of disease measures,
and no examination of the relationship between these
associations and the CalEnviroScreen scores, themselves.
Analyzing 30 sites at a zip code scale using a preliminary
variable set and model formulation in 2012, Meehan
August et al. [13] found correlations among many indica-
tor variables proposed for inclusion in CalEnviroScreen,
and low to moderate score sensitivity to changes in
CalEnviroScreen model formulation. However, since that
time the model formulation, variables, data sets, and
geographic resolution have all changed. The current
CalEnviroScreen model provides census tract scale data
for over 8000 sites.
The CalEnviroScreen data reduction and score calcula-

tion methodology is moderately complex, and is based
on considerable professional judgment [13, 23]. Public
review comments frequently raise concerns that this cal-
culation method may distort the comparative differences
in hazard among locations, suggesting that comparison
to an independently developed aggregate score would be
useful. Therefore, one of our study objectives was to per-
form an external validation of the CalEnviroScreen score
by comparison to a score obtained using simple applica-
tion of a multivariate statistical algorithm (principal
component analysis) to the underlying variables. We
confront the need to quantitatively address outcome
dependence on inputs in order to provide insight for
decision makers.
In short, our aim was to systematically to describe asso-

ciations among variables that go into the CalEnviroScreen
score, whether the score strongly correlates with system-
atic change in the combined variables, and whether these
indicators of hazard and vulnerability predict burden of

disease. To achieve these objectives, we addressed four
questions about the CalEnviroScreen source data and its
use to produce an outcome score: 1. What are the correl-
ation patterns and statistical associations in the variables?
2. How does the CalEnviroScreen numeric score compare
to a score based on principal component analysis,
employed as an alternate scoring method based on the
statistical associations in the underlying data? 3. Using the
alternate scoring method, what spatial patterns are evident
in environmental hazard and population vulnerability in
California? 4. Do the environmental hazard and popula-
tion vulnerability indicators statistically predict overall
disease burden? For this last question, we work to gener-
ate hypotheses regarding the ability of CalEnviroScreen to
address health outcomes and the relative importance of
environmental versus socioeconomic factors in determin-
ing disease burden.

Methods
CalEnviroScreen background and data
We downloaded the CalEnviroScreen data along with the
CalEnviroScreen 3.0 scores as a Microsoft Excel spread-
sheet file from the CalEnviroScreen website [32]. These
data have been pre-cleaned and carefully prepared by
CalEPA, as described elsewhere [23, 24]. The data set
covers 8035 census tracts, though CalEnviroScreen 3.0 re-
sults are calculated for 7929 census tracts. CalEnviroScreen
3.0 includes 12 environmental hazard variables: ozone
levels, concentrations of particulate matter ≤ 2.5 μm in
diameter (hereafter, PM2.5), diesel particulate matter
concentrations (diesel PM), traffic density, drinking water
contamination, active pesticide mass used in agriculture
(pesticide use), airborne toxic chemical releases, water
body impairments, sites hazardous to groundwater
(groundwater threats), sites targeted for cleanup, hazardous
waste sites, and solid waste sites. CalEnviroScreen 3.0 also
includes 5 socioeconomic vulnerability variables: low
educational attainment, linguistic isolation, poverty, un-
employment, and households severely burdened by hous-
ing costs (hereafter, housing burden). CalEnviroScreen 3.0
additionally includes three specific health outcome vari-
ables: asthma, low birth-weight, and cardiovascular disease,
which are intended to indicate a combination of vulner-
ability to, and effects of, environmental exposures [23]. All
variables were obtained based on data collected between
2009 and 2016, except drinking water contamination
(2005–2013). Table S1 (Additional File 1) summarizes the
variables, providing abbreviations, years represented, ori-
ginal units, and data transformations for this study.
Cushing et al. [24], Faust et al. [23], and OEHHA [33]
provide more extensive detail.
The CalEnviroScreen 3.0 score is constructed from

these data by a weighted averaging and multiplication
algorithm, described elsewhere [23]. Briefly, each
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underlying variable is assigned a percentile rank score
across each available census tract, a single weighted
average is calculated for the 12 environmental variables
and another weighted average for the 8 population vari-
ables (socioeconomic vulnerability and health outcome
variables), each weighted average is linearly rescaled
from 0 to 10, and finally, the two averages are multiplied
achieving a score possibly ranging from 0 to 100.

Disease burden measure
Although CalEnviroScreen does incorporate three spe-
cific health outcomes, we developed a separate disease
burden measure independently of CalEnviroScreen to
examine how well the environmental and socioeconomic
variables in CalEnviroScreen predict overall burden of
disease. To maintain transparency and potential for
community access [4, 13], our disease burden indicator
was developed using publicly available hospital discharge
data collected at the zip-code level. Although some re-
searchers may not consider hospitalization at zip code as
the most specific measure that one would like for a dis-
ease burden analysis, it is what is publicly available to
derive metrics of disease burden and has been used in
other studies tracking links between environmental qual-
ity and disease [34, 35].
We characterized burden of diseases using discharge

diagnostic codes (which used the ICD-9-CM schema).
We obtained these data for all hospitalizations for a
given calendar year using publicly available, de-
identified, statewide hospital discharge data from the
California Office of Statewide Health Planning and
Development, spanning the years 2008–2011. Using
these data, we classified hospitalizations by pre-
determined ICD-9 diagnostic categories, focusing on
diseases having environmental etiology. We determined
the sum total number of hospitalizations for 14 disease
diagnostic categories representing serious or chronic
ailments known to have potential environmental eti-
ology. The 14 categories were pneumonia, chronic
obstructive pulmonary disease (COPD), asthma, myocar-
dial infarction (MI), cerebrovascular accident (CVA),
diarrhea, pancreatic cancer, lung cancer, breast cancer,
lymphoma, leukemia, depression, schizophrenia, and low
birth weight.
The overall approach of combining multiple diseases

without weighting factors and assuming that hospital ad-
missions can be a metric of regional disease patterns
offers utility for impact assessment but has limitations.
Combining multiple disease outcomes into a single
metric of disease burden has the advantage of being
comprehensive in capturing a large range of environ-
mentally related diseases. The approach has been used
in assessing global burden of disease for policy studies
[36], but how or whether to use disease-weighting

factors is a concern [37], and selection of weighting
factors can both enhance and bias results. Because we
were not interested in a metric of disability but only
wide-scale disease patterns, we elected not to use
disease-weighting factors. Using hospital admissions data
as a metric of regional variations in disease patterns also
has utility as a health metric but limitations with regard
to how well this metric relates to the health of a com-
munity. These issues have been addressed in the health
tracking literature and show that the approach can be
useful to policy makers [34, 38].
In a preliminary analysis, we found that the occurrence

of these disease categories in hospitalized persons was
positively correlated among the categories and also
correlated with the total number of diagnoses
(Additional file 1: Table S2, Figure S1). Further, because
the same patient hospitalization could have multiple
diagnoses spanning multiple categories, rates for differ-
ent disease categories are not mutually exclusive. To ad-
dress these issues, and minimize the Type I error rate
and complexity of the analysis, we assembled these data
into a single count of total hospitalizations resulting
from the 14 diagnostic categories. In this count, a
hospitalization event that included more than one diag-
nostic category was recorded as a single event.
We summed the count of total hospitalizations at

the zip code tabulation area (ZCTA) level, and di-
vided by total population. For the denominator, we
used ZCTA population estimates from the 2010
United States Census. We observed high variability in
rates for populations below 100 individuals within a
ZCTA (Additional file 1: Figure S2). Therefore, we ex-
cluded ZCTAs having populations < 100 individuals
from the final analysis to minimize the influence of
statistical outliers.
In summary, this disease burden measure is the

total rate of hospitalizations associated with at least
one of the 14 diagnostic categories selected for a
given ZCTA. Because the same person could in the-
ory be admitted multiple times for the same diagno-
sis, the rates reported here are only approximations
of population disease prevalence. They may be viewed
as representing the impact of certain diseases
(particularly chronic diseases), since apart from mor-
tality, hospitalization is generally the most extreme
result of any disease process.
Expecting chronic disease burden to be higher

among the elderly, we obtained the percent of the
population over 65 years old for each ZCTA from the
2010 US Census. This parameter (Over65) was used
in addition to the environmental and socioeconomic
variables derived from CalEnviroScreen as a predictor
in statistical models used to explain the disease
burden measure.
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Data preparation and spatial alignment
Hospitalization-related diagnoses were tabulated at the
zip code scale, census population is at the ZCTA scale,
and CalEnviroScreen data are available at the census-
tract scale. Thus, spatial alignment was required prior to
comparing CalEnviroScreen variables to the disease bur-
den measure. The following data preprocessing steps
were performed using ArcMap v10 (ESRI, Redlands,
CA): 1. average the CalEnviroScreen data at the zip code
scale to achieve a consistent analysis scale; 2. link the
CalEnviroScreen and ICD-9 data together; 3. combine
with a shapefile of zip code polygons; and 4. standardize
the health outcome data to total population per zip code
tabulation area (ZCTA). Additional file 1 further details
this spatial alignment methodology.

Statistical methods
Statistical analysis was performed in R (version 3.4.0)
[39]. Principal component analysis (PCA) was conducted
for data reduction, and to allow examination of the
contribution to variance explained by individual
variables (i.e., variable loadings) and the multivariate
data structure, similar to other public health studies [10,
40, 41]. For all census tracts that had CalEnviroScreen
results (n = 7929), PCA was performed on the correl-
ation matrix using the R package factoMineR. Prior to
PCA, missing values were imputed using the impu-
tePCA command in the missMDA package [42].
Separate PCAs were performed to achieve different

study objectives. A PCA was performed on all 20
CalEnviroScreen variables in combination in order to
examine multivariate patterns of the entire data set. Two
separate PCAs were also performed on the 12 environ-
mental and the 5 socioeconomic variables to generate
and evaluate a smaller number of variables representing
the categories of environmental hazard, and socioeco-
nomic status, respectively. Finally, another PCA was per-
formed on the 17 environmental and socioeconomic
variables. This PCA, which did not include the three
health outcome variables (asthma, low birth-weight, or
cardiovascular disease), was compared to the
hospitalization rate disease burden measure (described
above). The goal of this analysis was to examine how
these exposure and population variables underlying
CalEnviroScreen are generally associated with disease
burden.
Environmental hazard and socioeconomic status vari-

ables (principal components) were compared to the
disease burden measure (hospitalization rate for 14 diag-
noses) using simultaneously autoregressive models
(SAR), employing the R package spdep. SAR was chosen
as a spatial autoregressive model appropriate to describe
and test for linear relationships in the presence of spatial
autocorrelation [27, 43]. Appropriate treatment of spatial

autocorrelation was assessed based on Moran plots
illustrating no association with spatially lagged means,
global Moran’s I that was not significant, and a spatial
dependence parameter (λ) that was significant via
likelihood ratio test [43–45]. Models were selected
based on minimizing the Bayesian Information
Criterion (BIC). Parameter inclusion was based on re-
ported p values (α = 0.05) and on ΔBIC, employing the
rule of thumb that ΔBIC ≥ 2 provides positive evidence
of model improvement [46]. Nagelkerke pseudo-R2 was
calculated as a measure of model goodness of fit for
SAR models. Analogous to traditional R2 in meaning
(though not directly comparable), the Nagelkerke
pseudo-R2 estimates from 0 to 1 the improvement in
proportion of variation explained by the fitted model,
versus a null (intercept-only) model [47]. In order to
compare the contribution of each parameter to final
variation explained by the model, the psuedo-R2 was
compared between the full model and the model with
that parameter removed.
Prior to statistical analysis, all variables were trans-

formed to approximate a normal distribution and
multivariate linearity required for linear model analysis
[26, 48]. Transformations included log10 (7 variables),
cube root (6 variables), square root (5 variables), and
arcsine square root transformation (drinking water).
PM2.5 and low birth weight did not require transform-
ation (Additional File: Table S1). The combined disease
burden measure (DB) exhibited skewness and long tails
(leptokurtic) and standard transformations failed to
achieve normally distributed model residuals. Normal
residuals were therefore achieved employing a modulus
transformation: sign

ffiffiffiffiffiffiffi

DB
p� � � ln

ffiffiffiffiffiffiffi

DB
p�
�

�

�þ 1
� �

following
John and Draper [49]. The predictor variables for the
SAR were centered and scaled by subtracting the mean
and dividing by the standard deviation. This converted
the transformed variables (Additional File: Table S1) to
the same unit normal distributions, such that a comparison
of model coefficients would approximately indicate relative
contribution of each variable to disease burden [50].
In the interest of independent assessment, we did not

communicate with OEHHA, CalEPA, or any members
of the CalEnviroScreen development team regarding any
aspect of this study.

Results
For Question 1, describing the multivariate structure of
the CalEnviroScreen source data, we employ PCA to
visualize which exposures are associated with each other
and the prevailing patterns of overall exposure encoun-
tered in California. For Question 2, how CalEnviroScreen
compares to an alternate metric based on PCA, we
present the correlation between the main principal
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components and the CalEnviroScreen score. For Question
3, spatial patterns in environmental hazard and population
vulnerability, we map the first principal component (PC)
of separate PCAs performed on the environmental hazard
and socioeconomic vulnerability variables. Finally,
Question 4 examines and compares whether the exposure
and vulnerability indicators in CalEnviroScreen predict
disease burden. We employ the PCs rather than the indi-
vidual parameters to focus on overall patterns of exposure
and vulnerability and to reduce the number of required
analyses. The relative importance of environmental versus
socioeconomic parameters in the model illustrates which
factors most influence disease burden.

Multivariate data structure
Pearson’s pairwise correlation coefficients (r) indicate
multiple associations for the underlying CalEnviroScreen
data (Table 1). Positive pairwise associations are
observed among variables related to air pollution and
traffic, with diesel PM moderately correlated with
PM2.5(r = 0.41) and traffic density (r = 0.56), and toxic re-
lease correlated with these three variables (r = 0.43–0.56,
Table 1). Socioeconomic indicators of vulnerability are also
positively associated: low educational attainment, linguistic
isolation, poverty, and unemployment exhibit r values ran-
ging from 0.51 to 0.82, with the exception of linguistic iso-
lation versus unemployment (r = 0.24) (Table 1; Additional
file 1: Figure S3). Housing burden is also positively related
to these variables, with correlation coefficients ranging from
r = 0.40 versus unemployment to r = 0.72 for poverty. The
strongest correlation between socioeconomic and environ-
mental variables is between linguistic isolation and
diesel PM (r = 0.43). The strongest negative association
among all variables is groundwater threats versus ozone
(r = −0.33). Of the CalEnviroScreen health outcome vari-
ables, low birth weight is not well correlated with any en-
vironmental variables, but is highly correlated with
housing burden (r = 0.72). Similarly, asthma is more
positively correlated with the socioeconomic variables
education (r = 0.51), poverty (0.53), and housing burden
(0.50), than with any environmental variables. Cardio-
vascular disease exhibits moderate correlations with low
educational attainment, poverty, and unemployment (r =
0.43–0.46) but also with the environmental variable, ozone
(0.39).

Principal component analysis and comparison to
CalEnviroScreen
PCA was performed on the entire CalEnviroScreen data
set (20 variables), on the data set without the health out-
come variables (17 variables), and on the environmental
(12 variables) and socioeconomic (5 variables) data. For
the entire data set, the first three PCs explain 50% of
data variability in combination. The first principal

component (PC) (Fig. 1a, horizontal axis), explaining
23% of variation, is positively associated with all vari-
ables except for a weak negative association with pesti-
cide use and impaired water bodies. The variables with
the greatest variance along this axis are asthma (health
indicator) and the five socioeconomic indicators (linguis-
tic isolation, low educational attainment, poverty, un-
employment, and housing burden). The other two health
indicators (low birth weight and cardiovascular disease)
are also associated with the first PC axis, as is PM2.5 and
diesel PM.
The second PC (Fig. 1a, vertical axis; Fig. 1b, horizontal

axis) explains 14% of variation. Indicators of industrial pol-
lution and associated hazardous sites score positively with
both the first PC (hereafter referred to as PC1all) and the
second PC (hereafter, PC2all) (Fig. 1a, b). In particular,
PC1all and PC2all are associated with groundwater threat
sites, hazardous waste sites, cleanup sites, toxic release, traf-
fic, and diesel PM. These variables are negatively correlated
with pesticide use, which would be expected in rural areas,
as well as drinking water contamination and ozone. Exam-
ining the biplot of PC2all and PC3all (Fig. 1b), we see a
negative association between the polluted sites (cleanup
sites, groundwater threats, impaired water bodies, and
hazardous waste sites) and measures of drinking water
contamination and ozone. Additionally, motor vehicle and
industrial source-associated air pollution indicators (traffic,
diesel PM, and toxic release) are negatively associated with
pesticide use. Results for the PCA of all except the health
outcome variables (17 remaining variables) are qualitatively
very similar to results for the PCA of the entire data set.
For the environmental PCA (Fig. 1c), the first two

principal components explain 43% of data variability in
combination. Along the axis of the first PC, explaining
23% of variance, there is a positive association among
toxic releases and motor vehicle pollution indicators:
PM2.5, diesel PM, and traffic. These are negatively associ-
ated with pesticide use. Sites contaminated due to indus-
trial activity, including groundwater threats, hazardous
waste sites, and cleanup sites, are positively associated
with both the first and second PCs. Based on these associ-
ations, the first PC (hereafter, PC1env) represents general
exposure to urban and industrial pollution. Interestingly,
PC1env is strongly positively correlated at the zip code
scale with population density (r = 0.81, n = 1602), indicat-
ing densely populated areas are more exposed to the main
environmental hazards measured by CalEnviroScreen.
The second environmental PC (hereafter, PC2env) ex-

plains 20% of variance, and is negatively associated with
ozone and drinking water contamination (Fig. 1c).
Examination of the associations of PC2env indicates that
elevated hazards due to ozone and drinking water con-
tamination will tend to occur in different areas from im-
paired water bodies or groundwater threats.
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For the socioeconomic PCA (Fig. 1d), the first two PCs
explain 82% of data variance. The first PC (hereafter
PC1soc) explains 66% of variance and is positively associ-
ated with all five socioeconomic indicators. Thus, PC1soc
broadly indicates socioeconomic vulnerability. The second
PC (PC2soc) explains 16% of variance, and separates un-
employment from linguistic isolation (Fig. 1d).
The CalEnviroScreen method produces a numeric score

calculated as a weighted sum of environmental variables
(which CalEPA refers to as pollution burden) multiplied
by a weighted sum of the socioeconomic and health out-
come variables (referred to as population characteristics)
[23, 24]. We were interested in how well this calculation
method represents the prevailing multivariate patterns in
environmental and socioeconomic vulnerability within the
population of census tracts. That is, does CalEnviroScreen
achieve its intended purpose of identifying areas exhibiting
high hazard from a combination of environmental expo-
sures and socioeconomic vulnerabilities? To evaluate the

validity of CalEnviroScreen based on this criterion, we cal-
culated Spearman’s rank correlation coefficient for the
CalEnviroScreen score versus the main PCs from each
PCA analysis, for all available census tracts (n = 7929).
Spearman’s ρ was employed as a measure of association
that is robust to nonlinear relationships, which were evi-
dent in this analysis (Fig. 2).
In the all-variables PCA, CalEnviroScreen is strongly as-

sociated with PC1all (ρ = 0.95; Fig. 2) and not associated
with PC2all (ρ = 0.00) or PC3all (ρ = 0.10). When separate
PCAs are performed on the environmental and socioeco-
nomic data, CalEnviroScreen is strongly associated with
PC1soc (ρ = 0.82), moderately associated with PC1env
(ρ = 0.59), and not associated with PC2env (ρ = −0.08)
or PC2soc (ρ = 0.00). These results indicate that
changes in the predominant gradients underlying the
data (PC1all, PC1soc, and PC1env) are generally cap-
tured by the CalEnviroScreen score. Thus, this single
score effectively captures the prevailing gradients in

a b

c d

Fig. 1 Results of principal component analysis of CalEnviroScreen environmental hazard and socioeconomic vulnerability variables across 7929
populated census tracts in California. Variability explained by individual principal components is in parentheses. a. All variables PC1 versus PC2. b.
All variables PC2 versus PC3. c. Environmental variables only. d. Socioeconomic variables only
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the underlying variability in environmental exposures
and socioeconomic vulnerabilities.
The only variables negatively associated with PC1all

(Fig. 1a) were pesticides and impaired water bodies. Not
surprisingly, the CalEnviroScreen 3.0 score exhibits no
correlations with these two variables; Pearson’s r was
0.05 for pesticides and −0.04 for impaired water bodies.
As a result, the CalEnviroScreen census tract rankings
will be insensitive to these two variables.

Spatial patterns
The spatial patterns in environmental hazard and popu-
lation vulnerability can be seen by plotting the first
principal component for the environmental and socio-
economic variables, respectively (Figs. 3 and 4). For ease
of visualization, we present these results aggregated at the
zip code scale; spatial patterns in individual variables and
calculated linear averages based on the CalEnviroScreen
method are displayed at the census tract scale by the ori-
ginal authors [23]. Strikingly, both PC1Env and PC1Soc
exhibit relatively high values in the southern Central
Valley region of the state, especially the southwest San
Joaquin Valley, indicating a pattern of elevated hazard and
vulnerability in this region. PC1Env is also high in the
more densely populated San Francisco Bay Area and Los
Angeles regions, illustrating the abovementioned associ-
ation between population density and the environmental

hazard variables. In contrast to PC1Env, PC1Soc exhibits
considerable heterogeneity in both the San Francisco and
Los Angeles regions. All of these patterns were similarly
observed using the CalEnviroScreen methodology for de-
riving their pollution burden and population characteris-
tics metrics [23].
Spatial patterns in the CalEnviroScreen 3.0 measure

(Fig. 5) clearly combine these two factors. As above
(Fig. 2), the complex algorithm employed for aggregat-
ing the 20 variables in CalEnviroScreen [23] essentially
captures the main underlying environmental and socio-
economic gradients (Fig. 3, Fig. 4). The highest scoring
(and thus most impacted) areas are centered around
the southwest San Joaquin Valley, peaking in the urban-
ized portions of Fresno County (including the cities of
Fresno and Selma), as well as the Los Angeles region
(Los Angeles, Pomona, and San Bernardino).

Comparison to the disease burden measure
The principal components from the all environmental
and socioeconomic variables PCA (PC1all, PC2all, and
PC3all) and from the separated environmental and
socioeconomic PCAs (PC1env, PC2env, PC1soc, and
PC2soc) were evaluated as possible predictors for the
disease burden measure that we developed. The
predictor variables were not correlated with each other
(| r | ≤ 0.13), with the exception of a weak negative

Fig. 2 Association between first principal component for all variables (PC1) and CalEnviroScreen 3.0 score [23]. Each point represents a populated
California census tract (n = 7929)
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correlation between PC1env and PC1soc (r = 0.31) and a
weak correlation between PC1env and PC2soc (r = −0.31).
Percent population > 65 years old (hereafter, Over65) was
also included as a potential predictor. Over65 was moder-
ately correlated with PC1all (r = −0.45), PC1soc (r = −0.36),
and PC1env (r =−0.42), and uncorrelated with the other
parameters.
Initial modeling using linear regression to predict dis-

ease burden indicated clear evidence of spatial autocor-
relation of residuals for all models (based on Moran’s
plots and significant Global Moran’s I). Thus, SAR was
used to predict disease burden, and addressed these is-
sues. For the SAR model on the all environmental and
socioeconomic data PCA results (n = 1606 Zip Code
Tabulation Areas), the following model form was
obtained (coefficient estimate ± standard error, SE):

Disease burden ¼ 0:47� 0:031ð ÞPC1all
þ 0:59� 0:022ð ÞOver65

For both PC1all and Over65, ΔBIC > 2, indicating
that addition of each parameter was important in
explaining disease burden, and p < 0.0001. In contrast,
PC2all (p = 0.10), PC3all (p = 0.96), and the intercept
(p = 0.97) were not significant as added model terms.
For the final model, the Nagelkerke pseudo-
R2(hereafter, R2) was 0.49, which was effectively un-
changed when attempting to include PC2all or PC3all.
Change in R2 after removing individual parameters il-
lustrates the contribution of each parameter to
explaining the variability in disease burden. Decrease
was greater when removing Over65 (new R2 = 0.25)
than when removing PC1all (new R2 = 0.42). The
association with PC1all generally describes the associ-
ation of disease burden with the correlated variability
in all of the CalEnviroScreen environmental and
socioeconomic indicators except for pesticide use and
impaired water bodies (Fig. 1a).
For the separate environmental and socioeconomic

PCA results (N = 1606), four model terms contributed

PC1 Environmental

34°N

36°N

38°N

40°N

42°N

124°W 122°W 120°W 118°W 116°W
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−6

−4

−2

0

2

4

Fig. 3 Spatial pattern in first principal component of environmental variables (PC1Env), aggregated at the zip code scale
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to describing disease burden (coefficient estimate ±
SE):

Disease Burden ¼ 0:35� 0:035ð ÞPC1env
þ 0:31� 0:024ð ÞPC1soc
þ 0:21� 0:026ð ÞPC2soc
þ 0:60� 0:021ð ÞOver65

ΔBIC > 2 and individual parameter p-values were
<0.001 for all included model terms. Neither PC2env
(p = 0.16) nor the intercept (p = 0.93) were significant.
The model coefficient was largest for Over65, simply
indicating that age must be accounted for in the ana-
lysis. The positive coefficient for PC1env and PC1soc
indicate an overall association with environmental ex-
posures and socioeconomic vulnerability. The coeffi-
cient for PC2soc further suggests an association with
unemployment, rather than linguistic isolation, in par-
ticular. The association with two socioeconomic prin-
cipal components but just one environmental
principal component, with qualitatively similar

coefficient magnitudes on standardized variables, sug-
gest a greater importance of socioeconomic than en-
vironmental factors in predicting overall disease
burden. Similarly, the Nagelkerke pseudo-R2 indicates
more variability explained by socioeconomic variables.
Compared to the full model (R2 = 0.51), the R2 slightly
declined when removing PC1env (R2 = 0.48), PC1soc
(R2 = 0.46), or PC2soc (R2 = 0.49) from the model, but
declined more when removing Over65 (R2 = 0.27), or
PC1soc and PC2soc in combination (R2 = 0.44). These
results suggest that whereas environmental hazard
and socioeconomic vulnerability both contribute, so-
cioeconomic vulnerability is more important than en-
vironmental hazard for explaining disease burden at
the zip code scale.

Discussion
Multivariate analysis of the California Communities
Environmental Health Screening Tool
Our study results support the use of CalEnviroScreen as
a census tract scale indicator of environmental health

Fig. 4 Spatial pattern in first principal component of socioeconomic variables (PC1Soc), zip code scale
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hazard and vulnerability. The CalEnviroScreen numeric
score was strongly associated with the first principal
components in all analyses, indicating that it represents
the primary underlying gradients within the data set.
Additionally, the spatial patterns in the first principal
components matched those of the CalEnviroScreen
combined indicators and numeric score. Further, the
principal components from the CalEnviroScreen expos-
ure and vulnerability variables were significantly associ-
ated with our estimate of disease burden, which is a
general indicator of health care burden. Models that
contained these variables, and also accounted for spatial
autocorrelation and proportion of population that was
over 65, explained approximately 50% of the variation in
the underlying data. Given all of the uncertainty and as-
sumptions with the study data and scale, this suggests
that the CalEnviroScreen data includes multiple expos-
ure hazards and socioeconomic vulnerability indicators,
which in combination influence burden of disease. Our
analysis, therefore, suggests that CalEnviroScreen is an

appropriate tool for its intended purpose: to identify vul-
nerable communities for resource allocation in environ-
mental health restoration [18].
The first few principal components explained limited

variance in the underlying data set, and many of the pa-
rameters, especially environmental exposure measures,
were weakly correlated. Similar to our results, Lalloué et
al. [9] observed 55% of total variance explained in the
first three components of a multiple factor analysis of 17
environmental indicators and Messer et al. [10] observed
23 to 46% of variability explained in the first component
in five related domains (air, water, land, built, and socio-
demographic). These similar observations of low to
moderate variance explained in the first principal com-
ponents suggest that it is not possible to explain much
variability in environmental health hazard using a small
subset of indicators. Rather, a complete accounting of
environmental hazards and population vulnerability
requires a wide range of indicators, as employed in
CalEnviroScreen and other studies [9, 10, 12–14, 23].

Fig. 5 Spatial pattern in CalEnviroScreen 3.0, zip code scale. These data have been previously displayed at the census tract scale [23, 32], and are
presented here to allow comparison to Figs. 3 and 4

Greenfield et al. Environmental Health  (2017) 16:131 Page 12 of 16



The limited variability explained by the first few prin-
cipal components further suggests that for the 20 hazard
parameters captured in CalEnviroScreen 3.0, there will
be many exposure, vulnerability, and health outcome
combinations that are not fully described by combined
multivariate gradients. For example, the negative associ-
ation of ozone air pollution with groundwater threats
and water body impairments is not readily explained but
suggests that residents of different regions encounter
different exposure hazards. Further examination of the
statistical properties and demographic vulnerability of
sites exhibiting unique exposure combinations is on-
going. These efforts, performed by local agencies, inter-
est groups, and community-based organizations in
evaluating updates to the CalEnviroScreen method [51],
complement the CalEnviroScreen numeric score by es-
tablishing a typology of vulnerable communities. How to
incorporate these efforts into resource allocation deci-
sions remains a difficult policy challenge.
The evaluation and modification of CalEnviroScreen is

reflected in the recent release of CalEnviroScreen 3.0,
updating much of the data, and attempting to address
prior community review comments. In comparison to
CalEnviroScreen 2.0, CalEnviroScreen 3.0 added two
new indicators (hospital visits for heart attack, and low
income households burdened by high housing costs), re-
moved a vulnerable age indicator, and retained the other
18 indicators included in this paper [23]. Despite these
changes, the multivariate patterns we observed in the
correlation coefficients and principal component analysis
results were almost identical between the two versions,
and we therefore chose to focus on CalEnviroScreen 3.0
in this paper. Continued examination of the statistical
properties and association with health outcomes is war-
ranted for this and other multivariate hazard screening
methods [9, 16, 17, 40], to complement the ongoing
public discourse and review.
Some policy interventions may best be geographically

targeted using additional information beyond the
CalEnviroScreen score itself. Most of the environmental
hazards measured were associated with urbanization and
industrial activities, and the first environmental PC was
strongly associated with population density. Although
environmental exposure hazards are often elevated in
urban areas [10], this is not always the case. For
example, agricultural pesticide exposure is linked to a
variety of developmental and health effects [52–54]. The
pesticide use indicator in the CalEnviroScreen metric
largely derived from agricultural application [23], was
uncorrelated or negatively associated with the other en-
vironmental hazard indicators, and uncorrelated with
the metric itself. Elevated nitrate concentrations in
drinking water, another agricultural pollutant, is an
additional known hazard for Latino communities in the

San Joaquin Valley [55]. Given that rural communities
tend to have lower incomes and reduced access to medical
care [10, 56], additional measures of exposure hazard and
vulnerability that affect isolated populations may warrant
consideration alongside the CalEnviroScreen score.

Disease burden was more associated with socioeconomic
status than environmental hazards
We employed multivariable analytical methods to separate
out chemical pollutant exposure hazard versus socioeco-
nomic variation within California. Although environmen-
tal hazards and socioeconomic vulnerabilities are often
correlated through complex causal pathways, and low
income communities often face disproportionate environ-
mental exposures [17], our multivariate approach allowed
for a direct comparison of the statistical effect of environ-
mental hazard versus socioeconomic vulnerability indica-
tors on burden of disease. This is because the principal
components for environmental variation (PC1env,
PC2env) and for socioeconomic status (PC1soc, PC2soc)
were uncorrelated with each other.
The association of the disease burden variable with

both socioeconomic principal components but only one
environmental principal component, as well as the
greater combined contribution to variability explained
(change in R2) suggest a stronger association of disease
burden with socioeconomic status than with environ-
mental pollution exposure. This was also evident in the
greater correlation of individual socioeconomic variables
with cardiovascular disease, asthma, and low birth
weight. This supports the paradigm that underlying
population vulnerability, resulting from socioeconomic
conditions, must be considered in health risk assessment
[1, 3, 12]. This finding is further acknowledged in that in-
vestigations of the environmental causes of disease typic-
ally adjust for indicators of socioeconomic status [5, 17].
The generalizability of our finding that socioeconomic fac-
tors better explained disease burden than environmental
hazards merits investigation, as it would have implications
for intervention priorities, as well as for conceptualization
of the primary structuring factors that influence disease.
The multivariate and exploratory approach of our

study reflects objectives quite different from a traditional
epidemiological evaluation of how one or a small num-
ber of exposures affects a single outcome. Instead, our
approach falls within the realm of quantitative methods
for comparing among and evaluating cumulative envir-
onmental impacts in combination [6, 9, 10, 17]. We
identified prevailing gradients of exposure and vulner-
ability, and observed how these patterns were associated
with disease burden. We observed relatively strong asso-
ciations among all of the socioeconomic indicators
(education, income, unemployment, linguistic isolation),
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each of which may exhibit a separate impact on vulner-
ability [13]. This could explain the stronger association
between socioeconomic indicators and disease burden,
in contrast to environmental hazards, which were less
correlated, such that the gradients in multivariate expo-
sures were weaker. In other words, our findings support
the paradigm that population disease burden will be
more strongly impacted when multiple stressors occur
in combination. As such, examination of the multivariate
association among stressors should provide added and
complementary information to bivariate analyses of ex-
posure versus outcome.

Limitations and caveats
Like all census-tract-scale studies of publicly available
spatial exposure and health data, this study has limita-
tions. For their similar study of the San Joaquin Valley
region, Huang and London [14] eloquently describe the
limitations of studies using publicly-available spatial ex-
posure data. Our study does not establish causality and
we cannot extrapolate inferences to the individual level
[57]. We used publicly available health outcome data; as
such our analysis was restricted to hospital discharge
data at the zip code scale, which can be used to indicate
overall morbidity [38], but may also be subject to bias
[58]. Moreover, the specific choices we made regarding
ICD-9 endpoints that had environmental etiology could
be questioned, and must be interpreted as a general bur-
den of disease measure, rather than indicative of any
specific health outcome. Data required geographic align-
ment, including assembly of different parameters pro-
vided at multiple and varying spatial scales. In particular,
CalEnviroScreen data were available at the census-tract
level, the disease burden measure at the USPS zip code
level, and spatial polygon arrangement at the zip code
tabulation area level. Inaccuracies are inevitably
introduced when aligning these different spatial scales
[59]. In line with the protection of individual rights to
anonymity in publicly accessible outcome data,
individual-level demographic information was masked,
and residential addresses were limited to USPS zip code.
These factors likely in part explain the limited strength
of associations observed in this study. In particular, the
association between the environmental principal compo-
nents and disease burden was weak in our study. This
was similar to Gaffron and Niemeier [19], who observed
a very low bivariate strength of association (R2 = 0.018)
between PM2.5 (environmental variable) and emergency
visits for asthma (health outcome) employing
CalEnviroScreen census tract data in six Sacramento,
CA region counties. Especially, studies are needed com-
bining longitudinal data sets of disease occurrence with
CalEnviroScreen and other hazard measures [30].

Conclusions
Previous studies at similar spatial scales and resolutions
have established relationships of environmental hazards
and disease risk with race and socioeconomic status,
with implications for resource allocation and policy [14,
15, 19, 24, 60]. Prior studies have also shown geographic
indicators of socioeconomic status or vulnerability to be
associated with hospitalization rates or disease occur-
rence [2, 30]. However, few studies explicitly evaluate
and describe the multiple patterns of association that
occur across a range of health hazards and vulnerabil-
ities at the census-tract scale [9, 10]. We use this
approach to evaluate a cumulative impact screening
methodology (CalEnviroScreen), observing that the
methodology produced a spatial data set that captures
the main underlying gradients, which in turn are associ-
ated with the burden of diseases having environmental
etiology. CalEnviroScreen should therefore be useful for
its intended purpose of screening for those communities
most vulnerable to environmental exposure.
We observed that socioeconomic indicators were asso-

ciated with each other and contributed to explaining dis-
ease burden, and that an environmental gradient of
urban and industrial pollution also contributed to
explaining disease burden. Ground-level ozone and
drinking water threats were negatively associated with
impaired water bodies and groundwater threats. Some of
these findings corroborate findings from the preliminary
analysis for CalEnviroScreen development using 30 zip
codes by Meehan August et al. [13]. The existence of
separate gradients of environmental hazard and socio-
economic disparity, and the varying ability to predict
disease burden highlight the need for continued
emphasis on integrated approaches in vulnerability
assessment.
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