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Abstract 

Background :  During the aging process, cognitive functions and performance 
of the muscular and neural system show signs of decline, thus making the elderly 
more susceptible to disease and death. These alterations, which occur with advanced 
age, affect functional performance in both the lower and upper members, and con-
sequently human motor functions. Objective measurements are important tools 
to help understand and characterize the dysfunctions and limitations that occur due 
to neuromuscular changes related to advancing age. Therefore, the objective of this 
study is to attest to the difference between groups of young and old individuals 
through manual movements and whether the combination of features can produce 
a linear correlation concerning the different age groups.

Methods :  This study counted on 99 participants, these were divided into 8 groups, 
which were grouped by age. The data collection was performed using inertial sensors 
(positioned on the back of the hand and on the back of the forearm). Firstly, the par-
ticipants were divided into groups of young and elderly to verify if the groups could be 
distinguished through the features alone. Following this, the features were combined 
using the linear discriminant analysis (LDA), which gave rise to a singular feature called 
the LDA-value that aided in verifying the correlation between the different age ranges 
and the LDA-value.

Results :  The results demonstrated that 125 features are able to distinguish the dif-
ference between the groups of young and elderly individuals. The use of the LDA-
value allows for the obtaining of a linear model of the changes that occur with aging 
in the performance of tasks in line with advancing age, the correlation obtained, using 
Pearson’s coefficient, was 0.86.

Conclusion :  When we compare only the young and elderly groups, the results 
indicate that there is a difference in the way tasks are performed between young 
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and elderly individuals. When the 8 groups were analyzed, the linear correlation 
obtained was strong, with the LDA-value being effective in obtaining a linear correla-
tion of the eight groups, demonstrating that although the features alone do not dem-
onstrate gradual changes as a function of age, their combination established these 
changes.

Keywords:  Aging, Inertial sensors, LDA

Background
According to the World Health Organization (WHO), elderly are all individuals over the 
age of 60 years, however, when it comes to the formulation of public policies, this limit 
may vary in accordance with the conditions set by each country [1]. The share of elderly 
individuals is increasing worldwide, this is due to better living conditions, mainly related 
to health and nutrition that we are currently exposed to, and consequently increasing 
longevity [2].

It is estimated that in 2050, the elderly will make up 22% of the world’s population 
[3]. During the aging process there occur various changes, as for example the decline 
in cognitive functions and the performance of the muscular and neural systems, these 
changes make the elderly individual more susceptible to disease and death [4]. Aging is a 
common stage in all living organisms, but the manifestations in advancing age vary from 
individual to individual [5].

In [6], human aging is defined as a dynamic and adaptive process responding to 
external and internal damage over the course of life. The same authors group the con-
sequences of aging into four domains: changes in body composition; balance between 
availability of energy and its demand; signaling networks that maintain homeostasis; and 
neurodegeneration.

The impact of aging on fine and precise movement is not well understood. However, 
several studies indicate that the physiological and biological changes related to aging 
affect the functional performance of both the lower and upper limbs, and consequently 
motor coordination in human beings [7].

According to [8], the lower members are specialized in gross motor skills related to 
mobility, while the main role of the upper members is focused on the strategic position-
ing of the hands. Therefore, the decline in motor coordination of the lower members 
as in the upper members increases dependency in the elderly regarding daily activities. 
According to [9], the upper members represent the active part of the human motor sys-
tem, with it also being the most affected by aging, including the decline in motor perfor-
mance during the execution of fine motor skills, which is, in itself, due to the deficit in 
coordination of hand movements. Due to such motives, in [10], the majority of studies 
that investigate the decline of the human motor system uses manual tasks, thus allowing 
the hands to act as a marker to verify the limitation in performed daily activities over the 
period of aging [9].

In research by [11], the function of the hand decreased with age in both men and 
women, especially after the age of 65. Anatomical and physiological alterations are 
present in the aging of the hands. According to [12], the function of the hand can be 
impaired by the degenerative loss of skeletal muscle mass (sarcopenia), thus causing 
a decline in both strength and resistance [12]. Therefore, the monitoring of the hands 
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during the performing of manual tasks, can be a valuable tool for the monitoring of 
aging.

In this regard, the use of sensors placed on the hands to obtain objective measure-
ments is of significant interest. In order to assist in understanding and characterizing 
the dysfunctions and limitations that occur due to neuromuscular changes related to 
advancing age, studies have suggested tools for the use of objective measures. As such, 
various types of sensor have been used for characterizing motor skills, among such one 
finds inertial sensors (accelerometer, gyroscope and magnetometer), which have been 
widely employed due to their size, low cost and ease of use [13–15]. The low cost associ-
ated with inertial sensors allows for their ease of purchase and the size and ease of use 
allow inertial sensors to be mounted and positioned onto different parts of the human 
body [16].

Inertial sensors have been applied in various studies. The research conducted in [17] 
proposes an algorithm for estimating physiological tremor by means of signals extracted 
from two inertial sensors, an accelerometer and a gyroscope.

In [13], the authors evaluated the movement from the plate to the mouth of individu-
als with Parkinson’s disease during feeding, the objective of this research was to evaluate 
movements associated with daily life via the collecting of signals from an accelerometer 
and a gyroscope. In the study by [18], accelerometers and gyroscopes were used to ana-
lyze the supination/pronation and elbow flexion/extension tasks.

From inertial sensor signals, information can be extracted by means of parameters, 
which can be analyzed and processed. One method that has been widely used for analyz-
ing and processing signals is Machine Learning (ML); the parameters extracted through 
the inertial sensors are used as the classifier input. ML is a powerful support method 
in the investigation and prediction of motor alterations based on information extracted 
from biomedical signals via inertial sensors [19].

However, in many studies, the number of data signals may possess many dimensions, 
as a large quantity of dimensions can be detrimental to the performance of the ML algo-
rithm, since the excessive number of features does not imply in a better learning of the 
model, learning is determined by the features that best describe the phenomenon to 
be analyzed or learned by the algorithm [20–22]. Additionally, according to [23] using 
few features may not be enough, but an excessive number of features can overload the 
computation process. Thus, the selection of an adequate set of features can enhance the 
classification of the algorithm and avoid collinearity between the data [23]. Therefore, it 
would be necessary to optimize the data dimension to improve the performance of the 
ML algorithm. There exist two main approaches for reaching this objective, the first is 
dimensionality reduction, the second approach is to combine the attributes, while try-
ing to maintain data variability [19]. As such, linear discriminant analysis (LDA) is a tool 
used in statistics and ML to find the linear combination of features and dimensionality 
reduction [24, 25].

Set within this scenario, this study seeks to investigate which parameters manage to 
demonstrate a significant difference between groups of the young and elderly individu-
als by means of manual movements that are composed of three different motor tasks, 
traditional features and inertial sensors positioned on the hand and forearm. Although 
being one of the points of focus in our study, various other studies have covered the 
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question of separation between groups of young and elderly individuals, but few studies 
have investigated gradual changes that occur in groups of different age ranges. There-
fore, another approach adopted will be the use of a technique based on LDA for verify-
ing if there exists a combination of traditional features that produce a linear correlation 
between the LDA value and aging, based on the study by [26]. It is expected that this 
study will contribute as a tool for predicting alterations in manual functionality.

Results
Comparison between young and elderly

Table 1 demonstrates the p-value of the features that managed to differentiate between 
the groups of young and elderly. Those features that did not demonstrate a significant 
difference between the groups are not presented in Table 1.

Through the analysis of Table  1, one notes that task 2 (pinch) presented the high-
est quantity of features that managed to differentiate the groups of young and elderly. 
Regarding the sensors, the magnetometer was that which presented the lowest capacity 
for differentiation between the groups of young and elderly. Figure 1 shows the quan-
tity of significant differences presented by features, types of features, tasks, sensors and 
IMUs. Figure 1 shows the quantity of significant differences presented by features, types 
of features, tasks, sensors and IMUs.

Table  1 shows that 125 features are capable of individually differentiating between 
groups of young and elderly individuals. Despite various features managing to differen-
tiate the groups of young from elderly, none managed to detect gradual changes over 
aging, while considering the 8 groups separately. As such, the features were combined 
to obtain a single feature called the LDA-value, based on the LDA [26]. The correlation 
between the LDA-value and age was investigated by means of the Pearson coefficient.

LDA

The LDA opens the possibility for data classification and dimensional reduction, while 
projecting a multidimensional dataset onto a single dimension and after its application 
onto the dataset, a single value was obtained for each participant in each group. The 
algorithm, through the LDA and GA, considered 46 features relevant for the calculation 
of the LDA-value. The features highlighted with letters made up the group of relevant 
features for the calculation of the LDA-value, only the highlighted features were used for 
the calculation of the LDA-value. The letters were used to identify the contribution of 
each feature in Eqs. 23, 24 and 25. Table 2 demonstrates the features considered relevant 
for the LDA-value calculation.

For the discrimination of young and old groups, only one feature (among the 125 high-
lighted in Table 1) is capable of performing the discrimination. However, for the crea-
tion of a linear aging model, 46 features were considered relevant. The relevant features, 
shown in Table 2, were inserted into Eqs. 23, 25 and 26. Figure 2 shows the 46 relevant 
features presented by feature, type of feature, tasks, sensors, and IMUs.

R =
∣∣∣
√
a2 + b2 + c2 + · · · + z2 + A2 + · · · + S2 + T 2 +U2

∣∣∣
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Table 1  Tasks, sensors and features that demonstrate significant difference between the groups of 
young and elderly after the application of the Mann–Whitney test

Task 1

Features Sensors

G1, p-value G2, p-value A1, p-value A2, p-value M1, p-value M2, p-value

MAV

MAVFD 0.019  < 0.001  < 0.001  < 0.001

MAVSD 0.038 0.010 0.002 0.001

RMS

Peak

ZC  < 0.001  < 0.001 0.001 0.001

FMean  < 0.001  < 0.001 0.003 0.005

FPeak

F50 0.002  < 0.001 0.029 0.012

F80 0.001  < 0.001 0.002 0.004

Power3.5–7.5

ApEn 0.003 0.002  < 0.001 0.027

FuzzyEn  < 0.001  < 0.001  < 0.001 0.004

VAR

RANGE

INTQ 0.036

SKEWNESS 0.007

KURTOSIS 0.016

Task 2

Features Sensors

G1, p-value G2, p-value A1, p-value A2, p-value M1, p-value M2, p-value

MAV  < 0.001 0.003  < 0.001  < 0.001 0.002 0.007

MAVFD  < 0.001  < 0.001  < 0.001  < 0.001 0.004 0.010

MAVSD  < 0.001  < 0.001  < 0.001  < 0.001 0.004 0.013

RMS  < 0.001 0.001  < 0.001  < 0.001 0.002 0.005

Peak  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001

ZC 0.035

FMean 0.005

FPeak 0.006

F50 0.013 0.018

F80 0.021

Power3.5–7.5  < 0.001  < 0.001  < 0.001  < 0.001 0.001 0.007

ApEn 0.040

FuzzyEn 0.010

VAR  < 0.001 0.001  < 0.001  < 0.001  < 0.001 0.004

RANGE  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001 0.003

INTQ 0.003 0.029  < 0.001 0.001 0.005 0.014

SKEWNESS 0.001 0.009 0.04 0.017

KURTOSIS 0.002 0.022
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LDA− value = R ∗ cos(θ1 + 2.33) ∗ cos(θ2 + 2.85) ∗ cos(θ3 + 2.21) ∗ cos(θ4 + 2.08)

∗ cos(θ5 + 3.03) ∗ cos(θ6 + 2.50) ∗ cos(θ7 + 2.70) ∗ cos(θ8 + 0.31)

∗ cos(θ9 + 2.62) ∗ cos(θ10 + 2.70) ∗ cos(θ11 + 2.78) ∗ cos(θ12 + 2.98)

∗ cos(θ13 + 3.03) ∗ cos(θ14 + 3.06) ∗ cos(θ15 + 2.96) ∗ cos(θ16 + 0.18)

∗ cos(θ17 + 3.02) ∗ cos(θ18 + 3.09) ∗ cos(θ19 + 3.20) ∗ cos(θ20 + 8.73)

∗ cos(θ21 − 0.16) ∗ cos(θ22 − 6.55) ∗ cos(θ23 + 0.10) ∗ cos(θ24 + 2.89)

∗ cos(θ25 + 2.98) ∗ cos(θ26 + 2.60) ∗ cos(θ27 + 2.90) ∗ cos(θ28 + 2.91)

∗ cos(θ29 + 0.05) ∗ cos(θ30 + 3.41) ∗ cos(θ31 + 2.55) ∗ cos(θ32 + 2.96)

∗ cos(θ33 + 3.14) ∗ cos(θ34 + 0.18) ∗ cos(θ35 − 3.33) ∗ cos(θ36 − 0.33)

∗ cos(θ37 + 0.34) ∗ cos(θ38 + 0.05) ∗ cos(θ39 + 0.14) ∗ cos(θ40 + 3.02)

∗ cos(θ41 − 0.21) ∗ cos(θ42 + 2.82) ∗ cos(θ43 + 2.93) ∗ cos(θ44 + 3.06)

∗ cos(θ45 + 3.07) ∗ cos(θ46 + 0.02)

The Kruskal–Wallis test using post hoc Bonferroni, was applied to the 8 groups regard-
ing the LDA-value of each participant. Table 3 indicates the p-value among the groups, 
where the LDA-value has a significant difference.

θ1 = tan−1

(
b

a

)
; θ2 = tan−1

(
c√

a2 + b2

)
; θ3 = tan−1

(
d√

a2 + b2 + c2

)
; . . . ;

θ46 = tan−1

(
U√

a2 + · · · + T 2

)

Table 1  (continued)

Task 3

Sensors

G1, p-value G2, p-value A1, p-value A2, p-value M1, p-value M2, p-value

MAV

MAVFD

MAVSD

RMS

Peak 0.034 0.014 0.017

ZC 0.010 0.009

FMean 0.012

FPeak

F50 0.018 0.045

F80 0.009 0.009

Power3.5–7.5 0.024 0.017

ApEn 0.012 0.006

FuzzyEn

VAR

RANGE 0.022

INTQ

SKEWNESS 0.031 0.027 0.023  < 0.001 0.002

KURTOSIS 0.037 0.007
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Fig. 1  Quantity of significant differences per a features, b groups of features, c feature group proportion, d 
task, e sensors, f types of sensors, g IMU used
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Table 2  Relevant features for calculating the LDA-value

Task 1

Features Sensors

G1, p-value G2, p-value A1, p-value A2, p-value M1, p-value M2, p-value

MAV (a) (f )

MAVFD (b) (g) (k) (x)

MAVSD

RMS

Peak (c) (l) (y)

ZC (d) (s)

FMean (e) (h) (m)

FPeak (i) (o) (t)

F50 (p)

F80 (q)

Power3.5–7.5 (n) (u) (z)

EnAp (r) (v) (A)

EnFuzzy

VAR (w)

RANGE

INTQ

SKEWNESS (j)

KURTOSIS

Task 2

Features Sensors

G1, p-value G2, p-value A1, p-value A2, p-value M1, p-value M2, p-value

MAV

MAVFD

MAVSD

RMS

Peak

ZC (B) (E) (I)

FMean (F)

FPeak (C) (K)

F50 (G) (J) (L)

F80

Power3.5–7.5

EnAp (H)

EnFuzzy

VAR

RANGE

INTQ

SKEWNESS (D) (M)

KURTOSIS

Task 3

Sensors

G1, p-value G2, p-value A1, p-value A2, p-value M1, p-value M2, p-value

MAV

MAVFD
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Figure 3 presents the graphic for the age ranges regarding the LDA-value, where a rela-
tionship with a linear trend is observed.

Discussion
The human body adopts a series of strategies to execute motor tasks, various studies 
cover the analysis of motor tasks with the aim of understanding and characterizing such 
strategies. However, many of such investigations are related to the analysis of individuals 
that suffer from neuromuscular disturbances, such as individuals with Parkinson’s dis-
ease. Studies of this nature, directed toward the elderly population, who also are sub-
ject to a decline in their capacity to perform motor tasks, are scarce. In addition, recent 
studies have demonstrated that the population of senior citizens is growing rapidly in a 
number of countries, thus giving this type of study importance in the maintenance of life 
quality for this portion of the population.

Motor tasks are performed in different ways, complexities, and parts of the body, 
but the human hand exercises and executes important functions in daily life, mainly 
in fine motor tasks. However, the biomechanical and neurophysiological execution of 
these motor tasks, for biological reasons related to aging, is compromised with age [27]. 
Therefore, the evaluation of tasks performed by the hands using inertial sensors, may aid 
in the understanding of changes that occur in the execution of motor tasks during the 
aging process.

Sensor analysis

Various studies address the correlation between a signal collected from the individual and 
aging. These signals can arise from electromyography (EMG), electroencephalography 

Table 2  (continued)

Task 3

Sensors

G1, p-value G2, p-value A1, p-value A2, p-value M1, p-value M2, p-value

MAVSD

RMS

Peak

ZC (O) (S)

FMean

FPeak (N)

F50

F80

Power3.5–7.5

EnAp (P) (T)

EnFuzzy

VAR

RANGE

INTQ

SKEWNESS (Q)

KURTOSIS (U)
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Fig. 2  Quantity of relevant features by a features, b groups of features, c feature group proportion, d task, e 
sensors, f types of sensors, g IMU used
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(EEG), balance platforms, inertial sensors, cameras, and others [26, 28–30]. Among the 
various possibilities for signal acquisition, inertial sensors are becoming widely used for 
evaluating, classifying and characterizing aging, as these are cheap and can be applied to 
various executions of human movement [31, 32]. In the article from [33], an accelerom-
eter and gyroscope were used to verify the decline of balance in the elderly, the authors 
verified changes in the parameters of inertial sensors, where the conclusion was reached 
that these changes may signify the decline in balance of elderly individuals.

Research by [34] used an accelerometer and a gyroscope to evaluate the correlation 
between parameters of human gait and individual traits. The authors found a strong 
nonlinear relationship between age and gait parameters.

The authors in [35] developed and evaluated a test for the detection of joint position 
based on a system composed of an accelerometer, a gyroscope and a magnetometer. In 
the study, one of the objectives was to evaluate the relationship between joint position 
proprioception and aging. The authors concluded that there is a decline in joint proprio-
ception with age, this was reached by means of group comparison between the young 
and elderly.

In our study, we used two IMUs each composed of an accelerometer, a gyroscope, 
and a magnetometer. Through the analysis in Fig. 1, one verifies that the most frequent 
sensor in the discrimination of the groups between young and elderly was the acceler-
ometer, localized on the back of the hand, conversely, the less frequent sensor was the 
magnetometer also located on the back of the hand. In regard to the type of sensor, the 
magnetometers were those which presented the lowest frequency of features in the 
discrimination between the young and elderly groups, but there was not any relevant 

Table 3  Results for the Kruskal–Wallis test in the comparison among the 8 groups

NS No statistical difference

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7 Group 8

Group 1 x NS 0.021  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001

Group 2 NS x NS 0.001  < 0.001  < 0.001  < 0.001  < 0.001

Group 3 0.021 NS x NS 0.004  < 0.001  < 0.001  < 0.001

Group 4  < 0.001 0.001 NS x NS NS  < 0.001  < 0.001

Group 5  < 0.001  < 0.001 0.004 NS x NS 0.048  < 0.001

Group 6  < 0.001  < 0.001  < 0.001 NS NS x NS 0.002

Group 7  < 0.001  < 0.001  < 0.001  < 0.001 0.048 NS x NS

Group 8  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001 0.002 NS x

Fig. 3  Graphic of the LDA-value vs age
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difference found between the gyroscope and accelerometer. Among the IMUs, there was 
practically no difference between the number of features that discriminate the groups of 
young and elderly.

Discrimination between young and elderly individuals

Initially, we evaluated the motor tasks to verify if the features used were able to discrimi-
nate the group of young participants from the elderly. This is a traditional analysis and 
has already been performed in a number of different ways. Our results corroborate with 
the results obtained in [36], in which evaluated cinematic features for analyzing the lie-
to-stand (LTS) transfer, while describing differences related to age based on signals from 
inertial sensors positioned on the trunk, the authors compared a group of young indi-
viduals of ages between 20 and 50 years of age, and a group of elderly individuals with 
ages of over 60 years. As in our study, the results indicate that various features show sig-
nificant differences between the groups, for instance, the duration of transference, accel-
eration, and maximum vertical velocity, but other features were unable to differentiate 
between the young and elderly groups. In our study, among the 324 features evaluated, 
125 features were able to differentiate between the groups of young and elderly people.

In the study by [37], the objective was to define the main factors for good performance 
in anticipatory motor planning. The authors compared a group of young individuals, 
with ages between 19 and 28 years, and a group of elderly individuals aged between 61 
and 86 years, the authors concluded that aging is associated with a sharp decline across 
all aspects of cognitive and motor functionality that were tested. The results of this 
study were similar to ours, as not all analyzed features were able to differentiate between 
young and elderly groups.

Most studies related to aging investigate only young and elderly groups. Our study dif-
fers from most approaches currently used in the literature and from studies by [36] and 
[37], as it seeks answers to questions related to changes in 8 different age groups.

Parameters

In our study, we used 18 parameters to discriminate the individuals as young and elderly. 
We used parameters related to amplitude (RMS, Peak, MAV, MAVFD and MAVSD), 
6 parameters related to frequency (ZC, FMean, FPeak, F50, F80 and Power3.5_7.5), 2 
parameters related to signal entropy (ApEn and FuzzyEn) and 5 parameters related to 
signal statistics (VAR, Range, Intl, SKEWNESS and KURTOSIS), these parameters are 
well established and have already been used in part or in full in several other studies [38–
42]. The parameters were combined to the 3 tasks and to the 6 sensors, thus resulting in 
a total of 324 features. A Pearson correlation greater than 0.9 of the 324 features was 
tested and 143 features were verified as presenting a correlation inferior to 0.9, among 
the remaining 143 features, 125 showed significant differences in the discrimination of 
the groups of young and elderly. Noteworthy here is that all the parameters of the signals 
used, across the task or sensor, showed a significant difference between the groups. By 
means of Fig. 1, one notes that three parameters are highlighted in the discrimination of 
the groups, with these being MAVFD, MAVSD and SKEWNESS, on the other hand, the 
Fpeak parameter was that which presented the lowest frequency among the parameters 
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that managed to discriminate the groups of young and elderly individuals. In addition, 
proportionally and even in absolute values, the group of parameters with greater fre-
quency in the discrimination of young and elderly groups was that of amplitude.

Tasks

We used three tasks for evaluating aging regarding motor activity of the hand, we used 
the rest position [43, 44], the pinch task [45] and hand pronation/supination task [46]. 
By analyzing Fig. 1, one notes that the task of highest frequency in the discrimination 
between young and elderly groups was the pinch task.

To explain the results in biological terms is still a complex task, as the decline in motor 
activity during aging is an effect with an established knowledge, but its biological base is 
still little understood [47]. There exist various theories that try to explain aging, includ-
ing genetic, non-genetic, autoimmune among other theories. However, none of the 
theories is absolute in explaining aging [48]. Then again, it is known that physiological, 
molecular and cellular changes occur [49] and that there is a strong relationship between 
the difficulty of performing the motor task with age [47]. Thus, the explanation con-
cerning the pinch task having the highest frequency of features that can discriminate 
between young and elderly groups may be related to greater difficulty in performing this 
task.

LDA‑value

Despite various features having discriminated between the groups of young and elderly, 
no singular feature was capable of showing a correlation between aging across different 
age ranges and motor activity of the hand. The research developed by [26, 28, 29] also 
sought to correlate aging with signals from individuals, but the example from our study 
also did not manage a linear correlation with aging from any singular feature. As such, a 
combination of features was performed by means of the LDA-value.

Previous research has examined the linear relationship between ageing and perfor-
mance on different tasks and features. The authors in [50] aimed to examine the altera-
tions in running biomechanics that occur with advancing age. The study group consisted 
of participants ranging in age from 18 to 60 years. The findings of our research diverge 
from those reported in the study conducted by [50]. While the authors of that study 
were able to establish a linear association, the Pearson’s coefficient exhibited a relatively 
low value, peaking at 0.38.

In their study, Korhonen et al. [51] examined the decline in running performance asso-
ciated with ageing. They analyzed biomechanical and skeletal muscle characteristics in a 
cohort of 77 male sprinters ranging in age from 17 to 82 years. Similar to our own study, 
the authors categorized the participants into different age groups. However, it is worth 
noting that the age thresholds used to form these groups differed from those employed 
in our investigation. The researchers conducted an analysis on five distinct groups that 
were categorized based on age ranges. These groups were designated as Group 1 (17 to 
33 years), Group 2 (40 to 49 years), Group 3 (50 to 59 years), Group 4 (60 to 69 years), 
and Group 5 (70 to 82 years). The researchers obtained a Pearson correlation coefficient 
value of up to 0.77.
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In our research, we observed a strong positive linear correlation (r > 0.86) between the 
LDA-value and the process of ageing. Our findings support the conclusions drawn by a 
previous study conducted by [26], where the authors examined the relationship between 
tremor and several balance-related aspects. The authors of that study reported a Pear-
son’s coefficient of 0.91 to quantify the relationship. The findings of a previous study [28] 
exhibit similarities to our own research. In that particular study, the association between 
ageing and features associated with the Archimedes spiral was examined. The Pearson 
coefficient reported in their work was 0.83, which aligns with our own results. In study 
[29], the authors aimed to establish a linear relationship between ageing and electroen-
cephalography (EEG) features. They found that the Pearson’s coefficient, which meas-
ures the strength and direction of the association, was larger than 0.83, similar to our 
own findings. Similar to the findings of [26, 28, 29], our results indicate a decrease in the 
performance of motor tasks as individuals age, as proposed in this study. The utilization 
of the LDA-value, in conjunction with inertial sensors, is anticipated to provide a sig-
nificant contribution in monitoring the progression of ageing, with the ultimate goal of 
ensuring enhanced quality of life and effective resource planning.

Conclusion
In this study, we investigated motor tasks in two different ways. The first approach 
addressed the discrimination between young and elderly individuals, the results showed 
that there exists a significant difference in the value of features between the groups ana-
lyzed. The second approach verified if the combination of features (using the LDA-value) 
would produce a linear correlation between the LDA-value and the different age groups 
utilized. The linear relationship between the LDA-value and the different age groups, 
presented in Fig. 3, arrives at the consideration that the reduction in motor activity is 
directly associated with the age of the individual considered in this study and that this 
parameter could be employed for the characterization, follow-up and monitoring of a 
possible disorder that may affect the quality of life of such individuals. The LDA-value 
was shown to be efficient in presenting gradual alterations in the eight groups, thus 
demonstrating that despite isolated features not demonstrating alterations concern-
ing age, the combination of these does evidence such alterations. Through the results, 
one arrives at the conclusion that the LDA-value is a relevant feature for the analysis 

Table 4  General features of the groups analyzed

sd standard deviation

Groups Average age ± sd (years) N

Group 1 24.53 ± 3.09 13

Group 2 35.17 ± 3.16 12

Group 3 45.15 ± 3.02 13

Group 4 54.87 ± 3.02 15

Group 5 64.45 ± 2.87 11

Group 6 74.71 ± 2.84 14

Group 7 84.53 ± 2.87 13

Group 8 93.62 ± 2.67 8
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of motor activity, with the potential for application in a variety of correlated studies in 
areas such as physiotherapy, geriatrics, and others.

Methods
Data collected from 99 healthy individuals aged between 20 and 98 years, with no clinical 
evidence of neurological degeneration, were used. The dataset used in the experiments 
for this study were obtained by means of collection following the research protocol that 
was approved previously by the National Commission of Ethics in Research (CONEP) 
under CAAE 07075413.6.0000.5152. The study was conducted in accordance with the 
Declaration of Helsinki. All volunteer subjects signed a consent form before participat-
ing in the experiment.

The individuals were classified by separation into eight groups in accordance with 
their age range. The general features of the groups are described in Table 4, where N rep-
resents the number of individuals from each group.

Data collection

In order to perform the collection of data the TREMSEN (Precise Tremor Sensing 
Technology, INPI: BR 10 2014 023282 6) was employed, which was developed by 
researchers from the Center for Innovation and Technological Assessment in Health 
(NIATS)—(Núcleo de Inovação e Avaliação Tecnológica em Saúde (NIATS)), based 
at the Federal University of Uberlândia (UFU). The system is composed of two iner-
tial measurement units (IMUs), the IMU was developed using the MinIMU 9 (ST 
Microelectronics, Switzerland) and the software utilized was developed in C# (Micro-
soft). The sensitivity of the gyroscope, accelerometer and magnetometer were set 
to ± 245°s, ± 2  g and ± 2 gauss, respectively, in accordance with studies by [16, 30, 
52]. For Analogical/Digital conversion, a 12-bit converter of the microcontroller was 
employed as used in the TREMSEN (Atmel SAM3X8E ARM Cortex-M3). The signals 
were collected at a sampling frequency of 50 Hz. The data processing code was devel-
oped using Matlab and R-Studio.

The collections from participants were realized through two inertial units posi-
tioned on their upper dominant member, one of which (IMU2) was positioned onto 
the back of the hand aligned to the third finger, IMU2 refers to the signals from 

Fig. 4  Positioning of the IMUs
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sensors Accelerometer 2 (A2), Gyroscope 2 (G2) and Magnetometer 2 (M2). The 
other IMU (IMU1) was positioned onto the distal third forearm, following the same 
alinement of IMU2, IMU1 refers to signals from sensors Accelerometer 1 (A1), Gyro-
scope 1 (G1) and Magnetometer 1 (M1), following from the area having been previ-
ously shaved and sanitized [30].

After the positioning of the sensors, the participants were instructed to perform the 
following tasks:

•	 Task 1—member static and the forearm in a semiflexion position.
•	 Task 2—with the forearm in the same position as (I), while performing the pulp-to-

pulp pinch with all fingers.
•	 Task 3—supination and pronation of the forearm.

All tasks had a minimum duration of five seconds. This protocol was performed 
three consecutive times for each participant. Figure  4 shows the localization of the 
IMUs.

Figure 5 shows the tasks performed (Fig. 5a, b and c), as well as the direction of the 
axes used (Fig. 5b).

Signal preprocessing

The signals were band-pass-filtered between 1 and 16 Hz, using a 5th order Butterworth 
[53]. The value of the signals was subtracted from its mean for the removal of linear 
trends. Following this, the resultant of the 3 axes of the accelerometer, gyroscope, and 
magnetometer sensors were calculated, using Eq. 1:

where sx, sy and sz—measurements from the sensors along their respective axes; 
R—resultant.

(1)R =
√
s2x + s2y + s2z ,

Fig. 5  Executed tasks. a Task 1. b Task 2 and direction of axes—x: vertical; y: medial–lateral and z: 
anteroposterior. c Task 3

Table 5  General features of the groups young and elderly

Groups Average, age ± sd (years) N

Young 40.5 ± 12 53

Elderly 78.3 ± 10.5 46
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Description of parameters used

The parameters used were divided into the groups of amplitude, frequency, statistics 
and entropy and these are given in Eqs. 2 to 19 in Table 6. The features in the ampli-
tude group are calculated in the time domain and are related to the values of the signal 
oscillations, which are related to how much the place, where the sensor was positioned, 
moved during the collection [54]. The parameters of the frequency group consist of 
showing which are the occurrences of an event during a given space in time calculated 
in the time domain, or determining frequency values related to energy measurements 
in the frequency domain [55, 56]. Entropy can reflect the disorder in a system, allowing 
for an understanding into the quantification of its complexity, when measuring the com-
plexity of a system, values related to the uncertainty present within the sample window 
are possible [57]. Measures related to statistics aim to verify the form of data distribution 
and dispersion [56].

The equations are shown considering a signal x, composed of N samples, where each is 
represented by the index i: x = {x1, x2, x3, . . . , xN }.

Classification between the young and elderly groups

In this study, the groups of young and elderly were determined in accordance with rec-
ommendations laid out by WHO, young participants were considered as aged below 
60 years and elderly those above 60 years of age. Therefore, the young group was made 
up of the groups G1, G2, G3 and G4 and the elderly group by groups G5, G6, G7 and G8. 
The general features of the groups young and elderly are described in Table 5, where N 
represents the number of individuals from each group.

The objective of this study was initially to investigate whether any feature from the 
signals was capable of differentiating between the young and elderly groups. Second, in 
cases where the feature makes the differentiation between the young and elderly groups, 
the test to confirm if it manages to verify gradual changes over aging is applied. The sec-
ond step consisted of performing a pairwise test on the 8 groups used in this study, if the 
feature was able to differentiate the 8 groups from each other, the feature would be able 
to verify gradual changes during aging. The features were analyzed to confirm if they 
possessed normal distribution, through use of the Shapiro–Wilk test. As normal distri-
bution was not proved for all features and groups, the Mann–Whitney test was applied, 
which considered as significant p < 0.05. If the features fail to detect gradual changes 
during aging (according to the age groups presented in groups 1 to 8 of this work), the 
features will be combined to obtain a single feature called the LDA-value, based on the 
LDA [26]. The correlation between the LDA-value and age will be investigated by means 
of the Pearson coefficient.

The features were calculated for the 3 executions of the tasks for each of the partici-
pants, in terms of the processing of the signals, the mean of each feature was calculated 
for each participant.
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Table 6  Parameters used for the extraction of features

Amplitude—(MAV, MAVFD, MAVSD, RMS, Peak)

MAV—mean absolute value [38, 58, 59]

MAV = 1
N

∑N
i=1 |xi |   (2)

MAVFD—mean absolute value of the first difference 

[38, 39, 60]

MAVFD = 1
N−1

∑N−1
i=1 |xi+1 − xi |   (3)

MAVSD—mean absolute value of the second difference [38, 60]

MAVSD = 1
N−2

∑N−2
i=1 |xi+2 − xi |   (4)

RMS—root mean square [38, 58, 61, 62]

RMS =
√

1
N

∑N
i=1 (xi)

2    (5)

Peak—maximum value of the vector, considering only positive values from the window [38]

Peak = max{xi}Ni=1   (6)

Frequency—(Zero Crossing, FMean, FPeak, F50, F80, Power3.5–7.5)

Zero Crossing (ZC) [38, 58, 59, 61]

Given two consecutive samples xi and xi+1, the counting of zero cross-

ings, ZC, is increased if:

{xi > 0andxi+1 < 0}or{xi < 0andxi+1 > 0}   (7)

FMean—mean frequency [38, 40, 41, 58, 62]

FMean =
∑N

i=1 (Pn(i)∗fn(i))∑N
i=1 Pn(i)

   (8)

where Pn is the power spectrum; fn is the vector 

frequency of Pn .

FPeak—frequency at which maximum power occurs [40, 41, 63]

FPeak = fnwhere
{
max{Pni}Ni=1} (9)

F50—median frequency [38, 40, 41, 58, 62, 63]

F50 =
∑F50

i=1 Pn(i) =
∑N

F50 Pn(i) = 1
2

∑N
i=1 Pn(i)   

(10)

F80—total power frequency of Pn below 80% [41, 64]

F80 = frequencywhere
{∑F80

i=1 Pn(i) = 0.8 ∗
∑N

i=1 Pn(i)
}

   (11)

Power3.5–7.5—Power in frequency band 3.5–7.5 Hz 

[42]

Power3.5_7.5 =
∑fn=7.5

fn=3.5 Pn(i)   (12)

Statistic- (VAR, RANGE, INTQ, SKEW, KURTOSIS)

VAR—variance [38, 58, 61]

VAR = σ 2 =
∑N

i=1 (xi − x)2   (13)

where x—mean of the signal and σ—standard deviation

RANGE—amplitude range [26, 38]

RANGE = max{xi}Ni=1 −min{xi}Ni=1   (14)

INTQ—interquartile range [38, 65, 66]

INTQ = Q3− Q1 (15) 

where Q3 is the third quartile and Q1 is the first quartile

SKEWNESS—asymmetry [39, 64, 67]

SKEWNESS =
1
n

∑N
i=1 (xi−x)3

σ 3    (16)

KURTOSIS—flattening [39, 64, 67]

KURTOSIS =
1
n

∑N
i=1 (xi−x)4

σ 4    (17)

Entropy—(approximate entropy and fuzzy entropy)

ApEn—approximate entropy [38, 61, 64, 68, 69]

Entropy is an analysis tool used with goal of quantifying the regularity 

of a signal, returning a value between 0 and 2, where 0 indicates 

signal predictability based on previous values and 2 indicates signal 

unpredictability [70]

Given a time series composed of N samples {x(1), x(2), …, x(N)} and m a 

sequence of vectors starting from x(1) until x(N-m + 1), defined by

x(i) = {x(i), x(i + 1), . . . , x(i +m− 1)}, i = 1, . . . ,N −m+ 1

The distance between two vectors x(i) and x(j), is defined as being the 

maximum distance between such elements—d[x(i), x(j)].

For each value of i smaller than N-m + 1, calculate Cm
i  , defined as

numberofjsuchas : (d
[
x(i), x(j) ≤ r)/(N −m+ 1)

]

Following this, calculate Cm(r) given by

Cm(r) = (N −m+ 1)−1
∑N−m+1

i=1 lnCm
i (r).

The approximate entropy is given by (18)

ApEn(m, r ,N) = Cm(r)− Cm+1(r)   (18)

where m—window length; r—tolerance and ln is the natural loga-

rithm

FuzzyEn—fuzzy entropy [38, 61, 71]

Given a time series composed of N samples {x(1), x(2), …, 

x(N)} and m a sequence of vectors starting from x(1) until 

x(N-m + 1), calculate the degree of similarity between 

the vectors x(i) and x(j) defined by the fuzzy function

dm[x(i),x(j)] = µ(dmij , r)

where dmij  is the largest difference between the ele-

ments of vectors x(i) and x(j).

For each vector x(i) calculate the mean of all degrees of 

similarity with its neighbors (j ≠ i)

For each value of i smaller or equal to N-m + 1, calculate 

Pmi (r), given by

Pmi (r) = (N −m+ 1)−1
∑N−m

j=1 dm[x(i),x(j)]

Pm(r) = (N −m)−1
∑N−m

i=1 Pmi (r)

Pm+1(r) = (N −m)−1
∑N−m

i=1 Pm+1
i (r)

Fuzzy entropy is given by (19)

FuzzyEn(m, r ,N) = lnPm(r)− lnPm+1(r)   (19)
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Feature analysis

The 18 parameters presented on Table 6 were calculated for each of the 6 IMU sensors 
(3 sensors for each IMU) and for each task (3 tasks). Each calculation was considered as 
being a feature, totaling 324 features. Thus, the parameters, sensors and tasks form the 
set of features, that are not analyzed individually, to assess the differentiation between 
the groups of young and elderly individuals or in the creation of a linear model for aging.

To enhance data reliability, the researchers employed outlier detection and removal 
techniques based on Eqs. 20 and 21 [72].

where INTQ—interquartile range (Q3–Q1); Q3 is the third quartile; and Q1 is the first 
quartile.

This critical step allowed these to identify and eliminate data points that significantly 
deviated from expected patterns, thus minimizing the influence of anomalies in the sub-
sequent analysis.

The calculated features result in a large quantity of dimensions and may possess 
redundant information (high correlation); the redundant features do not significantly 
contribute to the calculation of the LDA-value. In order to reduce the dimensions and 
verify the redundancies of correlated features, feature reduction was performed using 
the Pearson correlation coefficient (r) making a pairwise comparison, removing, as such, 
redundant features that had high correlation, r values higher than 0.9 were considered 
as high correlation. This step reduced the number of features from 324 to 143 in the 
LDA-value calculation. To calculate the Pearson correlation, the “cor” function of the “R” 
software was used.

Most important features selection

The quantity of features (a in Figs. 1 or 2), groups of features (b in Figs. 1 or 2), feature 
group proportion (c in Figs. 1 or 2), task (d in Figs. 1 or 2), sensors (e in Figs. 1 or 2), 
types of sensors (f in Figs. 1 or 2) and IMU (g in Figs. 1 or 2) that showed significant dif-
ferences in the separation between young and old groups and the amount of relevant 
characteristics used for the calculation of the LDA-value were calculated and shown in 
Figs. 1 and 2, respectively. These results may indicate for future work on the features to 
be used, better positioning of IMUs and which sensors produce better results for classifi-
cation of the algorithm used [23].

For the elaboration of Figs. 1 and 2a–g, we used Table 1 and 2, respectively, and the 
following strategy was adopted:

a—From Tables 1 or 2, the quantity of times a given feature was able to differentiate 
the groups of young and old was added.

b—From Tables 1 or 2, the quantity of times each group of parameters was able to dif-
ferentiate the groups of young and old was added, considering each group of parameters 
as follows: amplitude (MAV, MAVFD, MAVSD, RMS, peak), frequency (zero crossing, 

(20)Lower = Q1− 1.5 ∗ INTQ,

(21)Upper = Q3+ 1.5 ∗ INTQ,
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FMean, FPeak, F50, F80, Power3.5–7.5), statistic (VAR, RANGE, INTQ, SKEW, KUR-
TOSIS) and entropy (approximate entropy and fuzzy entropy).

c—All the statistical differences presented in Tables  1 or 2 were summed, then the 
amount of each parameter obtained for Figs. 1b or 2b is divided by this value. This data 
is important to show the proportional contribution of each parameter, since the amount 
of feature per parameter is not homogeneous.

d—The number of significant differences shown in Tables  1 or 2 between young 
and elderly people was summed for each Task (Task 1, Task 2 and Task 3), the values 
obtained were plotted.

e—All the times (Tables 1 or 2) in which the feature of each sensor (A1, A2, G1, G2, 
M1 and M2) showed statistical difference between young and elderly people were added 
up, the absolute value is shown in Figs. 1e or 2e.

f—The results of Figs. 1e or 2e were added for each type of sensor as follows: acceler-
ometer (A1+A2), gyroscope (G1+G2), magnetometer (M1 + M2).

g—The results of Figs.  1e or 2e for each IMU were added as follows: IMU1 
(A1 + G1+M1), IMU2 (A2+G2+M2).

LDA‑value analysis

Feature reduction eliminates redundant information, information with high correlation 
and therefore is repeated and eliminated. However, it is important to verify the relevance 
of the features, because even when eliminating redundancy, the number of features can 
reduce the performance of the classifiers [23]. Thus, the determination of the relevant 
features is carried out in two steps: in the first step, the redundant features are elimi-
nated (using the Pearson correlation coefficient (r)) and in the second step, the remain-
ing features are evaluated using the LDA and the Genetic Algorithm (GA) to verify the 
relevance. The LDA provides the rotation parameters of an imaginary axis (Eqs. 22, 23, 
24, 25) for the GA that will control the positions of the imaginary axis in this space for a 
better selection of the position of the imaginary axis to discriminate the 8 groups.

LDA is a data classification and dimensional reduction method, which is able to pro-
ject a multidimensional dataset onto one dimension, which represents the projection of 
all the features onto the imaginary axis. This projection results in a single value or a new 
feature, which in this study is called the LDA-value [73, 74]. In the present study, the 
LDA-value was used to verify if a calculated feature combination, can be used to dis-
criminate the eight groups analyzed. The supplementary material shows the simplified 
algorithm “EstimateLDA_value”, for estimating the LDA-value.

Main steps of the algorithm

•	 Data normalization—The input to the algorithm is a feature matrix (F), formed by 
concatenating the feature vectors (f ) of each individual. There are 143 features that 
remain for each participant after the reduction process, each column of the matrix 
F is normalized between zero and one, an offset of 0.1 is added to the normalized 
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vector to avoid division by zero during the calculation of the LDA-value. This step 
generates the matrix “ C ” of normalized data (normalized feature vectors (c) of each 
individual).

•	 Data representation (calculate ( R0, θ0))—In this step, the data ( C ) are represented in 
the multidimensional angular coordinate space, in accordance with Eqs. 22, 23, 24, 
25:

where n—number of features; p—radius; R0—module of p; and Θ—angle.

•	 Start of Genetic Algorithm (GA) implementation—At the start of the GA applica-
tion, an initial population ( ̂θ0 ) is defined, which is created from a sample of imagi-
nary axes, for which the possible values vary from 0 to 2π. θ̂0 is used only in the 
first iteration, an updated population ( ̂θcurrent ), will be used in the iterations that 
follow. The dimensional reduction consists of rotating an axis, created imaginar-
ily, in the multidimensional space. The rotation of this imaginary axis opens the 
possibility of verifying the position for the projections of all the points (that is, all 
the individuals) on this axis, thus providing the best discrimination of the eight 
groups. The GA is used to find a better selection of the position of the imaginary 
axis. Therefore, the GA is used to find an optimized position for the imaginary 
axis, where the projection of each point on this axis produces a maximum sepa-
rability between the groups in question. Consequently, Eq. 26 is used to carry out 
the projection of all existing individuals on each created imaginary axis, gener-
ating an A matrix. From the A matrix, it is possible to quantify Ez , which is the 
degree of discrimination of the groups along each imaginary axis through Eq. 27. 
The greater the value of Ez , the better the discrimination between groups on this 
axis. As the main objective of the GA is to find the position of the imaginary axis 
where Ez is maximum, this will be the fitness function of the GA. The necessary 
calculations for using GA are defined below.

o	 Projection of the data (calculate (LDA-value))—The data are projected onto a 
given axis, generating a scaler which is a new feature, this therefore is a linear 
combination of the old features called LDA-value. The multidimensional data 

(22)p =
√
c21 + c22 + c23 + · · · + c2n

(23)R0 = |p|

(24)θ = {θ1 + θ2 + θ3 + · · · + θn−1}

(25)

θ1 = tan−1

�
c2

c1

�
; θ2 = tan−1



 c3�
c21 + c22



; θn = tan−1



 cn�
c21 + c22 + · · · + c2n−1



,
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are projected onto a unidimensional space, as depicted in Eq. 26, thus resulting 
in a matrix A composed of the values calculated in all iterations.

where θ̂—rotation angles which maximizes class separability.

•	 Accuracy estimator calculation ( EzVec = calculate ( Ez for each imaginary axis))—
The projections onto A are used for an estimator of accuracy Ez , calculating as 
depicted in Eq. 27. The value of EZ is calculated for each of the existing group pairs, 
the values obtained for each are added together, the value of the sum characterizes 
the separation of all the existing groups:

where ξ—number of classes; xi and σ 2
xi

 are the mean and variance of the ith class; xj and 
σ 2
xj

 are the mean and variance of the jth class; and S—number of axes for the initial 
population.

The values of Ez for each iteration are stored in a vector EzVec, as shown in Eq. 28:

o	 Selection by the roulette wheel technique (K = select (axes by the roulette wheel 
technique))—this selection creates the next generation, according to randomly 
selected individuals from the previous generation [75, 76]. This technique stochas-
tically selects individuals from the population θ̂current , using the probability that is 
proportional to the value Ez, originating in the matrix K.

o	 Generation of three descendants ( ̂θcurrent = Crossover_Mutation (pcrossover, 

pmutation))—In this step, three children are generated ( ̂θchild1, θ̂child2 and θ̂child3) from 
two parents of the actual generation ( ̂θparent1and θ̂parent2) . The children are obtained 
from the application of the crossover and mutation on matrix K, with the crossover 

(26)
LDA− value = p ∗ cos

(
θ1 + θ̂1

)
∗ cos

(
θ2 + θ̂2

)
∗ · · · ∗ cos (θn−1 + θ̂n−1)

(27)Ez =
ξ−1∑

i=1

ξ∑

j=i+1

∣∣∣∣∣∣
(xi − xj)√
σ 2
xi
+ σ 2

xj

∣∣∣∣∣∣
, z = 1, 2, . . . , s,

(28)EzVec =





Ez=1

Ez=2

.

.

.
Ez=s





Table 7  Parameters used for estimating the LDA-value

Parameters Values Description

epochs 50,000 Number of epochs

s 50 Number of axes in the 
initial population

ξ 8 Number of groups

pmutation 0.1 Probability of mutation

Pcrossover 0.8 Probability of crossover
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and mutation probabilities passed on as parameters to the GA, pcrossover and pmutation, 
respectively. Only the two best children, in accordance with Ez , are selected. Equa-
tions 29, 30 and 31:

o	 Random change—According to mutation probability, the angle of rotation of a 
given individual on matrix K is randomly modified, giving origin to a new popu-
lation ( ̂θcurrent).

•	 End of GA implementation (if g ≤ epochs)—When the number of predeter-
mined epochs (passed on as parameters to the GA) is reached, the imaginary 
axis that has the highest value of  Ez is selected, thus finalizing the GA step.

•	 Selection of relevant features ( EzVec = estimate_relevant_features ( C))—from 
the selected imaginary axis, the relevance of each feature is verified, the features 
considered irrelevant (relevance less than 1% of the accuracy estimator Ez ) are 
eliminated ( Cnew = eliminate irrelevant features ( C )) and a new R and θ is calcu-
lated from these features.

•	 Estimate of the LDA-value (calculate (LDA-value))—the relative points of the 
relevant features are projected onto the imaginary axis and the LDA-value is cal-
culated (Eq. 25).

Table  7 presents the input values for the GA utilized for the estimation of the 
LDA-value.
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