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Abstract

Background: Using Ambient Assisted Living sensors to detect acute stress could
help people mitigate the harmful effects of everyday stressful situations. This would
help both the healthy and those affected more by sudden stressors, e.g., people with
diabetes or heart conditions. The study aimed to develop a method for providing reli-
able stress detection based on heart rate variability features extracted from portable
devices.

Methods: Features extracted from portable electrocardiogram sensor recordings were
used for training various classification algorithms for stress detection purposes. Data
were recorded in a clinical trial with 7 participants and two stressors, the Trier Social
Stress Test and the Stroop colour word test, both validated by standardised question-
naires. Different heart rate variability feature sets (all, time-domain and non-linear only,
frequency-domain only) were tested to investigate how classification performance

is affected, in addition to various time window length setups and participant-wise
training sessions. The accuracy and F1 score of the trained models were compared and
analysed.

Results: The best results were achieved with models using time-domain and non-
linear heart rate variability features with 5-min-long overlapping time windows, yield-
ing 96.31% accuracy and 96.26% F1 score. Shorter overlapping windows had slightly
lower performance, with 91.62-94.55% accuracy and 91.77-94.55% F1 score ranges.
Non-overlapping window configurations were less effective, with both accuracy and
F1 score below 88%. For participant-wise learning, average F1 scores of 99.47%, 98.93%
and 96.1% were achieved for feature sets using all, time-domain and non-linear, and
frequency-domain features, respectively.

Conclusion: The tested stress detector models based on heart rate variability data
recorded by a single electrocardiogram sensor performed just as well as those pub-
lished in the literature working with multiple sensors, or even better. This suggests
that once portable devices such as smartwatches provide reliable hear rate variability
recordings, efficient stress detection can be achieved without the need for additional
physiological measurements.

Keywords: Ambient Assisted Living, Stress detection, Heart rate variability, Wearable

sensor, Stroop colour word test, Trier social stress test, State—Trait Anxiety Inventory

©The Author(s), 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publi
cdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.


http://orcid.org/0000-0003-0615-5284
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12938-021-00911-6&domain=pdf

Szakonyi et al. BioMed Eng OnLine (2021) 20:73 Page 2 of 19

Background

As stress became one of the main problems of modern societies, its adverse effects are
quite well known even to the general population. Whether physical, emotional or men-
tal strain, the prolonged presence of stress contributes to developing chronic diseases
such as diabetes, cardiovascular and respiratory conditions, depression and even some
forms of cancers [1-6]. Due to these health concerns, there has been an increased effort
to develop for the detection and assessment of stressful events in everyday situations to
support people in minimising these harmful effects. The presence and level of stress in
clinical practice are confirmed by taking and analysing blood or saliva samples to meas-
ure the cortisol hormone level [7]. While it is the most precise method for measuring
stress, it requires specific lab equipment and medical personnel, making it impracti-
cal for everyday usage. This leads to a need for finding alternative methods. Ambient
Assisted Living (AAL) applications are such alternatives, as they aim to provide unob-
trusive lifestyle support in daily living situations. They achieve this via combining dif-
ferent types of sensors, mobile devices, computers, networks and software solutions to
monitor and assist users when needed. AAL stress detection approaches are generally
categorised into two main groups: those dealing with chronic stress detection and those
aimed at acute stress.

Chronic stress assessment is mainly executed based on data recorded throughout mul-
tiple days or weeks, sometimes months. In general, longer time intervals spanning hours
are identified and classified as stressful or resting periods, while some solutions also try
to recognise physical activity and sleeping phases as well [8—10]. On the other hand,
detecting the presence or build-up of acute stress is usually initiated by analysing record-
ings of a couple of minutes, covering a total of 0.5-1 h at most.

While both acute and chronic stress has a high impact on the quality of life, dealing
with acute stress situations facilitates negating chronic stress. Moreover, the short-term,
high-intensity effects of acute stress pose additional hazards for some people, e.g., those
with cardiovascular conditions (increased heart rate and blood pressure) [2, 11] or dia-
betes (rapid blood glucose level changes) [12]. Therefore, as AAL solutions advance, the
interest in the research community for acute stress detection increases.

Several different AAL sensor types and solutions have been proposed and assessed in
the stress detection literature. Some of these solutions work by using just one selected
sensor type, while others simultaneously record data from multiple sources. Single-
sensor-based solutions often use electrocardiogram (ECG) [13-22] or photoplethys-
mogram (PPG) [23-26] signals, usually to obtain heart rate variability (HRV) features.
In other cases, electrodermal activity (EDA) [27] or electromagnetic waves ("bioradar")
[28] are used. Additional sensors used by multimodal approaches include the galvanic
skin response (GSR) [29-32], respiration [29, 30, 33], electromyography (EMG) [34],
and even such data as physical (in)activity, calories used or sleep quality, measured by
activity trackers [9, 10]. The focus of the research is shifting to developing methods
that utilise compact, inexpensive wearable sensor devices suitable for everyday use for
both approaches. Such devices are chest belts [13, 22, 33] or ECG-infused clothing [19],
wrist bracelets or activity trackers [9, 10, 20, 27], or other portable ECG devices [13, 21].
Unfortunately, these are not yet without some drawbacks. Their main problem is that
while most provide some sort of averaged pulse data, HRV feature extraction requires
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more precise, pulse-to-pulse measurements at millisecond precision for reliable stress
detection. Regarding battery lives in general, progress has allowed once-a-week charg-
ing, but there is still room for improvements.

While using multiple different modalities can yield better results as more data are
recorded, it also increases both computational and system complexity, costs and opera-
tional resource (energy) needs. For this reason, our study uses a single, portable HRV
Sensor.

HRYV features describe the fluctuations present in the length of successive heartbeat
intervals, and are known to be impacted by stress [35]. The distance between two suc-
cessive heartbeats, i.e. the distance between the R wave of their QRS complexes, is called
the RR interval (as illustrated in Fig. 1).

State of the art
Table 1 presents some of the most relevant studies published recently in the field of
acute stress detection.

Since cortisol-based measurements are infeasible for everyday solutions, and even in
most clinical trials, some other “gold standard” measurements are usually required to
confirm that stress was successfully induced during a trial. A solution for this problem
is using scientifically validated psychological tests. One such well-known and frequently
used test is the State—Trait Anxiety Inventory (STAI) [36, 37], a questionnaire used to
get self-reported assessments from participants about their perceived stressfulness. Still,
there are examples of research done without such validation methods, raising some con-
cerns about the validity of the stressor(s) used (and the data recorded).

There are numerous different methods reported in the stress detection literature for
inducing stress. These include different arithmetic tasks [20, 26, 28, 29, 34], games/puz-
zles [25, 30], exam-like conditions [14, 16, 19, 31], and everyday situations such as driv-
ing [38, 39] or work shifts [9, 10, 33]. However, not all of these are standardised and
reliable stressors, only ad hoc methods designed and implemented by the researchers
themselves, often without psychological expertise. This decreases the reliability of the
input data sets, especially for cases where not even golden standard measurements are
used to justify the stressor’s effectiveness.

RR interval
R R
- /T\ - s
Q Q
S S
Fig. 1 The schematic representation of the RR interval
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Amongst generally accepted stressing methods are the International Affective Pic-
ture System (IAPS) [40] (often used together with the International Affective Digitized
Sounds (IADS) [41]), the Socially Evaluated Cold Pressor Test (SECPT) [42], the Trier
Social Stress Test [43] and the Stroop colour word test [44]. These stressors are well doc-
umented and offer clear and well-detailed script protocols for researchers to ensure good
data quality. Not all research aspects can be covered by them, though, leaving room for
different trial configurations. For example, such an aspect is the age of the selected par-
ticipant group.

As shown in Table 1, most recent trials included only relatively young subjects, usu-
ally university students (probably as students were available for academic researchers).
This point should be improved for two reasons. First, stress-related diseases are known
to pose great(er) risks for older adults (people aged 50 and above) [45-47], making them
a more important target group for stress support. Thus, observations based solely on
younger individuals cannot be expected to match other age groups fully. Second, nota-
ble differences in reactions given for stressful situations can be observed even amongst
similarly aged people, which can be even more diverse if different generations are com-
pared—not just from a physiological aspect (age-specific bodily functions), but from

psychological and sociological aspects (how people were “taught” to react) as well.

Research objectives and motivation

The main objective of the work presented was to develop a method for stress detection
for AAL applications, by using HRV data obtained from a single sensor. The research was
designed to use standardised stressing methods (Stroop, Trier tests) and a standardised
method for validating that the stressors were implemented properly (STAI question-
naire), an approach missing from many similar studies. Moreover, multiple time window
and input set configurations, and different modelling algorithms have been tested to find

the best-performing solution.

Results
STAI questionnaire and cortisol test results
The State—Trait Anxiety Inventory (STAI) scores received are shown in Table 2. As the
scores showed that the Stroop tests have failed to induce stress in several participants,
these sessions’ measurements were not used as stressful data in the model building
process.

As the sample of four people tested with saliva-cortisol tests is relatively small, no sig-
nificant conclusions could be drawn. Nevertheless, the results showed that the Trier test

Table 2 STAI scores before and after each stressing session

P1 P2 P3 P4 P5 P6 P7
TRIER Before 39 31 30 28 37 26 35
After 48 43 49 47 66 26 74
STROOP Before 36 34 39 3 44 20 53

After 34 35 38 24 37 20 37
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caused an increase between 31 and 42% in participants’ cortisol levels, while these values

only decreased for the Stroop test sessions (between 2 and 8%).

Model results
The F1 scores of the best-performing classifier models for all three HRV feature sets
used in configuration 1 and the different time window setups are shown in Fig. 2.

HRYV feature set-wise detailed results are given in Tables 3, 4 and 5. The overlapping
time windows were found to have better performance in general. The 5-min-long over-
lapping time window setup yielded the best prediction results for both the all-HRV
feature set and the time/non-linear only feature set as well. Using frequency-domain

100%

95% —

90% r

85%

F1-score

80%

75% I
70% - - I

1min 2min 3min 4min 5min  2min_o 3min_o 4min_o 5min_o

oAl Time & non-linear MWFrequency

Fig. 2 F1 scores for different time windows and the three feature sets of configuration 1 (_o denoting
overlapping time window setups)

Table 3 Model performances for given time windows, using all HRV features. The best results in

boldface
Window length (min) Non-overlapping windows Overlapping windows

1 2 3 4 5 2 3 4 5
Accuracy 80,70% 86,03% 85,10% 86,67% 8594% 8982% 92,94% 94,68% 96,00%
Sensitivity 80,51% 84,62% 7960% 83,89% 86,25% 89,67% 90,88% 93,06% 95,69%
Specificity 80,89% 8744% 90,38% 8944% 8563% 90,00% 9500% 96,29% 96,31%
F1 score 80,22% 8582% 8330% 86,31% 86,03% 8991% 92,74% 9458% 95,99%

Table 4 Model performances for given time windows, using time-domain and non-linear HRV

features
Window length (min) Non-overlapping windows Overlapping windows

1 2 3 4 5 2 3 4 5
Accuracy 87,53% 8641% 8490% 81,11% 7875% 91,77% 94,19% 9460% 96,31%
Sensitivity 86,58% 84,87% 8280% 7222% 7438% 8986% 93,24% 93,71% 95,23%
Specificity 8848% 8795% 8692% 90,00% 83,13% 93,70% 95,15% 9548% 97,38%

F1 score 87,39% 8580% 8354% 7820% 7689% 91,62% 94,13% 9455% 96,26%
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Table 5 Model performances for given time windows, using frequency-domain HRV features only

Window length (min) Non-overlapping windows Overlapping windows

1 2 3 4 5 2 3 4 5
Accuracy 7133% 7333% 7765% 7722% 80,00% 8469% 87,79% 92,10% 90,92%
Sensitivity 68,61% 6590% 73,60% 67,78% 7438% 8257% 8632% 90,81% 89,85%
Specificity 74,05% 80,77% 81,54% 86,67% 8563% 8685% 89,26% 93,39% 92,00%
F1 score 7026% 7035% 7531% 72,69% 7861% 8430% 8754% 91,96% 90,79%

Table 6 The best-performing time window setups for the participant-wise training models

Participant  Figure of merit  All features Time and non-linear Frequency features
features

Overlap Nooverlap Overlap No overlap Overlap No overlap

P1 Window length 5 min 4 min 4,5 min 5min 5min 4 min
F1 score 100% 100% 100% 90.0% 97.5% 100%
P2 Window length 4 min 5min 5min 2 min 5min 3 min
F1 score 96.8% 92.1% 95.5% 90.7% 89.4% 92.4%
P3 Window length ~ 4,5min  5min 5min 5min 4 min 4 min
F1 score 100% 100% 99.0% 100% 97.1% 94.6%
P4 Window length 4,5 min 3 min 4,5 min 5 min 2 min 4 min
F1 score 100% 98.6% 100% 100% 96.7% 94.7%
P5 Window length 4 min 5min 4,5 min 5min 3 min 5min
F1 score 99.5% 100% 100% 100% 96.4% 100%
P6 Window length 5 min 96.2% 3 min 5min 5 min 4 min
F1 score 100% 100% 98.0% 100% 95.6% 94.6%
p7 Window length 4,5 min  all 1,4,5min  5min 4 min 5min
F1 score 100% 100% 100% 100% 100% 100%
Average F1 score 99.47% 98.67% 98.93% 97.24% 96.10% 96.61%

features provided only slightly lower performances than the two other sets. For this set
of features, the 4-min-long overlapping time window was found to have the best results.

The time window setups for the participant-wise modelling runs are shown in Table 6.
The achieved performance is generally good, but individual scores vary. For example,
all window setups yielded perfect detection results for P7, but even the best F1 score is
below 97% for P2, while the majority of others’ scores are close or above 97%. A more
detailed participant-wise overview of F1 scores for overlapping time window setups
using all HRYV features is shown in Fig. 3.

The best-performing classification algorithms were the XGBoost Tree, the Random
Forest and Random Trees. Figure 4 shows the distribution of the algorithms providing
the best results regarding all model runs using configuration 1. XGBoost Tree performed
best in most of the runs when all HRV features and frequency-domain features were
used (38% of all runs) followed by Random Forest (25%) and Random Trees (9%). Ran-
dom Forest was the most successful in the case of using time-domain and non-linear
HRYV features, followed by XGBoost Tree and Random Trees.

Model performance was more “balanced” in case of participant-wise classification, as
there was no single model that could outperform the other ones in most cases. The top
6 best-performing algorithms in 65.79% of all cases were the Random Trees (11.59%),
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Fig. 3 F1 scores for overlapping time windows, for participant-wise training models using all HRV features

All HRV features 38% 28% |
Time-domain and non-linear 27% 38% 16% |
Frequency-domain only 21% 18% 49% |
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Fig. 4 The classification algorithm-wise distribution of the best result achieved for all test runs in
configuration 1, for each different feature set

XGBoost Tree (11.36%), Discriminant (11.14%), LSVM (11.02%), CHAID (10.34%) and
Random Forest (10.34%).

Statistical results

The one-way analysis of variance (ANOVA) for configuration 1 has shown that signifi-
cant differences in the model results were present for 6 of the 9 time window setups.
The three setups with no significant differences were the 3, 4 and 5-min-long non-over-
lapping time windows. The t-tests have shown that the frequency-domain only features
differed significantly from the other two feature sets for the overlapping window setups
and the 2-min long non-overlapping setup. For the 1-min-long non-overlapping time
window setup, the significant difference was between the time-domain and non-linear
features set and the frequency-domain only set.

The statistical analysis of configuration 2 revealed that while model performance does
vary with respect to the participant (as expected), the majority (78.7%) of these differ-
ences were not significant. 83.3% of the significant differences were attributed to partici-
pants P1 and P2. P1 was involved in 33.3%, P2 in 61.1% of these cases (mutually present
11.1%).
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Discussion

While the number of participants initially enrolled were comparable to some other
research presented in the literature [10, 19, 26], the final count became rather low in our
study due to the relatively high number of dropouts. Nevertheless, there are also prec-
edents for having a similarly low number of participants [18, 23, 48] for stress detection
purposes in small-scale studies. While a higher number of participants would allow a
population level analysis of the natural variability of predictability, this was not the aim
of the current study.

One main limitation of using HRV-based stress detection methods that must be con-
sidered is that their performance can drastically decrease for people with heart condi-
tions causing arrhythmias (rhythm abnormalities), even to the point when they are not
applicable. This is because HRV features are to be derived from regular/normal succes-
sive heartbeats. However, it must be noted that arrhythmias are not necessarily present
constantly, and their presence can be negated with proper signal processing techniques
in less serious conditions. While the number of cases is expected to grow in the follow-
ing decades, the vast majority of the population is and will be unaffected. The most com-
mon heart rhythm disorder, atrial fibrillation, is estimated to have a prevalence of 3% in
people aged 20 years or above [49] and a little higher for older adults (~4.84%) [50].

Based on the STAI scores, the saliva-cortisol test results, and some discussions with
participants after the trial, the Trier Social Stress Test was indeed found to be quite
effective in inducing stress in people aged 50 and above. The same cannot be said for the
Stroop colour test, as no induced stress could be observed for most participants. Based
on participant and investigator remarks, it seemed that for some, the fact that they had
to use digital devices made the experience more like some sort of a game. They tended
to enjoy the task rather than being stressed about having it completed. Meanwhile, less
technologically proficient users seemed not interested in doing their best. Though using
a digital version of the Stroop test requires less resources and evaluation is faster, these
findings indicate that special care should be taken when choosing a stressor for older
adults. Possible solutions could be making the digital version easier to use, finding meth-
ods for motivating participants more efficiently or including only people accustomed to
using digital devices.

As the Stroop sessions’ ineffectiveness was noticed in time, incorrectly using those
measurements as stressful samples could be avoided. While awakening intervals could
be used instead to maintain a balanced stressful-non-stressful sample ratio, the possi-
ble differences between such “spontaneous” stress situations and provoked stress events
such as the Trier test could be investigated further in a future study.

Another interesting topic related to methodology is using relaxation as a non-
stressful period. There is no doubt that relaxation is not stressful, but one could argue
that physiological features in everyday situations when no significant stress can be
perceived are not the same as when individuals are relaxing. Therefore, high perform-
ing classifiers taught with only stressful and relaxing samples might prove less effec-
tive in everyday situations when the difference between stressful and non-stressful
situations is smaller. Having measurements taken during neutral time periods, when
participants are distracted with minor tasks (such as reading or small talk) instead of
“doing nothing” might better simulate everyday non-stressful situations. Using such
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data could prove to provide better real-life classification performance, this is why
neutral periods were used in our trial. Results showed that a limited time-domain/
non-linear HRV feature set could achieve similar classification performance to that
of all features, including frequency-domain. Thus, even with less computational
resources, it is possible to adequately detect stress, supporting the assumption that
low-cost AAL solutions could be used for such purposes. However, the performance
of using only frequency-domain features was found to be just slightly lower (92.10%
accuracy, 91.96% F1 score), meaning they could be an alternative if low-cost solutions
explicitly designed for them are available.

The comparison of results for the different time window setups shows that classi-
fication performance improves with overlapping time windows. This is in line with
previous research [19, 27], and follows form the fact that more data are generally
expected to yield more precise estimations. Moreover, detecting the exact moment
when changes are caused by stress can be more problematic with non-overlapping
setups (especially for longer time windows). If, for example, the onset happens near
the middle of the interval, the data recorded in the first part lower the level of change
perceived for the entire window.

The best results were produced by using 5-min-long overlapping time windows.
It might not seem an achievement compared to other studies where similar perfor-
mances were achieved with shorter intervals (e.g., 50 or 60 s). However, relying on
short intervals only is not a meaningful target as future portable devices are expected
to facilitate ubiquitous monitoring techniques where users wearing the devices would
not notice measurements being taken. No cooperation would be required, nor to have
users interrupt their everyday activities. Smart bands and activity trackers already
support this functionality at a certain level. It can be assumed that future advance-
ments will make them achieve even more, supporting any preferred time window
without any considerable limitations.

Moreover, using longer time windows could have additional benefits in real-life situa-
tions, as most results published are typically based on measurements taken in controlled
environments. A system using shorter intervals is more likely to be affected by noise,
such as sudden user movements or just the “usual” interferences related to using elec-
tronic devices. These effects can usually be negated more efficiently with longer time
windows. Furthermore, while stress is known to have a “dynamic nature’, and there are
indeed multiple cases for quick-onset stress situations (e.g., receiving devastating news
or being frightened), acute stressors are not just like these. Some have a bit longer build-
up period when frustration is constantly increasing up to a severe level (e.g., struggling
with something or someone and getting annoyed), which could be missed by time win-
dows that are too narrow. Such changes could be observed more easily using longer (but
still short-time) time windows, without losing the ability to detect quick-onset events.

Concerning the general applicability of the models used, it can be concluded that sig-
nificant differences between participants can occur even when adequate data are avail-
able (e.g., P2). This can be attributed to the natural physical variability present between
different individuals, as some people react quite differently to the same impulses, while
others’ reactions are easily predictable. However, it is important to note that even the
results for participant P2 can still be considered quite good (89-97% F1 score).
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Comparison to related work

The results presented in this paper are similar to other ECG or PPG-based methods
using HRV features and even better in some cases. In comparison with the results of
Ham et al. [23], who have achieved 81-82% accuracy with non-overlapping 4-min-long
time windows, we have achieved an accuracy of 86.67%, which could be increased to
94.60% by using overlapping time windows of the same length. Moridani et al. [20]
reported an F1 score of 97.9% for differentiating between cognitive stress and relaxation
using 5-min-long measurements. Our results for overlapping 5-min-long time windows
using time-domain and non-linear HRV features were quite similar, with an F1 score of
96.26%.

As shown in Fig. 5, if only methods based on similar window lengths (60 s) are com-
pared, our results for time-domain and non-linear HRV feature sets (87.53% accuracy,
87.39% F1 score) are still better than that of Zangroniz et al. [24] (82,35% accuracy) and
close to the QDA results (89.73% accuracy) of Zubair et al. [26] (but not as good as their
SVM results with 94.33% accuracy), both using HRV features. The results obtained by
Sanchez-Reolid et al. [27] with a different sensor (GSR) are similar to ours when SVM
was used (83% F1 score), but their D-SVM solution is better (92% F1 score).

The multimodal sensor solutions with shorter time windows presented by Rodriguez-
Arce et al. [29] (90% accuracy) and Zalabarria et al. [30] (91.15% F1 score) also have bet-
ter performance compared to our 60 s methods. As discussed previously, comparing
results achieved with different time window lengths might not seem justifiable at first.
However, already the 2-min-long overlapping windows for time-domain and non-linear
HRYV features are on par with these achievements with 91.77% accuracy and 91.62% F1
score. Furthermore, if the idea behind ideal AAL solutions is accepted, i.e. ubiquitous
monitoring will be available in future AAL solutions, our best results achieved by 5-min
overlapping time windows outperform most of the methods previously mentioned, with
its 96% accuracy and F1 score, as shown in Fig. 6.

Only the 100% accuracy of Pourmohammadi et al. [34] using both EMG and ECG sen-
sors and SVM could not be reached by models used in configuration 1. Their solution’s
high performance could be partly attributed to their setup using the limb leads ECG con-
figuration (one electrode on each hand and leg), instead of a portable sensor, which might
have provided more accurate RR interval data to work with. While using the EM@G solution
described in their work might seem impractical first, future AAL devices such as the Vital

Sanchez-Reolid et al. (27), D-SVIV E—

Sanchez-Reolid et al. (27), SVM =

Proposed method —

Zangroéniz et al. (24) —

Zubair et al. (26), QDA |

Zubair et al. (26), SVM ]

81% 83% 85% 87% 89% 91% 93% 95%

m F1-score 0O Accuracy

Fig. 5 Performance comparison of methods using 60-s long, non-overlapping time windows
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Mo ridani et al. (20—  —
Sanchez-Reolid et al. (27
Zalabarria et al. (30)
Proposed method "=
Ham et al. (23) ——
Lawanont et al. (10) ———

Pourmohammadi et al. (34) ]

Rodriguez-Arce et al. (29) ]

Zangroniz et al. (24) ——
Zubair et al. (26) )
80% 85% 90% 95% 100%

m F1-score 0O Accuracy

Fig. 6 Performance comparison of best results achieved (different time window configurations)

Jacket used in [19] might provide a way for its everyday usage. It is certainly an interesting
proposal that should be investigated further.

Configuration 2 results imply that relatively few validated recordings are needed to
achieve high stress detection performance (90-100% F1 score) on an individual level. As
expected, results indicate that individual differences (both physiological and psychological)
cause prediction accuracy to be significantly different for each person. By testing different
time window setups, it was possible to find which settings were the best for each partici-
pant, achieving high average classification performance (98.93% F1 score).

Conclusion and future work

This study presented that effective stress detection for people aged 50 years or more is
achievable with classification models using RR interval-based HRV data gathered via port-
able ECG sensors. The main result of the work is that the performance of the proposed pre-
diction models matches those more complex solutions where multimodal measurements
from various sensors were used, thus offering a less complex and expensive alternative for
future AAL solutions. Moreover, it was also found that models based only on time-domain
and non-linear HRV features could reach similar or even better performance (96.31% accu-
racy, 96.26% F1 score) than more computationally complex solutions including also fre-
quency-domain features. A strength of the study is that it was performed with standardised
and validated stressing methods, by testing multiple time window and input configurations,
and using various classification algorithms to build detection models.

Preparation of a more detailed future trial is currently in progress at the time of writ-
ing this paper. The new experiment is planned to include more participants (about 50 peo-
ple) from multiple age groups, to investigate the developed models’ performance by testing
them on a broader population.

Methods

Study population

Data were gathered in a clinical study performed at the Cardiac Rehabilitation Institute
of the Military Hospital, Balatonfiired, Hungary. The inclusion criteria were being aged
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50 or above, having no previous history of cardiovascular conditions that would invali-
date HRV measurements, and having no colour vision problems that would affect the
execution of the Stroop test.

From the initial 12 participants who agreed to participate in the study, five had to
be excluded. Two were excluded as they did not adhere to the study protocol. For two
others, the ECG data recorded proved to be of low quality. Numerous extra heartbeats
were found in one participant’s case, making the measurements unsuitable for HRV
processing. The average age of the remaining seven participants (3 women, 4 men) was
63.14 years, with a standard deviation of 11.78. All of them were taking part in 3-week-
long rehabilitation courses that consisted of daily activities similar to everyday life. All
participants were under continuous medical and dietary supervision, and informed con-
sents were obtained before their inclusion in the study.

The study protocol was prepared to comply with the World Medical Association Dec-
laration of Helsinki on Ethical Principles for Medical Research Involving Human Sub-
jects. Ethical approval was given by the National Institute of Pharmacy and Nutrition
(OGYEI), Budapest, Hungary, under submission number OGYEI/4778/2018.

Experimental protocol

Participants took part in two different stressing sessions, held on consecutive days,
but during a similar time. For both sessions, first, the participants were escorted to a
secluded and calm room where they filled out a copy of the Hungarian version of the
STAI questionnaire [51]. A salivary cortisol test sample was also taken for the first batch
of participants (i.e. the first 4 people). Then they were instructed to try to avoid negative
and stressful thoughts while being seated and left alone for the next 10 min. After this
resting phase, participants were escorted to a nearby room where the stressing began.

For the first session, participants performed the standardised Trier Social Stress Test.
Participants were first informed about the details of the current session: two 5-min-long
tasks had to be performed in front of a committee of 3 people (its member made up of
individuals unknown by the participant), who were said to be behaviour experts analys-
ing them. A camera and a microphone were also present in the room, said to be record-
ing the interview for further analysis (they were not doing so). They had to complete the
first task of making a speech as part of a job interview, ensuring the committee that they
are the perfect candidate for the position, after an optional, at most 3-min-long prepara-
tion interval. As the second task, participants were asked to count down from 2023 by
seventeens with as few mistakes as possible, by starting again whenever an error was
made.

In the second stressing session, participants were seated at a table. They were given a
tablet device to complete a version of the Stroop colour test. In 10 min, their task was to
match colours to labels at an increasing pace and try and do as many correct matchings
in a row as possible (i.e. getting the best “high score”). One additional point was given for
each correct solution, and the score reset to 0 if a mistake was made.

After each stressing session, participants were escorted back to the starting room to
fill out another copy of the STAI questionnaire. For the first batch, another salivary cor-
tisol test sample was taken.
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Besides taking part in the stressing sessions, participants were asked to keep a diary
with notes on when they woke up or did notable physical activities (e.g., going for a
walk, exercising). The diary wake-up times were validated by analysing the respective
HRYV recordings (for significant mean heart rate changes). Waking up in the morning is
known to be a generally stressful situation as the body shifts from a resting-recovering
state to an active-ready state. For participants where the awakening time could be vali-
dated this way, 10-min-long “awakening intervals” were extracted from their measure-
ments to have additional stressful samples. With a similar methodology, some other time
intervals that could be characterised as non-stressful were also selected for some partici-
pants to have the same amount of stressful and non-stressful measurements. These were
usually taken from 30- to 60-min-long resting-like periods just before lunch at noon,
when it could be validated that no physical or notable mental activities were done.

Physiological measurements

The participants wore the portable Firstbeat Bodyguard 2 ECG sensor [8], a low-cost
AAL device providing RR interval measurements. The device operates as a one-channel
ECG, i.e. by using two electrodes (one placed on the right side of the body under the col-
larbone, the other on the left side of the body on the rib cage), with a sampling frequency
of 1000 Hz (with 1 ms precision). Participants were asked to wear the device for at least
2-2.5 consecutive days (except when showering/bathing), starting from the night before
the first stressing session until the morning after the second session.

The RR interval data recorded by the sensors was pre-processed with Kubios HRV
Standard software (version 3.3.1), with its threshold-based beat correction algorithm to
identify and remove possible artefacts [52]. “Low” threshold (of value 0.3) was selected
based on the literature [53] in order to provide a method that could be expected to work
well with younger adults too. Kubios was also used to calculate the HRV features from
the RR intervals.

Previous works have shown that using multiple different window length configurations
can influence stress detection capabilities [19, 27]. Therefore, the classification algo-
rithms were tested with 1-min (ultra-short), 2, 3, 4 and 5-min (short) window lengths.
Moreover, both overlapping and non-overlapping configurations were tested for each
interval. For overlapping configurations, the subsequent time windows started 1 min
after the previous window’s start. Table 7 shows the total data amount used for each
participant.

Only for the first four participants was it possible to use saliva-cortisol tests right
before and after each of the stressing sessions due to logistic reasons. The samples were
taken by medical personnel and were immediately transported to the scientific labora-

tory for analysis.

Heart rate variability features

Kubios can calculate 52 features from source data if the covered time interval contains
enough measurements for the calculation. 13 of them are time-domain features, 7 are
non-linear, and 16-16 frequency-domain features are calculated by both Fast Fourier
transformation (FFT) and parametric autoregressive (AR) modelling (called FFT and AR

spectrum results), respectively.
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Table 7 The amount of data used for training and testing purposes for each participant

Total length of P1 (min) P2 (min) P3 (min) P4 (min) P5 (min) P6 (min) P7 (min)
Stressful records 20 50 40 27 44 37 20
Non-stressful records 20 50 40 27 44 37 20

Amongst the time-domain features are:

» the means and standard deviations for the RR intervals and the heart rate;

« the root mean square of the successive differences (RMSSD);

+ the RR tri-index;

+ the triangular interpolation of RR intervals (TINN);

» the number of successive RR intervals that differ more than xx milliseconds (NNxx),
and the ratio of NNxx and the total number of RR intervals (pNNxx). During the
trial, the default value of 50 ms was used for xx.

Frequency-domain features include:

+ the very low frequency (VLF), low frequency (LF) and high frequency (HF) compo-
nents for the peak frequencies (Hz), and the absolute (ms” and log) and relative (%)
powers;

« the LE/HF ratio;

« the total power (ms?) and the normalised (n.u.) powers for LF and HF.

The non-linear features are:

« the metrics used for the Poincare-plot (SD1, SD2, SD2/SD1);
« the approximate and sample entropies;
« thealpha 1 and 2 values of the detrended fluctuation analysis (DFA).

More information about the exact HRV features is available at [54].

Classifier models, model training

In order to investigate multiple different classification algorithms and methods, SPSS
Modeller 18.2.1 was used. A total of 15 different classifier types were used in two differ-
ent configurations: C&R Tree (Classification and Regression), C5, CHAID (Chi-square
Automatic Interaction Detector), Decision List, Discriminant, Logistic regression,
LSVM (linear support vector machine), Neural Net, Quest, Random Forest, Random
Trees, SVM (support vector machine), Tree-AS, XGBoost Linear and XGBoost Tree.
Further details can be found in [55].

In configuration 1, the available features were used to form three feature sets: one
containing all available features, one for the time-domain and non-linear features, and
one for the frequency-domain features only. The rationale behind this is that calculating
frequency features is generally considered more computationally complex and resource-
intensive than time-domain and non-linear features. If models’ performance using all
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other features does not differ significantly from those using frequency-domain features,
they could provide a more effective method for stress detection. Performance with fre-
quency-domain features only was also investigated to see if solutions explicitly designed
for frequency-domain computations could be beneficial.

The model training process was executed by using 2/3 (67%) of the available records
for the training set and the remaining 1/3 (33%) for the testing set (2:1 ratio). Records
were randomly sampled into these two sets for each run, by using the built-in sample
nodes of the SPSS modeller. Sampling and training were executed ten times for each of
the different model configurations tested.

In configuration 2, the training and testing sets were built individually for each par-
ticipant, without using data from other participants. For this purpose, each participant’s
stressful and non-stressful records were randomly sampled one-by-one into the partic-
ipant-specific training and testing sets, maintaining a 2:1 testing—training ratio. As in
configuration 1, sampling and model building was repeated ten times for everyone, and
the performance of the three different feature sets (all, time and non-linear, frequency)
was compared.

Performance metrics and statistics
Solutions given by classifier models were categorised into four result type groups. The
correctly categorised ones into true positives (7P) and true negatives (TN), while the
incorrect ones into false positives (FP) or false negatives (FN). The following four met-
rics were used to evaluate classifier performance:
Accuracy: the ratio of correctly classified items and all items:
TP+ TN

Acc = . (1)
TP + TN + FP + FN

Specificity: the ratio of correctly classified non-stressful items and all non-stressful
items:

TN

~IN + EP’ 2)

Sp
Sensitivity: the ratio of correctly classified stressful items and all stressful items (also
known as recall):

TP

Se—=— - .
*=TPYEN @)

F1 score: a generally accepted field of merit for binary predictors, defined as the har-
monic mean of precision (TP/(TP + FP)) and recall:

2.-TP

Fl= .
2-TP 4+ FN + FP

(4)

The performance metrics listed above were calculated for all configurations in each
run, using the classification algorithm provided by the best model, i.e. the values dis-
cussed in “Results” for the above configurations are each an average of 10 modelling

runs.
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The performance of the various classification algorithms was evaluated according
to a marking scheme. The mark was the number of times the algorithm provided the
best accuracy amongst all candidate algorithms and the accuracy was 85% or above,
in order to avoid rewarding relatively good but still poor results.

To compare the results obtained for the different feature sets (all parameters, time-
domain and non-linear, frequency-domain), a one-way analysis of variance (ANOVA)
was performed to identify if statistically significant differences could be found (with
p <0.05). If a significant difference could be observed, Student’s t-test was used to find
which feature sets were different. These techniques were also used to check signifi-

cant differences amongst participant-wise model results.
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