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Method: We designed a sleeping posture recognition scheme in which FSR sensors

were deployed on the upper part of the bedsheet to record the pressure distribution
of the upper body. In addition, an infrared array sensor was deployed to collect data for
the lower body. Posture recognition was performed using a fuzzy c-means clustering
algorithm. Six types of sleeping body posture were recognized from the combination
of the upper and lower body postures.

Results: The experimental results showed that the proposed method achieved an
accuracy of above 88%. Moreover, the proposed scheme is cost-efficient and easy to
deploy.

Conclusions: The proposed sleeping posture recognition system can be used for
pressure ulcer prevention and sleep quality assessment. Compared to wearable sensors
and cameras, FSR sensors and infrared array sensors are unobstructed and meet pri-
vacy requirements. Moreover, the proposed method provides a cost-effective solution
for the recognition of sleeping posture.

Keywords: Force-sensing resistor, Infrared array sensor, Sleeping posture recognition,
Fuzzy logic

Background

Sleeping posture is one of the most important factors that determines sleep quality,
reducing sleep disorders and preventing ulcer formation. As treatment of established
pressure ulcers is extremely difficult and costly, the ideal solution is prevention. Nursing
homes and hospitals use set programs to avoid the development of bed-sores in bed-
ridden patients, such as pressure-shifting on a regular basis and using cushions with
pressure-relief components. The sleeping posture of bed-bound patients needs to be
regularly changed in order to reduce the risk of developing pressure ulcers [1], and bed

sensor systems have been developed to recognize sleeping postures.

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license,

and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publi
cdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12938-018-0584-3&domain=pdf

Hsiao et al. BioMed Eng OnLine 2018, 17(Suppl 2):157 Page 1700f 187

Sleeping posture recognition is also an important issue in medical care for ambula-
tory patients or outpatients, as deterioration or amelioration of certain diseases are
related to sleeping posture. For example, researchers have shown that sleeping in the
decubitus position increases the risk of developing subacromial impingement syn-
drome by 3.7 x as compared with those who sleep in the supine position [2]. Sleeping
in a lateral position can effectively reduce symptoms in patients with mild or moder-
ate sleep apnea [3]. Symptoms of sleep paralysis usually occur in the supine position
[4]. Sleeping on the right side has a higher risk than sleeping on the left side of devel-
opment of transient lower esophageal sphincter relaxation, which is a main factor in
nocturnal gastroesophageal reflux [5, 6].

Researchers have also found that sleep quality is related to sleeping position and
frequent sleep postural changes. For example, snoring or extensive body movement
may result in a shorter sleep duration [7]. Subjects who report a history of poor sleep
quality spend more time in the supine position with the head straight [8], and subjects
who sleep on their left side have a significantly higher rate of nightmares (40.9%) than
those who sleep on their right side (14.6%). Also, recent research in rats indicated that
a lateral sleep posture is more effective for waste removal from the brain during sleep
[9], while waste in the brain may contribute to some neurological diseases such as
Alzheimer’s and Parkinson’s.

For bed-bound and limited-mobility patients, the sensor system employed is usually
simple and inexpensive, but may achieve a high posture recognition accuracy when the
patient is placed by the caregiver in the central axis of the bed. However, the accuracy
drops acutely with deviation of the patient’s body from the central axis [1, 10]. For ambu-
latory patients or healthy elderly people, the design becomes much more complicated
and relatively more expensive, as human beings exhibit a variety of postures during sleep.

In early studies, researchers obtained sleeping posture information by interviewing
subjects. In recent years, however, multiple approaches have been developed based
on different sensing modalities to determine sleeping postures [11, 12]. Among the
various widely-used techniques, pressure-sensing and camera-based visual data are
most common. Different camera systems are used to acquire visual data. A common
digital camera, described in [13], is used mainly as a fall-detection system, but can
also identify a lying posture. In [14], the authors modeled the human body in terms
of its constituent body parts; then, for each part, a multi-view Eigen model that com-
bined image views from numerous calibrated cameras was built. Using a deforma-
ble triangulation method, a body part segmentation algorithm was presented in [15]
based on body postures. However, these methods require high-resolution camera
images or a sequence of high-resolution video recordings, and concerns have been
raised regarding video monitoring systems in terms of invasion of privacy. In [16—-18],
the researchers used pressure sensors to determine sleeping posture based on the
pressure distribution. In [19], Wai et al. proposed a 56-sensor layout for patients with
higher mobility. This scheme consisted of a 7 x 7 round-sensor array for the upper
body and a 7 x 1 elongated sensor array for the lower body. The sleeping posture clas-
sification accuracy of this system was reported to be 93%.

As most of the pressure distribution is contributed by the hips and chest, limbs are
rarely recognized unless thousands of sensors are deployed; in addition, the positions
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and postures of the feet are more variable than those of the chest and hips. These are the
reasons for which the accuracy of FSR-based posture recognition is significantly low. To
increase the accuracy and lower the cost, in this work we deployed a new sensing sys-
tem over the lower body instead of a pressure sensor array. This paper presents a sleep-
ing posture recognition scheme based on force-sensing resistor (FSR) and infrared array
sensors. FSR sensors were deployed to obtain the pressure distribution of the upper
body, while the lower body position was detected by a single infrared array sensor. In
summary, the contribution of this paper is the novel design of an accurate, cost-effective
technique for the recognition of sleeping posture.

Methods

The proposed sleeping posture recognition method uses two kinds of sensor: FSR sen-
sors for the upper body and an infrared array sensor (Grid-EYE) for the lower body.
ESR sensors are thin-film sensors made of a piezoelectric polymer, and the resistance
decreases in proportion to the applied force on the active surface [20]. Each FSR sensor
can measure force up to a value of 10 kg/cm? The Grid-EYE system is an infrared ther-
mal imaging array sensor consisting of an 8 x 8 matrix of sensors [21] that detects and
renders thermal images of the temperature distribution of a movable or non-movable
object. The FSR sensor array used in our experiment is shown in Fig. 1a; the infrared
array sensor is shown in Fig. 1b. The sensing coverage of each pixel changed when the
distance between the Grid-EYE array and the subject varied, as shown in Fig. 2.

Figure 3 shows the different levels of data-processing required for sleeping posture
recognition. The sensor data from the pressure and infrared sensor arrays were pro-
cessed separately to extract the features from each sensor type. The features extracted
from both types of sensor were then combined into the final system in order to recog-
nize and distinguish six kinds of sleeping posture, as shown in Fig. 4.

As human beings exhibit a variety of sleeping postures, the postures are usually grouped
into several categories based on the body trunk and limb positions. Idzikowski [22]

=
b

Fig. 1 Sensor systems employed in this study: a FSR sensors; b infrared array sensor
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conducted a sleeping position preference survey of around 1000 people in Britain and clas-
sified the favorite sleeping postures into six categories. This is the most commonly-used
classification of sleeping posture. Liu et al. [18] further classified the fetus (sleeping on one’s
side with the body curled up) and the log (sleeping on one’s side with the back and legs
straight) positions into left fetus, right fetus, left log, and right log positions, as shown in
Fig. 4. This classification method was adopted in our experiments.

Pre-processing

This section presents the pre-processing method used for both the pressure and infrared
sensor data. The purpose of pre-processing of data was to remove noise from the collected
data. The moving average filter (MAF) method is an effective technique by which to reduce
random noise of time domain-encoded signals [23]. The effect of noise arising from mat-
tress pressure can be minimized by calculating the MAF as follows:

MAF — Xy + Xp—1 +xn7§[+"'+xn7N+l (1)

where x, is the nth time sensing data and N is the number of points (N=10). After
using the MAF, a thresholding filter was adopted to highlight essential sensing data. If
the pressure/temperature value was greater than the defined threshold, the sensing value
was assigned as 1; otherwise, the sensing value was assigned as 0. Data that exceeded the
thresholds were termed “sensed points”.

Middle point/axis determination using fuzzy c-means clustering

After pre-processing of the raw sensor data, the middle point and the middle axis needed
to be calculated using a fuzzy c-means (FCM) clustering algorithm. FCM [24-26] is a
widely-used method for soft image clustering, and was employed in this study to eliminate
the effects of position and orientation differences of different subjects on sleeping posture
determination. Given a horizontal/vertical axis and a dependent feature vector x, FCM
aims to minimize the following objective function:

n C
A=) ulfle — ol )

i=1k=1

where A is the objective function, # is the number of horizontal/vertical axes, ¢ is the
number of clusters, u; is the degree of membership of x; in cluster %, x; is the ith value of
d-dimensional measured data, c; is the d-dimension center of the kth cluster. The Euclid-
ean distance between x; and ¢, ||x; — ¢, can be calculated as:

n
i — cxll = (| D _@ip — cp)® + @iv — exn)? 3)
i=1

where x;, and ¢, are positioning indexes on the horizontal/vertical axis of sensing points
after histogram projection processing, and x;; and ¢, are the numbers of sensed points.
The degree membership u;, can be calculated as:
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The FCM clustering algorithm has five steps:

Set the number ¢ of clusters and the stopping condition.
Calculate the cluster centroid.

For each sensor point, compute the membership value for each cluster.

L

Compute the objective function, shown in formula (2). If the value of A between
consecutive iterations <, then stop. Otherwise, go to step 2.
5. Assign each positioning index to a cluster after defuzzification.

After building up the FCM clustering, it can be applied to find the middle point/axis.
For determination of the middle point of the trunk, the proposed method consisted of
five steps, as follows:

1. Histogram projection
The data received by each pressure sensor is defined as a sensing point and the 2-dimen-
sion space of the bedsheet is defined as a coordinate. After pre-processing, the data of

each sensing point are projected to horizontal and vertical directions, as shown in Fig. 5.

2. Clustering

Using the FCM clustering algorithm, the Euclidean distance between x; and ¢, is calcu-
lated by considering axis positioning indexes and the number of projections, shown in
formula (3). In other words, if the positioning indexes are closer to one another, they will
be more likely to cluster into the same cluster; and if the number of projections on an
axis positioning index is near to another, the axis positioning index will be more likely
to cluster into the same cluster. The algorithm allows pre-definition of the number of
clusters. In this study, the pressure sensors were clustered into three clusters in the hori-
zontal and vertical directions, respectively (yellow, blue and green curves represent the
three different clusters in Fig. 6).

3. Finding the middle axis of the horizontal projection

Figure 6 shows the pressure sensors that detect the upper body. On the horizontal pro-
jection, the left-side cluster and the right-side cluster are both background clusters. The
middle cluster is a foreground cluster mapped to the trunk, and the maximum member-
ship value of the positioning index of the middle cluster is chosen as the middle axis. The
same can be applied to the lower body to segment legs mapped into two sub-regions to
find the middle axis of the leg map.
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4. Finding the middle axis of the vertical projection

On the vertical projection of Fig. 6, the middle cluster is mapped to the waist; the upper-
side cluster is mapped to the chest, the lower-side cluster is mapped to the hips, and the
maximum membership value of the positioning index of the middle cluster is chosen as

the middle axis.

5. Cross point of the two middle axes
Finally, by combining the two middle axes, the cross point can be determined. The cross

point offers the key to segmenting the trunk map into four sub-regions.

Feature extraction

The work in [18] proposed a feature extraction method for posture classification that is
based on the geometry of the pressure images. The features are described as either spatial
features or body-part features. Our feature extraction was based on the features of symme-
try and balance. The middle point of the trunk and the middle axis of the legs were applied
to segment the body-part map, as shown in Fig. 7. Four sub-regions were segmented by
the middle point. In Figs. 8 and 9, the number of sensed points (Cy, Hy, C;, H;, L;, and
L) corresponds to each sub-region (right-chest, right-hip, left-chest, left-hip, left-leg, and
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right-leg), respectively. The symmetry feature of the body posture was extracted based on
the sensed points of the four sub-regions. For example, when the subject’s posture was
supine, the sensing pad observed more symmetrical features than for lateral postures. The
four variables of the sub-regions of the body-part map were used to calculate the symmetry

features, as shown below:

Tp-re = (Cr + Hg) — (CL+Hy) (5)
Tp-cn=(Cr+CL) — (Hr+Hp) (6)
Lp—pr=ILr — Li| 7)
Lyac = number of sensed points (8)

where, T p;: Difference in number of sensed points between the right sub-regions
(Cr+ Hp) and the left sub-regions (C; + Hg) in the trunk region. T, oy Difference
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in the number of sensed points between the chest sub-regions (Cr + Cr) and the hip
sub-regions (Hp + Hy) in the trunk region. Ly, ;;: Absolute difference in the number of
sensed points between the right sub-region (Lg) and the left sub-region (L) in the leg
region. L, Number of sensed points falling in the middle axis in the leg region.

Figure 8 demonstrates the pressure distributions of the supine and left lateral decu-
bitus positions. The sensed points were distributed evenly in the supine position, while
most of the sensed points fell in the left sub-regions (C; and H;) in the left lateral decu-
bitus position. The left—right symmetry measures were obtained by calculating the dif-
ference (T}, p;) between the right sensed point sum (Cp+ Hp) and the left sensed point
sum (C;+ H;), as shown in Eq. (5). Similarly, the chest—hip symmetry measures were
obtained by calculating the difference (7 ;) between the chest sensed point sum
(Cr+ C;) and the hip sensed point sum (Hyp+ H;), as per Eq. (6).

Figure 9 demonstrates the thermal image distribution of the left log and left fetus posi-
tions. As indicated in the figure, the thermal image of a straight leg is represented by
a straight line and looks symmetrical, while a curled-up leg appears asymmetrical. The
left—right symmetry features were obtained by calculating the absolute value of the dif-
ference (Lp_g;) between the number of sensed points in the right-leg region (L) and the
number of sensed points in the left-leg region (L;), as per Eq. (7). Equation (8) indicates
the number of sensed points located in the middle axis of the legs.

Sleeping posture classification using a decision tree

The decision tree method is one of the most common predictive modeling approaches
used in statistics, data-mining and machine learning. We used a distance-weighted
k-nearest neighbor algorithm (k-NN) [27] to classify the sleeping postures of a subject.
In our decision tree structure, as shown in Fig. 10, leaves represented sleeping postures
and branches represented conjunctions of features that led to those sleeping postures.
Two feature spaces were applied: the trunk symmetry feature and the leg symmetry

Trunk Symmetry Feature

Tp.r: POSitive

Tp.cn =0

Lp.r =0

L qiti ..
ou POYitive Ly4cpositive

Ly, positive

Lyac =0

Lycpositive

Left Fetus Left Log Right Fetus Right Log

Fig. 10 Sleeping posture classification using a decision tree
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feature. In each feature space, we employed the k-NN classification technique to recog-
nize the sleeping posture.

Feature spaces of sleeping postures

This study applied two kinds of feature space to recognize sleeping postures: the trunk
symmetry feature space (Fig. 11) and the leg symmetry feature space (Fig. 12). Four
major upper-body postures, consisting of supine, prone, left lateral and right lateral
positions, were described by the trunk symmetry feature space. As described in previ-
ous sections, Tp, p; and T - were used to compose the trunk symmetry feature space.
When the posture was supine, both T}, 5, and T, -y were close to zero (close to the ori-
gin of the space). When the posture was left lateral, T}, 5, was negative and T}, - close
to zero. When the posture was right lateral, T}, ;; was positive and T, -y close to zero.
When the posture was prone, T}, p; was close to zero and T}, -y was negative (close to
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the bottom of the space). The two major lower-body postures, the fetus and the log posi-
tions, are described by the leg symmetry feature space. As described above, L, ;; and
Lyac were used to compose the leg symmetry feature space. When the posture was of
the fetus position, Ly, ;; was large and L), was small (close to the right-hand bottom
of the space). When the posture was of the log position, Ly, p; was small and L, large

(close to the left-hand upper limit of the space).

Measurement of the sensing gap for sensor deployment on the bedsheet

Deploying fewer sensors in a fixed sensing coverage will lead to sensing gaps between sen-
sors. We deployed a 16 x 10 pressure sensor array for the upper body to avoid creation of a
sensing gap, as shown in Fig. 13. Sensing gaps occur when sensors are not adjacent to each
other in sensor deployment. In such cases, there exist areas between sensors in which the
system does not work when a subject’s body part is smaller than the area and falls within the
area. In sensing coverage in which the size of the sensors is fixed, deployment of fewer sen-
sors will create larger sensing gaps. Figure 14 shows that many sensing gaps exist between
sensors. An area that contains a sensor and a gap is defined as a sensing grid. When a sub-
ject sleeps on the bedsheet, the major pressure distribution is contributed by the chest and
hips; in other words, pressure sensors have a low utilization in the leg area, which is a waste
of resources. To address the cost issue, previous studies usually deployed fewer sensors. A
typical example is shown in Fig. 15a, which depicts a pressure sensor array deployed on
a bedsheet. However, fewer sensors in the sensing area enlarge the gap between sensors.
To resolve this problem, we adopted a Panasonic AMG8852 Grid-EYE [21] infrared array
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sensor for leg-posture recognition. The Grid-EYE system is an infrared thermal imaging

sensor containing an 8 x 8 matrix of pixels deployed at a height of 0.96 m, which covers a

sensing area of 1 m x 1 m.

Page 181 of 187



Hsiao et al. BioMed Eng OnLine 2018, 17(Suppl 2):157 Page 182 0f 187

Figure 15 presents a comparison of a typical pressure sensor deployment (Fig. 15a) and
an infrared array sensor deployment (Fig. 15b). The sensor deployment area is crisscrossed
with dotted lines that form sensing grids. To simplify the calculation process, the pressure
sensors shown in Fig. 15a were attached to the upper and left dotted lines of each sensing
grid, while in practice the force applied to the pressure sensors diffuses radially outward
owing to the effect of the mattress covering the sensors.

Spatial sensing resolution

The sensing gaps created during pressure sensor and infrared array sensor deployment were
compared. In order to make a fair comparison, a similar spatial resolution was considered
for both the FSR and the Grid-EYE sensors. In [19], spatial sensing resolution was proposed
as a tool for comparison of three different pressure sensor deployments. For the pressure
sensor deployment shown in Fig. 15a, the spatial sensing resolution is shown in Eq. (9):

Spatial sensing resolution = number of sensing points/area of sensing coverage
= (7x7)/(0.875 x 0.875)

= 64 (sensingpoints/ mz)
)
However, the spatial sensing resolution for the deployment of an infrared array sensor

of the same coverage (Fig. 15b) is given by:

Spatial sensing resolution = number of sensing pixels/area of sensing coverage

(8 x 8)/(1 x1) = 64(sensingpixels/ m2)

(10)

The sensing gap of the pressure sensor array deployment was calculated for the

array shown in Fig. 15a as 0.1 m. Sensing grids of every two adjacent or diagonal pix-

els of the Grid-EYE system adjoin each other, sharing a common border or endpoint.

The sensing coverage of each pixel will change if the distance between the Grid-EYE

array and the subject varies, meaning that there exists no obvious sensing gap in the
Grid-EYE pixel array.

Signal detection threshold

The signal detection threshold is the largest body part of a subject that is undetect-
able by the deployed sensor(s) in a sensing system. In this study, the signal detec-
tion threshold was applied to evaluate the capability of forming a normal-size human
leg contour on the sensing bedsheet. In common usage, a threshold is the minimal
amount of a subject’s feature necessary to be detectable by the sensory receptor or
system [28]. When value of the feature (e.g., brightness, weight, temperature) reaches
or exceeds a certain threshold, the system will detect the existence of the feature. In
our evaluation of a sensing bedsheet system, the maximal undetectable size of the
subject within the sensors was considered “the worst case” in the sensing grid. The
signal detection threshold in a sensing grid is described by Eq. (11):

Signal detection threshold = max(A,) (11)
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where A, is an undetectable area of a subject’s body part.

The quality of sensor deployment can be examined using the value of the signal
detection threshold. When the undetectable area reaches the maximal value, which is
its signal detection threshold, the ratio of the size of the maximal value to the sensing
grid reflects the quality of sensor deployment. In the equation, A, is the undetectable
area of the subject’s body part on the sensing bedsheet. The area will keep increasing
until it hits a sensor and is detected by that sensor. Therefore, the largest size of body
part that is not detected by any of the sensors, which is the max(A4,), is the signal
detection threshold. The signal detection threshold is better when the value is smaller.

Pressure sensor array deployment

In a pressure sensor array deployment, the sensing grid is the minimum value of a
quadrilateral area that includes the center of every four sensors of an in-bed pres-
sure sensor deployment. “The worst case” position means that a body part of the
subject falling within the area of four pressure sensors has the largest undetectable
feature area. The subject touches the four sensors but does not overlap any of them,
rendering it undetectable. A sensing unit containing four quarter circles and the larg-
est-but-not-overlapping subject’s body part is shown in Fig. 16; this figure is another
demonstration of the max(4,), in which the sensing gap and the subject’s body part
are placed in the middle of the sensing grid. According to the experimental results,
the signal detection threshold (i.e., the maximum undetectable area of a body part of
the subject) was approximately 180.83cm?.
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Table 1 Comparison of FSR sensor and infrared array sensor deployment

Number of sensors Sensing gap max(Ay) Cost
Pressure sensor array 49 0.1m 180.83 cm? $340
Proposed infrared array 1 N/A 25cm? $34

sensor

The quality of sensor deployment was better when the value of max(A,) was smaller

Table 2 Accuracy of the proposed method with different subject body weights

Body weight Accuracy
of proposed
method (%)
Light (around 40 kg) 90
Medium (around 60 kg) 85.83
Heavy (around 80 kg) 88.33
Average 88.05

Infrared array sensor deployment
In an infrared array sensor deployment, the signal detection threshold is the smallest
detectable area of a body part of the subject within the sensing grid. Our Grid-EYE
experiments showed that a shank was undetectable when it fell in one-fifth (20 cm?) of
the sensing grid, but detectable in one-quarter (25 cm?) of the sensing grid. Similarly,
when two fingers (18 cm?) fell in the Grid-EYE sensing grid, they were undetectable;
however, three fingers (27 cm?) were detectable in the sensing grid. According to the
experimental results, the max(4,) for the Grid-EYE system was approximately 25 cm?.
Table 1 presents a comparison of the pressure sensor array (FSR sensors) and infrared
array sensor deployment in the leg area. The calculations showed that under the same
spatial resolution, the signal detection threshold of the Grid-EYE system was much bet-
ter than that of the pressure sensor array (FSR sensors). A single infrared sensor cov-
ers a larger sensing area than 49 FSR sensors. The pressure distribution of the legs is
very small, and this decreases the accuracy of the FSR-based method. Hence, combin-
ing FSR sensors and infrared array sensors renders posture recognition effective and
cost-efficient.

Results and discussion

We performed experiments with different subjects based on their body weight: light
(around 40 kg), medium (around 60 kg), and heavy (around 80 kg). The sleeping pos-
ture recognition accuracy of the proposed method was as shown in Table 2; the average
sleeping posture recognition accuracy was 88.05%.

We compared the number of deployed sensors and the cost of the method with sys-
tems described in previous studies, as shown in Table 3. In [17, 18], 8192 FSR sensors
were deployed, achieving an accuracy of 90.78% and 83%, respectively. The cost of 8192
ESR sensors was approximately 8850 USD. Our proposed scheme employs 160 FSR sen-
sors for the upper body and one infrared array sensor for the lower body, the total cost
of which was approximately 950 USD. We achieved an accuracy of 88.05% using very few

pressure sensors. In the experiment, an infrared array sensor system was chosen instead
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Table 3 Comparison of sleeping posture recognition methods

Cost Number of sensors Accuracy (%)
Xuetal [17] High 8192 pressure sensors 90.78
Liuetal. [16] High 8192 pressure sensors 83
Proposed method Low 160 pressure sensors and 1 infrared 88.05

array sensor

of a pressure sensor system for detection of the position of the lower part of the body.
When sensor deployment only is taken into consideration, the cost of an infrared array
sensor system is about one-tenth that of a pressure sensor system. Additionally, in com-
parison to an infrared array sensor, pressure sensor systems have a much higher mainte-
nance cost, as patients do not come into physical contact with infrared sensors. A hybrid
deployment consisting of an infrared array sensor for the lower body effectively reduces
the deployment cost.

The proposed sensor deployment was found to be much more cost-effective as com-
pared with the number of pressure sensors deployed in [17] and [18]. The experimental
results indicated that our proposed system achieved highly accurate posture recognition
at a much lower cost.

Conclusions

In this study, we designed and tested a sleeping posture recognition scheme consisting
of a pressure sensor array and an infrared array sensor. We deployed 16 x 10 FSR sen-
sors for the upper body and a Grid-EYE infrared array sensor for the lower body to cre-
ate a bed sensing system. We applied the symmetry of feature space to distinguish six
types of sleeping body posture. The proposed method overcame lying position variations
by determining the middle point and middle axis of the body. The experimental results
showed the accuracy of posture recognition to be 88.05%.

As we deployed FSR sensors only on the upper bedsheet, and employed a single infra-
red array sensor for the lower body, the novel scheme was cost-effective. Moreover, the
proposed scheme avoided sensing gaps between sensors, which is a common issue but is
usually ignored in low-cost pressure sensor systems. The Grid-EYE infrared array sen-
sor deployment balanced the trade-off between recognition accuracy and sensor cost. In
addition, the Grid-EYE sensor deployment negated privacy concerns.
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