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Background
Eye diseases present great challenges and are serious threats to human health and qual-
ity of life [1]. Ophthalmic imaging technologies play an important role in diagnosing 
eye diseases [2–4]. Many computer-aided diagnosis methods can achieve satisfactory 

Abstract 

Background:  Ocular images play an essential role in ophthalmological diagnoses. 
Having an imbalanced dataset is an inevitable issue in automated ocular diseases 
diagnosis; the scarcity of positive samples always tends to result in the misdiagnosis of 
severe patients during the classification task. Exploring an effective computer-aided 
diagnostic method to deal with imbalanced ophthalmological dataset is crucial.

Methods:  In this paper, we develop an effective cost-sensitive deep residual convo-
lutional neural network (CS-ResCNN) classifier to diagnose ophthalmic diseases using 
retro-illumination images. First, the regions of interest (crystalline lens) are automati-
cally identified via twice-applied Canny detection and Hough transformation. Then, 
the localized zones are fed into the CS-ResCNN to extract high-level features for 
subsequent use in automatic diagnosis. Second, the impacts of cost factors on the CS-
ResCNN are further analyzed using a grid-search procedure to verify that our proposed 
system is robust and efficient.

Results:  Qualitative analyses and quantitative experimental results demonstrate 
that our proposed method outperforms other conventional approaches and offers 
exceptional mean accuracy (92.24%), specificity (93.19%), sensitivity (89.66%) and AUC 
(97.11%) results. Moreover, the sensitivity of the CS-ResCNN is enhanced by over 13.6% 
compared to the native CNN method.

Conclusion:  Our study provides a practical strategy for addressing imbalanced oph-
thalmological datasets and has the potential to be applied to other medical images. 
The developed and deployed CS-ResCNN could serve as computer-aided diagnosis 
software for ophthalmologists in clinical application.

Keywords:  Imbalanced ophthalmic images, Pediatric cataracts, Lens automatic 
localization, Cost-sensitive, Deep convolutional neural network

Open Access

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and 
indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdo-
main/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

RESEARCH

Jiang et al. BioMed Eng OnLine  (2017) 16:132 
DOI 10.1186/s12938-017-0420-1 BioMedical Engineering

OnLine

*Correspondence:   
xyliu@xidian.edu.cn;  
haot.lin@hotmail.com 
2 School of Software, Xidian 
University, No. 2 South Taibai 
Rd, Xi’an 710071, China
3 State Key Laboratory 
of Ophthalmology, 
Zhongshan Ophthalmic 
Center, Sun Yat-sen 
University, Xian Lie 
South Road 54#, 
Guangzhou 510060, China
Full list of author information 
is available at the end of the 
article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12938-017-0420-1&domain=pdf


Page 2 of 20Jiang et al. BioMed Eng OnLine  (2017) 16:132 

performance when the sample distribution is roughly uniform between different classes 
[5–8]. However, imbalanced datasets are inevitable in a variety of medical data analysis 
situations [6, 8–11], which causes the existing classifiers to exhibit a high false negative 
rate (FNR) or false positive rate (FPR). False-positive results can cause undue worry, eco-
nomic burden and waste of medical resources, whereas false-negative misclassifications 
can lead to delayed treatment onset, cause poor treatment outcomes and hinder the use 
of artificial intelligence technology for diagnosis. In particular, high FNR and FPR rates 
deter such applications from being used to benefit people far away from clinics. There-
fore, it is imperative to explore a feasible and efficient strategy to address the problem 
of imbalanced ophthalmic image datasets to achieve higher-performance of computer-
aided diagnostic systems.

Retro-illumination images are an inevitable and typical imbalanced dataset in the 
clinical diagnosis of eye diseases [10, 12, 13] such as pediatric cataracts and posterior 
capsular opacification (PCO). First, the number of positive samples requiring Nd-YAG 
(neodymium-doped yttrium aluminum garnet) laser surgery in retro-illumination 
images is much smaller than the number of negative samples [14]. Second, it is difficult 
to add additional positive sample images because pediatric cataract images are limited 
[15, 16]. Third, the high FNR caused by the imbalanced dataset leads to delays in treat-
ment onset, Obstacles to vision development, irreversible amblyopia and even severe 
vision loss [17]. Therefore, exploring and resolving the classification problems caused by 
imbalanced retro-illumination image datasets will effectively improve therapeutic proce-
dures for eye diseases. In addition, this study provides an important reference for studies 
of other imbalanced medical datasets, smoothing the path for the further use of artificial 
intelligence in clinical applications.

Generally, two types of approaches, namely, data leveling [18–20] and algorithm lev-
elling [9, 21, 22] are employed to address the imbalanced datasets problem. Over- or 
down-sampling methods used at the data level attempt to balance the majority and 
minority class proportions by data resampling to address the imbalanced problem. How-
ever, this approach can easily lead to redundant or missing information and thus affect 
the classification performance [20, 21, 23]. By contrast, the cost-sensitive approach using 
algorithm leveling has a distinct advantage because it makes full use of the original data 
[9, 21, 22]. Meanwhile, deep convolutional neural network (CNN) models have demon-
strated extraordinary performance in medical image recognition tasks [24–29]. In this 
study, we combine a representative deep learning CNN (deep residual network [30]) and 
a cost-sensitive data-balancing method to present an effective cost-sensitive residual 
CNN (CS-ResCNN) for the ophthalmic imbalanced dataset problem. By using a grid-
search analysis procedure, we demonstrate the robustness and effectiveness of the CS-
ResCNN. Finally, we develop and deploy a web-based computer-aided diagnosis (CAD) 
software based on our proposed method for patients and ophthalmologists in clinical 
application.

Methods
Dataset

Retro-illumination images were obtained from the Childhood Cataract Program of the 
Chinese Ministry of Health (CCPMOH) [31] of the Zhongshan Ophthalmic Center 
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at Sun Yat-sen University, one of the largest eye hospitals in China [32]. The dataset 
included 2705 images, of which 735 positive samples represented patients suffering from 
serious PCO that required ND. YAG-laser surgery, and 1970 negative samples depicted 
manageable PCO patients. Each image was examined, discussed and labeled by three 
experienced ophthalmologists.

Evaluation metrics

Quantitative indicators were employed to assess the performance of our proposed CS-
ResCNN compared with four conventional features, two classifiers and three data-level 
methods. The four conventional evaluation indicators (accuracy, sensitivity, specificity 
and precision) were calculated as follows.

where TP, FP, TN and FN represent the numbers of true positives, false positives, true 
negatives and false negatives, respectively.

We further applied the F1-measure (Eq. 5), the G-mean (Eq. 6), the receiver operating 
characteristic (ROC) curve, the precision–recall (PR) curve, and the area under ROC 
curve (AUC) to evaluate our classifier comprehensively under the imbalanced dataset 
scenario [9, 20–22]. Because the F1-measure and G-mean [33, 34] simultaneously con-
siders the accuracy for both the positive and negative classes, their values will be very 
low when the classifier underemphasizes the minority class and overemphasizes the 
majority class.

The ROC curve depicts the true positive rate (sensitivity) and false positive rate 
(1-specificity); the PR curve depicts the precision and recall. The larger AUC is, the 
better the classification performance is. We adopted fivefold cross-validation (CV) 
[35] to obtain the mean values and standard deviations of these evaluation indicators 
to fairly compare their performance. In detail, the dataset is divided into five approxi-
mately equal-sized sub-datasets, and the positive samples are divided equally in each 
sub-dataset.

Overall diagnosis framework for imbalanced images

As shown in Fig. 1, the overall diagnosis framework primarily consists of three modules: 
automatic localization for lens ROI, cost-factor optimization for the CS-ResCNN model, 
and CS-ResCNN development and evaluation.

(1)Accuracy = (TP + TN )
/

(TP + FN + TN + FP)

(2)Sensitivity (Recall) = TP
/

(TP + FN )

(3)Specificity = TN
/

(TN + FP)

(4)Precision = TP
/

(TP + FP)

(5)F1−measure = (2 ∗ Recall ∗ Precision)/(Recall + Precision)

(6)G−mean =
√

(TP/(TP + FN )) ∗ (TN/(TN + FP))
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PCO occurs in the lens area, accompanied by strong noise from nearby regions such 
as the iris and sclera. The boundary of the crystalline lens is an approximately circle in 
the original retro-illumination images. This characteristic provides a basis for crystal-
line lens detection. Canny detection and Hough transformation are very suitable for this 
kind circle detection. We employed two consecutive procedures, Canny detection and 
Hough transformation [36, 37], to automatically localize the lens region in the original 
retro-illumination lens images (the red section in Fig. 1a). Then, we created a retro-illu-
mination lens images dataset and resized all cropped regions to 128 × 128, which is suf-
ficiently large to retain the whole pupil but small enough to exclude noisy areas around 
the pupil area. Resizing the images to the uniform size does not affect the final classifi-
cation results. Because the ophthalmologists measured the severity of the eye diseases 
according to the relative opacity location, area and density of lesions in the lens, which 
do not change in the scaled images.

After obtaining the lens ROI, we randomly selected four-fifths of the cropped images 
to form a training dataset; the remaining fifth functioned as the testing dataset. By 
adjusting the cost factor, we trained multiple classifiers to find a suitable cost factor (the 
green section in Fig. 1b). Finally, the datasets were randomly divided into five parts of 

Fig. 1  The overall diagnosis framework for imbalanced ophthalmic images. a The automatic localization 
module for lens ROI. b The cost-factor optimization module for the CS-ResCNN method. c The CS-ResCNN 
development and evaluation module. ROI, region of interest; CS-ResCNN, cost-sensitive residual convolu-
tional neural network



Page 5 of 20Jiang et al. BioMed Eng OnLine  (2017) 16:132 

approximately equal size, and adopted fivefold cross-validation (CV) to evaluate the per-
formance of the CS-ResCNN model (the blue section in Fig. 1c).

CS‑ResCNN model

Recently, researchers have begun to exploit deeper CNN models to achieve performance 
improvements in the challenging ImageNet competition [30, 38, 39], which has greatly 
benefited many nontrivial image recognition applications [24–26, 28, 40]. Inspired 
by these advanced technologies, we employed an ultra-deep residual CNN network 
(ResCNN) with 50 layers combined with a cost-sensitive method. As shown in Fig. 2a, 
the overall architecture of the CS-ResCNN consists of convolutional layers, max pooling 
operations, residual blocks, batch normalization (BN) blocks [38], softmax cost-sensitive 
adjustment layers, non-saturating rectified linear units (ReLUs) [41], and data augmen-
tation technology. All of the previous layers are used to extract multidimensional and 
high-level features from the raw input image, except for the last softmax cost-sensitive 
adjustment layer which is applied for classification and cost-sensitive adjustment. These 
essential technologies used in the CS-ResCNN method are briefly introduced in the fol-
lowing sections.

Residual blocks

As shown in the blue section of Fig. 2a, the residual blocks are employed to avoid the 
degradation problem in which the accuracy on the training dataset tends to saturate 
and then to degrade rapidly as the network increases in depth [30, 42]. Each residual 
block was unfolded into three “bottleneck” building blocks in series where the inputs 
and the outputs are directly connected. For example, “3x, 64–256” represents three iden-
tical residual blocks where the sizes of the input and output feature maps are 64 and 256 
respectively (Fig. 2b). There are 16 residual blocks in the whole network, each of which 

Fig. 2  The architecture of the CS-ResCNN method. a The overall layers and connections of the CS-ResCNN 
model consisting of convolution layers, a max-pooling operation and 16 residual blocks, indicated by the 
red, green and blue rectangles respectively, followed by softmax and cost-sensitive adjustment layers. b One 
unfolded residual block is presented. c The BN and scale operations are presented. CS-ResCNN, cost-sensitive 
residual convolutional neural network; BN, batch normalization; Conv, convolution operation; ReLU, rectified 
linear unit
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consists of three convolution operations and nonlinear transformations. In other words, 
the full set of residual blocks is made up of 48 layers. Using the residual technology, the 
ultra-deep network can be employed to further enhance recognition rates and accelerate 
convergence.

Batch normalization and scaling operation

BN blocks [38] are another key technology that addresses the problems of vanishing and 
exploding gradients which seriously hinder CNN convergence. As shown in Fig. 2c, each 
complete BN block primarily contains a BN and a scaling operation situated between a 
convolutional layer and a ReLU in Fig. 2b. As shown in Fig. 2b, each residual block con-
sists of three BN and scaling operations. The BN and scaling operations are defined in 
Eqs. 7–10, respectively, where m, xi, x̂i, yi, μm, σ 2

m, γ, and β represent the mini-batch size, 
the i-th value of input x, the output of the BN, the output scale, the mean value, the vari-
ance, and the trainable parameters of the scaling operation, respectively.

BN and scaling constitute a regularization technology that helps to guarantee that the 
feature distributions of the training and testing datasets are similar. These can be imple-
mented well after convolution and are a good replacement for the dropout operation. 
Therefore, this technique makes it possible to train the ultra-deep CS-ResCNN, reduce 
training time, and improve recognition accuracy.

Transfer learning

It is well known that the number of samples directly affects the accuracy, depth, and 
the number of parameters of the CS-ResCNN model. The model is more likely to suf-
fer from an overfitting problem when few samples are involved in training. Because 
the number of available clinical ophthalmic images is far smaller than the number of 
available natural images, it is not possible to train the deep CS-ResCNN directly from 
scratch. Consequently, we can bootstrap the learning process for our ophthalmic images 
by adopting transfer learning [43, 44] from an existing ResCNN model trained on the 
large-scale ImageNet datasets [45]. This popular approach can not only make full use of 
the generic image descriptors from the large sample dataset of natural images but also 
identify the unique characteristics of ophthalmic images. Moreover, two methods for 
extending samples, image transformation and horizontal reflection [46], are applied to 

(7)µm =
1

m

m
∑

i=1

xi

(8)σ 2
m =

1

m

m
∑

i=1

(xi − µm)
2

(9)x̂i =
xi − µm
√

σ 2
m + ε

(10)yi = γ x̂i + β .
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augment the retro-illumination lens images. Using this scheme, we can train the ultra-
deep CS-ResCNN and accelerate convergence on our ophthalmic images.

Cost‑sensitive method and optimization process

The cost factors are included in the loss function of softmax to develop the CS-ResCNN 
method. Because PCO patients who require surgery are the minority (but more impor-
tant) class in this study, we discriminatively consider the cost of misclassifying different 
classes and assign a large cost factor to misclassification of the minority class. Therefore, 
this technology can simultaneously address the imbalanced dataset problem and mini-
mize the false-negative rates.

Specifically, we randomly selected m imbalanced samples to form a set of data sets 
{(x(1), y(1)), . . . , (x(m), y(m))} in one training session, where x(i) ∈ Rn and y(i) ∈

{

1, . . . , k
}

 
indicate the input features and the corresponding labels, respectively. The cross-entropy 
cost function of our proposed CS-ResCNN method is formalized in Eq. 11:

where m, w, n and k stand for the size of mini-batch, the trainable param-
eters, the number of inputs neurons of the softmax classification func-
tion and the number of classes, respectively. The I{·} represents an indicator 
function (I{a true statement} = 1 and I{a false statement} = 0), and C{y(i) = min_class} 
is the cost factor function (C{y(i) is the minority class label} = Cmin and 
C{y(i) is not the minority class label } = 1 ), where Cmin is cost of misclassifying minority 
and severe PCO patients. By seeking the optimal Cmin, we can train the final learning 
model to have a higher discriminative capability for patients with severe PCO. Further-
more, a weight decay term �2

∑k
i=1

∑n
j=1 w

2
ij is applied to penalize larger values of the 

trainable weights. Eventually, the mini-batch gradient descent method (mini-batch-
GD) [47] is adopted to minimize the cross-entropy function J(w). To obtain the optimal 
parameters of the CS-ResCNN in this process, we compute the derivative of the cross-
entropy function J(w) as shown in Eq. 12:

Moreover, the parameters of all the previous layers can be achieved using the chain 
rule of the back-propagation (BP) method. By optimizing the cross-entropy function 
J(w), we can achieve the most appropriate parameter weight w∗ as shown in Eq. 13.

(11)

J (w) = −
1

m





m
�

i=1

k
�

j=1

I
�

y(i) = j
�

∗ C
�

y(i) = min_class
�

∗ log
e
wT
j x

(i)

�k
s=1 e

wT
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(i)


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+
�
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�

i=1

n
�

j=1

w2
ij

(12)
∇wj J (w) = −

1

m

m
∑

i=1

[

C
{

y(i) = min-class
}

∗ x(i) ∗ (I{y(i) = j} − p(y(i) = j|x(i);w))
]

+ �wj

(13)w∗ = arg min
w

J (w)
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Experimental environment

In this study, the CS-ResCNN was implemented using the Caffe toolbox [48] and trained 
in parallel on four NVIDIA TITAX X GPUs. The size of mini-batch was set to 64 on each 
GPU to accelerate parameter convergence. The initial learning rate and the maximum 
number of iterations were set to 0.001 and 2000, respectively. Then, the learning rate was 
successively reduced to one-tenth of the original value in steps of 500 iterations. The set-
tings of these super parameters are appropriate for our imbalanced datasets to guarantee 
better performance and prevent divergence.

Results and discussion
Automatic localization for preprocessing

Twice-applied Canny detections and Hough transformations [36, 37] were employed 
for image preprocessing to eliminate noise. Four typical positive and negative cases are 
presented to illustrate the effectiveness of automatic lens localization (Fig. 3). By twice 
transforming the original retro-illumination images (Fig.  3a), we achieved the inter-
mediate results shown in Fig. 3b, c, where the bold red circles intuitively demonstrate 
the effect of localization. The localization result in Fig. 3c indicates that we can identify 
the lens area precisely and filter out most of the surrounding noise. Finally, we cut the 

Fig. 3  Examples of the automatic lens localization process. a Four representative positive and negative sam-
ples from the original images. b, c The intermediate localization results of twice-applied Canny detections 
and Hough transformations. d Final localization results
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images along the red borderlines to form the dataset used with the CS-ResCNN model 
(Fig. 3d).

Furthermore, the prevalent intersection-over-union (IoU) [49] indicator of the image 
segmentation algorithms was employed to evaluate the accuracy of the Canny detection 
and Hough transformation method. The IoU indicator is formalized as Eq.  14, where 
Bp and Bgt represent the prediction and ground truth bounding box of crystalline lens, 
respectively. Bp ∩ Bgt denotes the intersection of the prediction and ground truth bound-
ing boxes and Bp ∪ Bgt is their union. Specifically, 100 samples were randomly selected 
from the whole dataset of ocular images and the boundaries of the crystalline lens were 
manually labelled by a senior ophthalmologist. We calculated the mean value of IoUs 
over these 100 samples and achieved a satisfactory segmentation result (82.93%).

Effectiveness analysis of deep features

Hierarchical visualization technology [48, 50, 51] and t-distributed stochastic neighbor 
embedding (t-SNE) [52] were employed to intuitively analyze the characteristics of the 
extracted hierarchical features. It is well known that convolutional kernels can effectively 
capture and generate biological features such as edges or colors [50, 51]. Using the hier-
archical visualization method, we visualized the first-layer convolution kernels (Fig. 4b), 
in which the 11 green and 33 red squares served as edge and color extractors, respec-
tively. Correspondingly, we obtained representative feature maps (Fig. 4c) from the origi-
nal image (Fig. 4a). The visualization results support the idea that most of the extracted 
low-level feature maps are meaningful and can effectively represent the original image.

We further applied the t-SNE method to investigate whether the extracted high-level 
features were discriminative. High-level features were mapped into two-dimensional 
space to determine their discrimination ability. Visualized maps of the high-level fea-
tures extracted using four conventional methods (LBP: local binary pattern, WT: 
wavelet transformation, SIFT: scale-invariant feature transform, and COTE: color and 
texture features) and two deep learning methods (CS-ResCNN and native ResCNN) are 

(14)IoU =
area(Bp ∩ Bgt)

area(Bp ∪ Bgt)

Fig. 4  Visualization of first-layer convolution kernels and feature maps for the CS-ResCNN method. The green 
and red squares denote the captured edges and color characteristics, respectively. a Original retro-illumi-
nation image. b The 64 convolution kernels with dimensions of 7 × 7 projected into pixel space. c The 64 
feature maps with dimensions of 56 × 56
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displayed separately in Fig. 5. The red and green points denote the positive and nega-
tive samples, respectively. The discrimination ability of the conventional features is quite 
weak and obviously inferior to that of the two deep learning features. Moreover, using 
the cost-sensitive method, the separability of the CS-ResCNN features was markedly 
improved compared with ResCNN. Specifically, the proportion of very scattered posi-
tive samples (the blue rectangles in Fig. 5) that are easily misdiagnosed was significantly 
reduced. This result suggests that the high-level features of the CS-ResCNN method can 
be used to more easily identify the positive samples.

In addition, we explored the effectiveness of another cost-sensitive method, threshold-
moving method [22, 53], which adjusts the output threshold toward low cost classes to 
ensure that high cost classes are harder to be misclassified. This method may also be 
effective for imbalanced dataset when class weights were set properly. However, the 
high-level features of the threshold-moving method were inappropriate for imbalanced 
dataset because the class weights were only involved in the testing process rather than 
the training process (e.g., the ResCNN method).

Exploring the range of the cost factor

We used a grid-search procedure to determine the adaptive range of the cost factor 
(details in “Methods”). We set the cost of misclassified negative and positive samples to 
one and Cmin, respectively; a correct classification is set to zero (Table 1). Specifically, 

Fig. 5  CS-ResCNN feature maps and representative conventional features using t-SNE. a–f Two-dimen-
sional maps of LBP, SIFT, WT, COTE, ResCNN and CS-ResCNN methods, respectively. The red and green dots 
represent positive and negative samples. t-SNE, t-distributed stochastic neighbor embedding; CS-ResCNN, 
cost-sensitive residual convolutional neural network; WT, wavelet transformation; SIFT, scale-invariant feature 
transform; LBP, local binary pattern; COTE, color and texture features
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we set the cost factor Cmin within the range [1–50] with a step size of one. Accuracy and 
FNR (1-sensitivity) curves were plotted for evaluating the trained classifiers (Fig. 6). Two 
dashed lines are shown at 0.14 and 0.9 of the vertical axis for comparison purposes. Our 
model became unstable when Cmin is below 7 or above 32, which suggests that exceed-
ing those limits might not be appropriate in this situation. The FNR fluctuation is subtle 
and the classifier reaches an accuracy greater than 90% when the cost factor is within 
a relatively wide interval [7–32]. This satisfactory stability is mainly contributed by the 
applications of transfer learning, cost-sensitive, batch normalization and residual con-
nection techniques. It also indicates that the CS-ResCNN method is not sensitive to the 
cost factor. Given this identified scope, we set the cost factor to twelve in subsequent 
experiments.

Similarly, the grid-search procedure was employed to analyze the effective weights’ 
interval in the threshold-moving method. However, the appropriate weight of misclas-
sifying positive is within a relatively narrow interval [4–6]. Specifically, when the weights 
of the misclassifying positive and negative samples were only set to four and one, respec-
tively, the performance of the threshold-moving method (ACC: 91.18%, SPC: 92.50%, 
SEN: 87.62%, F1_M: 84.06%, and G_M: 89.99%) was almost equal to that of CS-ResCNN 

Table 1  The cost factors and data distribution in imbalanced retro-illumination images

The numbers of positive and negative samples in the dataset were 735 and 1970, respectively. The cost factors for 
misclassifying positive and negative samples were Cmin and one respectively while the cost factor for correct classification 
was zero.

Actual class Predicted class

Majority/negative Minority/positive

Majority/negative (1970) 0 1

Minority/positive (735) Cmin 0

Fig. 6  The accuracy and FNR curves with the value of the cost factor Cmin. The blue and red curves represent 
the trends of FNR and accuracy with the cost factor Cmin, respectively where the two dashed lines at 0.9 and 
0.14 are provided for reference. FNR, false negative rate
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method. Otherwise, the performance of threshold-moving method will be degraded 
severely.

Parameters setting and classifiers selection for conventional methods

To evaluate the performance and feasibility of the CS-ResCNN model in detail, we 
employed four representative feature extraction methods [27, 29] (LBP, WT, SIFT, and 
COTE), two excellent classifiers [support vector machine (SVM) and random forest 
(RF)] and three data-level methods [18, 19, 22] [the synthetic minority oversampling 
technique (SMOTE), borderline-SMOTE (BSMOTE) and under-sampling (UNDER)] for 
comparison. To achieve the optimal performance of the conventional methods, we firstly 
presented detailed parameters for classifiers, feature extraction methods and data-level 
methods as shown in Table 2. Specifically, we chose the parameters of the feature extrac-
tion methods and classifiers based on our previous research [27–29]. For the data-level 
methods (SMOTE, borderline-SMOTE and UNDER), we mainly referred to the previ-
ous studies [18, 19, 22] and their open source codes. Moreover, we conducted extensive 
parameter adjustment experiments and performance comparison to ensure the usage of 
optimal parameters for the ophthalmic images. Based on the experimental results, the 
performance of the RF classifier is superior to that of the SVM classifier, which is con-
sistent with the previous study [54]. Therefore, the RF was selected for the final com-
parative experiments and the results of the SVM were also presented in Additional file 1: 
Table S1.

Performance comparisons with conventional methods

After applying K-fold cross-validation (K =  5), we obtained a total of 18 comparative 
experiment results. We calculated the accuracy (ACC), sensitivity (SEN) and specific-
ity (SPC) indicators for the results, which included 16 sets from conventional methods 
(Fig.  7a–d) and two from deep learning methods (Fig.  7e). The means and standard 
deviations of other detailed quantitative performance indicators were also calculated 
(Table 3).

First, the conventional feature methods without data-level technology have the same 
fatal flaws: low accuracy and sensitivity (the red bar in Fig. 7a–d). In particular, the sen-
sitivity of the WT method is less than 12%—and the best SIFT performance is no more 
than 50.48%. These experimental results confirm that the conventional methods do not 

Table 2  The relevant parameters of conventional methods

Classifiers Features extraction methods 
[27, 29]

Data-level methods [18, 19, 22]

Random forest (RF): number of 
trees = 300

Support vector machine (SVM): 
linear kernel function

Color and texture features (COTX): 
gray tone spatial dependence 
matrices: d = 1; gray gradient co-
occurrence matrices: Lg = 10

SMOTE and BorSMOTE: nearest 
neighbors k = 5, the ratio of posi-
tive and negative samples r = 1

Under-sampling: the ratio of positive 
and negative samples r = 1Local binary pattern (LBP): P = 9

Wavelet transformation (WAVE): two 
level wavelet transformation, Haar 
wavelet

Scale-invariant feature transform 
(SIFT)
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consider the class imbalance problem; consequently, their recognition rates are biased 
toward the majority class and tend to overlook the minority class.

After applying data-level processing, the SEN results for almost all conventional fea-
tures combined with SMOTE, borderline-SMOTE or under-sampling methods were 
significantly enhanced compared with the original features (Fig.  7a–d). However, this 
improvement comes at the expense of a reduction in SPC. For example, as the SEN of 
WT-SMOTE increases from 11.70 to 48.84%, its SPC diminishes from 99.29 to 89.34% 
(the blue and red bars in Fig. 7a); correspondingly, the trends of the SIFT-UNDER and 
COTE-SMOTE methods are similar (the green and blue bars in Fig.  7c, d). From the 
overall comparisons, the under-sampling method is superior to the over-sampling meth-
ods (SMOTE and borderline-SMOTE); the performance of the SMOTE and the bor-
derline-SMOTE is almost equivalent. Furthermore, these data-level methods provide 

Fig. 7  Performance comparison of the CS-ResCNN method and various conventional methods. Two sets of 
deep learning methods and 16 sets of conventional methods were evaluated using accuracy, sensitivity and 
specificity indicators. a–d The four conventional methods WT, LBP, SIFT and COTE, respectively, compared 
with three data-level methods; e the CS-ResCNN method and five representative conventional methods 
(ResCNN, SIFT-UNDER, COTE-UNDER, WT-UNDER and LBP-UNDER). CS-ResCNN, cost-sensitive residual convo-
lutional neural network; ResCNN, native residual convolutional neural network; WT, wavelet transformation; 
LBP, local binary pattern; SIFT, scale-invariant feature transform; COTE, color and texture features; SMOTE, 
synthetic minority over-sampling technique; BSMOTE, borderline-SMOTE; UNDER, under-sampling
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inferior results in terms of other quantitative measures such as the F1-measure, G-mean 
and AUC (Table 3), and they cannot be implemented effectively in clinical applications.

Finally, we presented the results of the CS-ResCNN method (Fig. 7e) compared with 
four of the relatively superior data-level methods (SIFT-UNDER, COTE-UNDER, 
WT-UNDER and LBP-UNDER) selected from Fig.  7a–d. The CS-ResCNN method 
is far superior to the conventional features and the data-level methods with respect to 
all evaluation indicators (the green bar in Fig. 7e). Furthermore, compared with native 
ResCNN, the CS-ResCNN method significantly enhances the overall performance of the 
model, especially regarding the SEN, F1-measure and G-mean, which improved by more 
than 13.6, 4.5 and 6%, respectively (Fig. 7e and Table 3). Meanwhile, the CS-ResCNN 
maintains the SPC within an acceptable range (a 2.6% reduction). Overall, our proposed 
method yields superior results in terms of ACC (92.24%), SPC (93.19%), SEN (89.66%), 
the F1-measure (86.00%), the G-mean (91.39%), and the AUC (97.11%) (Table  3). The 
superior performance of the CS-ResCNN method indicates that it can provide an effec-
tive solution for the imbalanced ophthalmic dataset problem and successfully classify 
PCO after pediatric cataract surgery.

Furthermore, we plotted the ROC and PR curves to investigate the performance of 
the CS-ResCNN method in more detail compared with other methods (Fig. 8a, b). The 
upper-left corner of the ROC curve and the upper-right corner of the PR curve indicate 

Table 3  Quantitative evaluation of  the CS-ResCNN method and  various conventional 
methods

The random forest classifier is employed for the conventional methods. ResCNN, residual convolutional neural network; 
CS-ResCNN, cost-sensitive residual convolutional neural network; WT, wavelet transformation; LBP, local binary pattern; SIFT, 
scale-invariant feature transform; COTE, color and texture features; SMOTE, synthetic minority over-sampling technique; 
BSMOTE, borderline-SMOTE; UNDER, under-sampling; ACC, accuracy; SPC, specificity; SEN, sensitivity; F1_M, F1-measure; 
G_M, G-mean; AUC, area under the receiver operating characteristic curve

Italics represents the best value in all methods
a  Mean (standard deviation)

Methods ACC (%) SPC (%) SEN (%) F1_M (%) G_M (%) AUC (%)

WT 75.49 (0.70)a 99.29 (0.90) 11.70 (1.55) 20.57 (2.42) 34.02 (2.26) 82.50 (1.93)

WT-SMOTE 78.34 (1.35) 89.34 (0.97) 48.84 (2.52) 55.06 (2.81) 66.05 (2.04) 83.18 (2.05)

WT-BSMOTE 78.85 (1.48) 91.73 (0.79) 44.35 (3.48) 53.24 (3.72) 63.75 (2.79) 83.89 (2.37)

WT-UNDER 72.98 (2.07) 70.00 (2.63) 80.95 (3.37) 61.96 (2.36) 75.25 (2.02) 83.40 (2.38)

LBP 81.70 (0.68) 94.67 (0.78) 46.94 (3.15) 58.18 (2.35) 66.63 (2.06) 86.04 (1.66)

LBP-SMOTE 82.40 (1.37) 91.52 (1.37) 57.96 (2.38) 64.16 (2.58) 72.82 (1.76) 86.78 (1.81)

LBP-BSMOTE 82.18 (1.07) 92.18 (1.13) 55.37 (1.77) 62.81 (2.03) 71.44 (1.36) 86.57 (1.80)

LBP-UNDER 79.22 (2.16) 80.81 (1.82) 74.97 (4.45) 66.22 (3.50) 77.81 (2.80) 86.33 (1.92)

SIFT 83.81 (0.91) 96.24 (1.05) 50.48 (2.12) 62.88 (2.01) 69.69 (1.47) 91.14 (1.44)

SIFT-SMOTE 85.43 (2.20) 92.59 (1.24) 66.26 (4.94) 71.16 (4.56) 78.30 (3.37) 91.34 (1.32)

SIFT-BSMOTE 84.88 (1.21) 92.74 (1.44) 63.81 (2.86) 69.63 (2.32) 76.91 (1.74) 91.31 (1.34)

SIFT-UNDER 81.29 (1.57) 79.54 (1.85) 85.99 (2.07) 71.43 (2.02) 82.69 (1.52) 91.29 (1.11)

COTE 78.15 (1.10) 92.34 (1.26) 40.14 (3.97) 49.89 (3.47) 60.81 (2.91) 82.19 (2.34)

COTE-SMOTE 76.60 (1.07) 80.46 (0.74) 66.26 (3.35) 60.59 (2.26) 72.99 (1.92) 81.41 (1.68)

COTE-BSMOTE 76.75 (1.32) 80.71 (0.65) 66.12 (3.83) 60.68 (2.72) 73.03 (2.28) 80.98 (1.61)

COTE-UNDER 72.09 (1.52) 69.85 (1.65) 78.10 (3.74) 60.32 (2.24) 73.83 (1.93) 80.87 (1.73)

ResCNN 90.22 (0.88) 95.80 (1.23) 76.05 (3.21) 81.41 (1.74) 85.34 (1.59) 96.26 (0.73)

CS-ResCNN 92.24 (1.30) 93.19 (1.73) 89.66 (2.86) 86.00 (2.27) 91.39 (1.49) 97.11 (0.59)
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a superior classifier. From high to low performance, the classifiers are CS-ResCNN, 
ResCNN, SIFT-UNDER, LBP-UNDER, WT-BSMOTE and COTE-UNDER, respec-
tively. These results indicate that the CS-ResCNN method considerably outperforms the 
other conventional methods and native ResCNN. Although the native ResCNN curves 
are close to the CS-ResCNN curves, the CS-ResCNN curves are smoother, and our pro-
posed method performs better. These results also indicate the superiority of deep learn-
ing methods in current image processing tasks.

Exploring the effectiveness of the combinations of cost‑sensitive and data‑level methods

Since the data-level methods and cost-sensitive are two powerful techniques for address-
ing the imbalanced dataset from different perspectives. It is expected that the combina-
tions of these two approaches could further enhance the recognition ability of the model. 
Generally, the data-level methods are used to process the features of the images rather 
than the images. Therefore, we extracted the high-level features from the ResCNN and 
CS-ResCNN, and then employed the over-sampling and under-sampling technologies to 
balance the proportions of the positive and negative samples. Also, the RF classifier was 
employed for these balanced features. Finally, a total of eight methods were performed 
and compared in detail (Table 4). From the comparative experiments, we obtained three 
meaningful conclusions. First, the under-sampling method is superior to the over-sam-
pling methods (SMOTE and borderline-SMOTE). And the performance of the SMOTE 
and the borderline-SMOTE is almost equivalent. These results are consistent with the 
conclusion in the conventional methods. Second, the combinations of the cost-sensitive 
and data-level methods are better than those using only data-level methods. Third, the 
combination of the cost-sensitive and under-sampling method is almost equal to the 
CS-ResCNN method. However, the efficiency of the CS-ResCNN is optimal because no 
extra operation is required. The above comparative experiments and analyses indicate 

Fig. 8  The ROC and PR curves for the CS-ResCNN method and representative conventional methods. a 
The ROC curves and AUC values for the CS-ResCNN method and five compared methods: ResCNN, SIFT-
UNDER, COTE-UNDER, WT-UNDER and LBP-UNDER. b The PR curves for the CS-ResCNN method and the 
five compared methods. ROC, receiver operating characteristic curve; AUC, area under the ROC curve; PR, 
precision–recall; CS-ResCNN, cost-sensitive residual convolutional neural network; ResCNN, native residual 
convolutional neural network; UNDER, under-sampling; WT, wavelet transformation; LBP, local binary pattern; 
SIFT, scale-invariant feature transform; COTE, color and texture features
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that these combinations of cost-sensitive and data-level methods do not further improve 
the performance of the model.

Convergence analysis of the CS‑ResCNN model

We also analyzed the convergence of the CS-ResCNN model in detail under lim-
ited training time. We performed a total of 2000 training sessions and calculated one 
accuracy and loss function value on the testing dataset every 50 iterations. As shown 
in Fig. 9, the loss function value and accuracy rate of the testing dataset changed dra-
matically at first and then stabilized after 500 iterations, showing that our model reaches 
good convergence on the imbalanced dataset problem. This satisfactory performance is 

Table 4  Quantitative evaluation of  the combinations of  cost-sensitive and  data-level 
methods using CNN features

ResCNN, residual convolutional neural network; CS-ResCNN, cost-sensitive residual convolutional neural network; SMOTE, 
synthetic minority over-sampling technique; BSMOTE, borderline-SMOTE; UNDER, under-sampling; CS-ResCNN + SMOTE, 
the combination of CS-ResCNN and SMOTE methods; CS-ResCNN + BSMOTE, the combination of CS-ResCNN and BSMOTE 
methods; CS-ResCNN + BSMOTE, the combination of CS-ResCNN and UNDER methods

Italic represent the best value in all methods
a  Mean (standard deviation)

Methods ACC (%) SPC (%) SEN (%) F1_M (%) G_M (%) AUC (%)

ResCNN 90.22 (0.88)a 95.80 (1.23) 76.05 (3.21) 81.41 (1.74) 85.34 (1.59) 96.26 (0.73)

ResCNN + SMOTE 90.98 (1.07) 94.72 (1.34) 80.95 (3.50) 82.97 (2.05) 87.54 (1.75) 96.24 (0.84)

ResCNN + BSMOTE 90.76 (1.40) 95.48 (1.54) 78.10 (2.94) 82.12 (2.55) 86.34 (1.79) 96.27 (0.87)

ResCNN + UNDER 90.02 (1.68) 90.91 (1.71) 87.62 (3.71) 82.67 (2.82) 89.23 (2.14) 96.27 (0.80)

CS-ResCNN 92.24 (1.30) 93.19 (1.73) 89.66 (2.86) 86.00 (2.27) 91.39 (1.49) 97.11 (0.59)

CS-ResCNN + SMOTE 92.35 (1.01) 95.08 (0.93) 85.03 (4.91) 85.74 (2.21) 89.88 (2.31) 97.36 (0.70)

CS-ResCNN + BSMOTE 92.01 (0.86) 95.48 (1.04) 82.72 (3.78) 84.89 (1.83) 88.85 (1.80) 97.22 (0.65)

CS-ResCNN + UNDER 91.83 (0.85) 92.79 (1.74) 89.25 (3.80) 85.58 (1.42) 90.97 (1.41) 97.35 (0.61)

Fig. 9  The accuracy and loss function value curves with the iterations. The blue and red curves represent the 
trends of the loss function value and accuracy on testing dataset, respectively
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mainly contributed by the applications of these techniques, including the transfer learn-
ing, data augmentation, the batch normalization and non-saturating ReLU function, 
which can effectively avoid over-fitting problem and ensure the generalization capability 
of the model.

Web server for clinical applications

We developed a web-based CAD system for patients and ophthalmologists at Zhong-
shan Ophthalmic Center at Sun Yat-sen University to promote future clinical application 
use of our model. The website provides detailed specifications and imposes no access 
restrictions. Users only need to click one button to upload the test retro-illumination 
images; then, our software can simultaneously localize the lens region of interest (ROI) 
and perform ophthalmic disease diagnosis. As implemented, the software can predict 
multiple images at a time. We hope that our work will help to provide high-quality 
medical care with personalized treatment recommendations for patients in less-devel-
oped areas where advanced medical devices and well-trained doctors are scarce. After 
a period of clinical application, we are able to upgrade the model to further enhance its 
accuracy and reliability with large amounts of accumulated datasets. This process takes 
only half an hour using four GPUs.

Code availability

The source code of the CS-ResCNN for retro-illumination images is available from 
Github: https://github.com/Ophthalmology-CAD/retro-illumination-images.

CAD software availability

The website of the computer-aided diagnosis software is available at http://www.cc-
cruiser.com:5008/retro_illumination_images_prediction.

Conclusions and future work
In this paper, we proposed a feasible and automatic approach based on our CS-ResCNN 
model to effectively address the problem of misclassifications resulting from imbalanced 
ophthalmic images datasets. Our method demonstrates high performance and robust-
ness within an adaptive cost factor range. Qualitative analyses of the visualized results 
illustrate that the features extracted from the CS-ResCNN are meaningful and discrimi-
native, and quantitative assessments indicate that the CS-ResCNN model not only main-
tains an acceptable SPC range but also significantly boosts the ACC, SEN, F1-measure 
and G-mean indicators. The results of abundant experimental comparisons revealed that 
our proposed CS-ResCNN method outperforms both other conventional features and 
data-level methods (SMOTE, borderline-SMOTE and under-sampling) as well as the 
native CNN approach.

In the future, we will explore and compare additional potential algorithms such as 
U-Net or Faster R-CNN for the segmentation and grading of the ophthalmic images. 
Then, we will investigate how to integrate multi-source images and multiple deep learn-
ing models to further enhance the performance of the CS-ResCNN method. Moreover, 
our cost-sensitive pattern can be applied and serve as an important reference for other 

https://github.com/Ophthalmology-CAD/retro-illumination-images
http://www.cc-cruiser.com:5008/retro_illumination_images_prediction
http://www.cc-cruiser.com:5008/retro_illumination_images_prediction
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imbalanced medical classification studies while smoothing the path for adopting artifi-
cial intelligence techniques in clinical applications.
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