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Abstract 

Background:  Further reductions in malaria incidence as more countries approach malaria elimination require the 
identification and treatment of asymptomatic individuals who carry mosquito-infective Plasmodium gametocytes 
that are responsible for furthering malaria transmission. Assessing the relationship between total parasitaemia and 
gametocytaemia in field surveys can provide insight as to whether detection of low-density, asymptomatic Plasmo-
dium falciparum infections with sensitive molecular methods can adequately detect the majority of infected individu-
als who are potentially capable of onward transmission.

Methods:  In a cross-sectional survey of 1354 healthy children and adults in three communities in western Kenya 
across a gradient of malaria transmission (Ajigo, Webuye, and Kapsisywa–Kipsamoite), asymptomatic P. falciparum 
infections were screened by rapid diagnostic tests, blood smear, and quantitative PCR of dried blood spots targeting 
the varATS gene in genomic DNA. A multiplex quantitative reverse-transcriptase PCR assay targeting female and male 
gametocyte genes (pfs25, pfs230p), a gene with a transcriptional pattern restricted to asexual blood stages (piesp2), 
and human GAPDH was also developed to determine total parasite and gametocyte densities among parasitaemic 
individuals.

Results:  The prevalence of varATS-detectable asymptomatic infections was greatest in Ajigo (42%), followed by 
Webuye (10%). Only two infections were detected in Kapsisywa. No infections were detected in Kipsamoite. Across 
all communities, children aged 11–15 years account for the greatest proportion total and sub-microscopic asymp-
tomatic infections. In younger age groups, the majority of infections were detectable by microscopy, while 68% of 
asymptomatically infected adults (> 21 years old) had sub-microscopic parasitaemia. Piesp2-derived parasite densities 
correlated poorly with microscopy-determined parasite densities in patent infections relative to varATS-based detec-
tion. In general, both male and female gametocytaemia increased with increasing varATS-derived total parasitaemia. 
A substantial proportion (41.7%) of individuals with potential for onward transmission had qPCR-estimated parasite 
densities below the limit of microscopic detection, but above the detectable limit of varATS qPCR.
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Background
Malaria remains a global public health burden with 
229 million cases worldwide in 2019 [1]. Transmission of 
malaria requires that sexual-stage Plasmodium parasites, 
gametocytes, present in the blood of infected humans be 
ingested by female Anopheles mosquitoes during feeding. 
Strategies that combine effective control of the mosquito 
vector through use of insecticide-treated nets (ITNs) and 
indoor residual spraying alongside rapid diagnosis and 
effective treatment of malaria with artemisinin-based 
combination therapy (ACT) have reduced the prevalence 
of Plasmodium falciparum infection and the incidence 
of clinical malaria in endemic areas of Africa since 2000, 
albeit at a slower rate in recent years [1]. Further reduc-
tions in malaria incidence as more countries approach 
malaria elimination would require the identification and 
treatment of asymptomatic individuals, who carry mos-
quito-infective gametocytes that are responsible for fur-
thering malaria transmission [2].

Detection of asymptomatically infected individuals has 
been a major challenge given that individuals residing in 
areas of high-transmission intensity often carry parasi-
taemia at densities below the detection limits of accessi-
ble field diagnostics, which currently includes microscopy 
and rapid  diagnostic tests (RDTs) [3]. Moreover, the 
proportion of low-density infections among all malaria 
infections in a community increases with decreasing 
malaria transmission [2], suggesting that more sensi-
tive diagnostics are required for detecting parasitaemia 
among individuals in low-transmission settings [4]. Sev-
eral studies have examined whether low-density infec-
tions contribute to onward transmission using mosquito 
feeding assays [5–11]. A recent meta-analysis of eight 
such studies estimated that individuals with sub-patent 
parasitaemia were approximately one-third as infectious 
to mosquitoes as individuals with blood-smear positive 
infections [4]. In general, gametocyte density directly cor-
relates with mosquito infectivity and thus transmission, 
with infections with parasite densities below the limit of 
detection of conventional molecular diagnostics being 
unlikely to contribute significantly to transmission [12]. 
Assessing the relationship between total parasitaemia 
and gametocytaemia in field surveys can provide insight 
as to whether detection of low-density, asymptomatic P. 

falciparum infections using sensitive molecular methods 
can identify the majority of infected individuals who are 
potentially capable of onward transmission.

In this study, quantitative molecular assays were used 
to determine the prevalence and density of asympto-
matic P. falciparum infections among children and adults 
in three communities of western Kenya that differed in 
transmission intensities. To better estimate the relation-
ship between asexual parasite densities and gametocyte 
densities, a multiplex quantitative reverse-transcriptase 
polymerase chain reaction (PCR) assay for detecting 
asexual stage-specific, female gametocyte-specific, and 
male gametocyte-specific genes in a single blood sample 
was developed and evaluated. Results were compared to 
microscopy and an established quantitative PCR-based 
diagnostic assay.

Methods
Ethics approval and consent to participate
The study was reviewed and approved by the Kenya Med-
ical Research Institute Scientific and Ethics Review Unit 
and the Indiana University Institutional Review Board. 
Written informed consent was obtained from a parent or 
guardian of participants who were minors and from adult 
participants. Minors aged 13–17  years provided their 
own written informed assent, accompanied by written 
consent of a parent or guardian.

Study sites and study participants
The study was conducted from August to September 2016 
at three sites in western Kenya that differed in malaria 
transmission intensity. This time period was specifically 
chosen as it was one  month after the primary malaria 
transmission peak but before the secondary peak for all 
three sites and thus increased the likelihood of recruiting 
individuals who had not experience symptomatic malaria 
within the last 30  days. Ajigo is located in the lowland 
area of Siaya County, where malaria transmission is 
intense and perennial, but with a seasonal peak from May 
to July [13, 14]. The Webuye township is in Bungoma 
County, which exhibits moderate, perennial transmis-
sion with a primary seasonal peak in May to June and a 
smaller, second peak in October [15–17]. Kapsisywa and 
Kipsamoite are two adjacent highland communities in 

Conclusions:  This assessment of parasitaemia and gametocytaemia in three communities with different transmis-
sion intensities revealed evidence of a substantial sub-patent infectious reservoir among asymptomatic carriers of P. 
falciparum. Experimental studies are needed to definitively determine whether the low-density infections in commu-
nities such as Ajigo and Webuye contribute significantly to malaria transmission.
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Nandi County with low and unstable malaria transmis-
sion. Transmission for these two sites is highly variable, 
with a typical primary peak in May to July and an occa-
sional smaller peak in November to December that varies 
from year to year [18, 19]. Intended recruitment targets 
were 200 participants in each of the moderate-to-high-
transmission sites (the Matulo sublocation of Webuye 
and Ajigo) and 450 participants in each of the low-trans-
mission sites (Kapsisywa and Kipsamoite). Sample sizes 
of 200, 450, and 900 participants provided 95% confi-
dence of detecting within 20% of the true proportion of 
asymptomatic infections if the unknown prevalence was 
estimated to be 43%, 25%, and 14%, respectively. Healthy 
participants aged 1 to 85 years were recruited from a ran-
domized community census of households for each site 
in an age-stratified manner to ensure adequate sample 
sizes for each age group, with a maximum of two par-
ticipants for any household. Recruitment and enrollment 
occurred over a -week period. A brief questionnaire that 
included gender, age, recent travel history within the last 
month, recent use of ITNs, and relevant medical history 
was administered. Exclusion criteria at enrollment were 
axillary temperature ≥ 37.5  °C or history of fever, acute 
symptomatic illness, underlying chronic disease, malaria 
in the last 30  days, use of anti-malarial or immunosup-
pressive medications in the last 30 days, or pregnancy.

Blood collection
Drops of blood were collected by fingerprick for Para-
check Pf RDT (Orchid Biomedical Systems), which 
detects the presence of P. falciparum histidine-rich pro-
tein 2 in blood specimens; whole-blood ribonucleic acid 
(RNA); thick and thin blood smears; and dried blood 
spots (DBS) on filter paper (903 Protein Saver; What-
man). Individuals who tested positive for asymptomatic 
P. falciparum infection by RDT were treated at the point-
of-care using the standard regimen recommended by 
the Ministry of Health in Kenya. For whole-blood RNA, 
200 μl of peripheral fingerprick blood was collected using 
capillary blood collection tubes containing Tris-ethylen-
ediaminetetraacetic acid (EDTA; Microvette CB300 K2E; 
Sarstedt) and transferred immediately in cryotubes pre-
filled with 400 μl Tempus solution (Applied Biosystems). 
Filled sample tubes were agitated vigorously per the man-
ufacturer’s instructions and stored at − 80 °C within 24 h 
of collection until use.

Microscopy
Giemsa-stained blood smears were examined for the 
presence of asexual parasites in 200 fields using the 100× 
oil immersion objective lens by two trained microsco-
pists. Independent verification was performed by a third 
reader for samples that were qualitatively discordant for 

positivity between the first two microscopists. For posi-
tive samples, the number of asexual parasites per 200 leu-
kocytes was multiplied by 40 to convert to parasites per 
μl, assuming an average leukocyte count of 8000 leuko-
cytes per μl of blood. The mean parasite density from the 
two concordant microscopists were used for analysis.

Parasite culture
To produce parasite genomic deoxyribonucleic acid 
(gDNA) for use in standard curves for parasite density 
determination, P. falciparum 3D7 parasites [Malaria 
Research and Reference Reagent Resource Center (MR4), 
BEI Resources] were cultured in  vitro using standard 
techniques [20] with two rounds of synchronization 
by sorbitol treatment to achieve a high parasitaemia. 
Ring and early trophozoite stage P. falciparum parasites 
were tenfold serially diluted in whole blood of an unin-
fected North American donor to obtain a final density 
of 440,000 down to 0.44 parasites/µl and spotted on 903 
Protein Saver cards. To produce parasite RNA for use 
in standard curves for gametocyte density estimates, P. 
falciparum NF54 (MR4) in vitro cultures were enriched 
for gametocytes by decreasing asexual parasitaemia [17]. 
Total gametocytes (without differentiating for sex) were 
counted and tenfold serially diluted in whole blood to 
obtain a final density of 2580 down to 0.00258  gameto-
cytes/μl immediately prior to RNA stabilization with 
Tempus solution at a 1:2 ratio. Asexual parasites (rings, 
trophozoites, and schizonts) were also counted in the 
same culture to allow parasite quantification using asex-
ual-stage specific targets.

DNA and RNA isolation
Total DNA was extracted from three 0.32  cm diameter 
circles punched from each DBS using the QIAamp 96 
Blood Kit (Qiagen, Valencia, CA) per the manufactur-
er’s instructions and eluted in 50  µl EDTA buffer. RNA 
was extracted from whole-blood RNA in Tempus using 
Norgen RNA extraction kit (Norgen Biotek, Thorold, 
Ontario) and treated with RNase-Free DNase I Kit (Nor-
gen Biotek) to a final elution volume of 50 µl, per man-
ufacturer’s instructions. Extracted RNA samples were 
assessed for quality and quantity using automated paral-
lel capillary electrophoresis (Fragment Analyzer System, 
Agilent).

Real‑time quantitative PCR using genomic DNA
To detect the presence of P. falciparum genomic DNA 
isolated from the DBS, primers targeting P. falcipa-
rum varATS that were originally designed for use in a 
Taqman-based qPCR assay [21] were adapted for use with 
the PowerUp SYBR Green Master Mix System (Thermo 
Fisher Scientific, Waltham, Massachusetts) (Additional 
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file  1: Table  S1). Samples were assayed in triplicate in 
384-well plates on a QuantStudio 6 Flex Real Time PCR 
System (Thermo Fisher Scientific, Waltham, Massachu-
setts) using standard cycling conditions and a melt curve 
analysis. During assay development, PCR products were 
Sanger sequenced to verify that wells with a first calcu-
lated melt temperature (Tm1) > 71.14  °C contained var-
ATS amplicons and wells with Tm1 < 71.14 °C contained 
primer dimers. Subsequently, the criteria for a P. falcipa-
rum positive sample were set as having ≥ 2 of 3 replicate 
wells with a Ct < 39 AND a Tm1 > 71.14  °C. Using these 
criteria, genomic DNA samples isolated from the blood 
of 20 of 20 (100%) healthy North American controls with 
no malaria exposure history were confirmed to be P. falci-
parum negative, and 86 of 87 (98.9%) samples positive by 
conventional P. falciparum 18s rRNA PCR [22, 23] were 
confirmed as positive with the modified varATS-based 
assay. The one discordant sample had only 1 of 3 replicate 
wells meeting the Ct and Tm1 criteria. A standard curve 
of gDNA extracted from serially diluted P. falciparum-
spiked DBS samples (described above) and no-template 
negative controls were run on every plate, which allowed 
for estimation of parasite densities using Ct values.

Multiplex real‑time quantitative reverse transcription PCR
An initial aim of the study was to develop a four-plex 
real-time quantitative reverse transcription PCR (RT-
qPCR) that would detect female gametocytes, male 
gametocytes, and asexual parasites, as well as a human 
housekeeping gene glyceraldehyde 3-phosphate dehy-
drogenase (GAPDH), which served as a control for RNA 
extraction and relative quantification. The genes pfs25 
[24] and pfs230p were used as the female- and male-spe-
cific gametocyte targets, respectively. The gene encoding 
for parasite-infected erythrocyte surface protein (piesp2, 
also called PFE60 and PF3D7_0501200) was chosen 
based on a transcriptional pattern restricted to asexual 
blood-stages, particularly trophozoites, in three P. falci-
parum gene expression datasets available on PlasmoDB 
(http://​plasm​odb.​org) [25–27]. Primers and probes for 
pfs25 were adapted from Wampfler et  al. [28]. Prim-
ers and probes for pfs230p and piesp2 were developed 
de novo using Primer 3 software [29] following stand-
ard guidelines for qPCR primer design. All primer and 
probes are listed in Additional file 1: Table S1.

After generation of complementary DNA (cDNA) from 
50  ng RNA for each sample replicate using LunaScript 
RT Supermix (New England Biolabs) under standard 
cycling conditions, 20× triplex master mix was prepared 
from appropriate final concentrations of primers and 
probes for the three parasite targets and combined with 
20× human GAPDH master mix (Applied Biosystems), 
Taqman multiplex master mix (Applied Biosystems), and 

cDNA to a final reaction volume of 10 μl. Field samples 
identified as positive for P. falciparum by varATS qPCR, 
no reverse transcriptase controls, amplification con-
trols, and tenfold parasite RNA dilution standards were 
assayed in triplicate in 384-well MicroAMP Optical PCR 
plates (Applied Biosystems). The targets pfs25, pfs230p, 
piesp2, and human GAPDH were run in a QuantStudio6 
Flex qPCR system (Applied Biosystems) with NFQ-MGB 
Quencher and VIC, FAM, ABY, and JUN reporter dyes, 
respectively (Additional file 1: Table S1). Mustang Purple 
was selected as the reference dye. Multiplex assay was 
run under standard cycling conditions: initial denatura-
tion at 95.0 °C for 20 s (hold stage) followed by 40 cycles 
of 95.0 °C for 1 s and 60.0 °C for 20 s (PCR stage).

Statistical analysis
All statistical analyses were performed using R version 
4.0.1 (https://​www.r-​proje​ct.​org). Sample size estimates 
were performed using the epiR package. Multiple logis-
tic regression was performed with PCR-confirmed game-
tocytaemia as the dependent variable and gender, age 
(in years), recent bed net use, recent travel, log10 trans-
formed parasite density, and community as independent 
variables. Plots were rendered using the ggplot2 pack-
age. Statistical tests used to determine significance are 
indicated in tables and figure legends, and p values < 0.05 
were considered significant.

Results
A total of 1354 participants were enrolled across all com-
munities for this study (Table  1). The RDTs used for 
point-of-care diagnosis of asymptomatic infections dem-
onstrated a 4.7% false positive rate using varATS qPCR as 
the reference standard. By contrast, microscopy showed 
no false positives. Given this, RDT data was not used for 
subsequent analyses. The prevalence of asymptomatic 
infections was greatest in Ajigo, followed by Webuye, 
regardless of diagnostic modality (Table  1). Only two 
asymptomatic infections were detected by PCR in Kap-
sisywa, and no infections were detected in Kipsamoite. 
Parasite densities were not statistically different across 
the four communities (Table  1) and did appear to vary 
with infection prevalence (Additional file 1: Fig. S1). The 
use of ITNs was higher in Ajigo and Webuye relative to 
Kapsisywa and Kipsamoite (Table 1). Given the similari-
ties in prevalence of asymptomatic infections in the two 
highlands communities Kapsisywa and Kipsamoite, they 
were treated as a single community “Kap-Kip” for all sub-
sequent analyses.

Across all communities, children aged 11–15  years 
account for the greatest prevalence of sub-microscopic 
(1.1%; 95% confidence interval [CI], 0.65% to 1.9%) 
and total PCR-detectable (3.0%; 95% CI 2.2% to 4.0%) 

http://plasmodb.org
https://www.r-project.org
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Table 1  Participant characteristics

N number of non-missing value, CI confidence interval, IQR interquartile range, ITN insecticide-treated bed net
1 Kruskal–Wallis
2 Pearson
3 Wilcoxon

N Ajigo Webuye Kapsisywa Kipsamoite Test statistic
(N = 235) (N = 210) (N = 458) (N = 451)

Female gender (%) 1354 137/235 (58.3) 131/210 (62.4) 209/458 (45.6) 235/451 (52.1) χ2 = 20.08, P < 0.012

Age 1354 F = 3.90, P = 0.011

 Median age in years 
(IQR)

13 (7–19) 12.0 (6.9–23.3) 11 (6–17) 13 (7–23)

 Range 3–80 0–70 1–84 1–74

Rapid diagnostic test 
(% positive, 95% CI)

1354 124/235 (52.8, 
46.2–59.3)

29/210 (13.8, 9.6–19.4) 6/458 (1.31, 0.53–2.98) 3/451 (0.67, 0.17–2.10) χ2 = 476.13, P < 0.012

Asexual microscopy (% 
positive, 95% CI)

1354 63/235 (26.8, 
21.4–33.0)

10/210 (4.76, 
2.44–8.84)

0/458 (0.0) 0/451 (0.0) χ2 = 263.29, P < 0.012

Microscopy positive 73 F = 1.54, P = 0.223

 Median parasites/μl 
(IQR)

733 (218–3610) 3970 (212–8190) – –

 Range 60–51,627 80–9800 – –

varATS qPCR (% posi-
tive, 95% CI)

1354 99/235 (42.1, 
35.8–48.7)

21/210 (10.0, 
6.44–15.1)

2/458 (0.437, 
0.0757–1.75)

0/451 (0.00) χ2 = 400.35, P < 0.012

varATS qPCR (+) 122 F = 0.34, P = 0.801

 Median parasites/μl 
(IQR)

117 (13–1100) 32.6 (4.8–2250) 243 (71–414) –

 Range 0–90,600 0.2–44,200 71–414 –

Recent ITN use (%) 196/235 (83.4) 189/210 (90.0) 287/458 (62.7) 301/451 (66.7) χ2 = 74.66, P < 0.012
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asymptomatic infections (Fig.  1A). In contrast to the 
younger age groups, in which the majority of infections 
are detectable by microscopy, 68% of asymptomatically 
infected adults > 21  years of age have sub-microscopic 
parasitaemia (Fig.  1A), which suggests acquisition of 
blood-stage immunity [30, 31]. Similar findings were 
observed in Ajigo and Webuye when asymptomatic infec-
tion prevalence was separated by community with the 
notable observation that in individuals aged 6–20  years 
the majority of asymptomatic infections in Ajigo were 
detectable by microscopy, whereas in Webuye, the major-
ity of infections in this age range were sub-microscopic 
(Fig.  1B). Multiple logistic regression confirmed that 
being a child aged 11–15 years and residence in the high-
transmission settting of Ajigo were independent predic-
tors for varATS-detectable parasitaemia after adjusting 
for gender, ITN use, and recent travel (Additional file 1: 
Table S2).

For individuals identified as parasitemic by varATS 
qPCR, both asexual parasite densities and sexual parasite 
densities were quantified within the same sample by four-
plex RT-qPCR (see “Methods”). Female and male game-
tocytes were quantified using qRT-PCR targeting pfs25 
and pfs230p, respectively, and identified 122 of 1354 
(9.0%; 95% CI 7.6% to 10.7%) as having gametocytae-
mia based on the quantifiable expression of either gene. 
Among individuals with varATS-detectable parasitaemia 
(n = 122), there were no significant differences in gender 
distribution, age, use of ITNs, history of recent travel, or 
site distribution between those with and without game-
tocytes by univariate analysis (Table 2). To determine the 
relationship between gametocytaemia and total parasi-
taemia, female and male gametocyte densities estimated 

by RT-qPCR were plotted against corresponding esti-
mated asexual parasite densities. The initial plan was to 
use parasite densities estimated from piesp2 Ct values 
obtained from the same multiplex RT-qPCR assay, which 
would maintain internal consistency for each sample. 
However, piesp2-derived parasite densities demonstrated 
poorer correlation with microscopy-determined parasite 
densities in patent infections and less sensitivity than 
gDNA-based detection using varATS (Additional file  1: 
Fig. S2). Thus, total parasite densities derived from the 
varATS-based assay were used to approximate asexual 
parasite densities for the remainder of the study. Inclu-
sion of varATS-estimated total parasite densities in a 
multiple logistic regression model revealed a decreased 
risk of gametocytaemia in the lower transmission com-
munities relative to the high-transmission community of 
Ajigo and among individuals who reported recent travel 
(Table 3). As expected, increased total parasite densities 
greatly increased the likelihood of gametocytaemia inde-
pendent of site (Table 3).

In general, both male and female gametocytaemia 
increased with increasing total parasitaemia (Fig. 2A, B). 
However, some individuals with very low total parasite 
densities were noted to have unexpectedly high game-
tocyte densities. Indeed, individuals with > 5  gameto-
cytes/µl were bimodally distributed across a wide range 
of total parasitemia, which was more marked for pfs230p 
(Fig.  2C, D). Among individuals with low-density infec-
tions (total parasite densities < 40 parasites/μl), 28.3% 
(95% CI 17.2% to 42.6%) had > 5  gametocytes/μl esti-
mated by pfs230p, and 20.8% (95% CI 11.3% to 34.5%) 
had > 5 gametocytes/μl estimated by pfs25 (Fig. 2E).

Table 2  Comparison of gametocyte negative and gametocyte positive individuals

Among individuals with parasitaemia confirmed by varATS qPCR

ITN insecticide-treated bed net, CI confidence interval
1 Pearson χ2

2 Wilcoxon

Gametocyte (−) Gametocyte (+) Test statistic
(n = 20) (n = 102)

Female gender 11/20 (55.0%) 53/102 (52.0%) χ2 = 0.06, P = 0.801

Age F statistic = 0.56, P = 0.452

 Median (interquartile range) 14.0 (7.4–28.2) 13 (9–16)

 Range 3–62 1–80

No recent ITN use 3/20 (15.0%) 21/102 (20.6%) χ2 = 0.33, P = 0.571

No recent travel 14/20 (70.0%) 88/102 (86.3%) χ2 = 3.23, P = 0.071

Site (% positive, 95% CI) χ2 = 1.72, P = 0.421

 Ajigo 16/20 (80.0, 55.7–93.4) 83/102 (81.4, 72.2–88.1)

 Webuye 3/20 (15.0, 3.96–38.9) 18/102 (17.6, 11.1–26.7)

 Kap-Kip 1/20 (5.0, 0.26–27) 1/102 (0.98, 0.051–6.1)



Page 7 of 11Salgado et al. Malar J          (2021) 20:371 	

A substantial proportion (41.7%; 95% CI 29.3% to 
55.1%) of individuals with potential for onward transmis-
sion, defined in our study as having at least 1.25 female 
and four male gametocytes per 2.5  µl of blood (thresh-
olds adapted from a prior study [12] to account for 
sex-specific gametocytaemia overestimation), had qPCR-
estimated parasite densities above the detectable limit 
of conventional, 18s ribosomal RNA-based nested PCR 
(1 parasite per µl) [22] and below the limit of detection 
of microscopy (40 parasites per µl), which corresponded 
well to the actual proportion potential transmitters 
with submicroscopic infections (40.0%; 95% CI 27.8% to 
53.5%; Fig. 3A, B).

Discussion
The current descriptive study provides a cross-sectional 
assessment of asymptomatic P. falciparum infections 
of three communities in western Kenya with differing 
malaria transmission intensities from August to Septem-
ber 2016. [12]. Similar to prior assessments, transmission 
intensity remained low in Kap-Kip [18, 32], where asymp-
tomatic P. falciparum parasitaemia was rarely detected by 
varATS qPCR (0.22% prevalence). High malaria trans-
mission was observed in Ajigo, where 42% of individuals 
had asymptomatic parasitaemia. Webuye demonstrated 
moderate transmission with 10% prevalence of asymp-
tomatic parasitaemia, which is lower than what has been 
previously described at this site [33, 34], possibly reflect-
ing micro-heterogeneity or seasonal differences, as the 
current study was performed during months when rain-
fall is historically lower in western Kenya.

The substantial reservoir observed among 6–15  year 
old children in Ajigo and Webuye is consistent with a 
prior study in the Kakamega district of western Kenya 
that showed PCR-confirmed asymptomatic P. falciparum 

infections were more prevalent in younger children age 
5–14  years (~ 34%) relative to older children > 14  years 
(~ 9%) [35]. However, this observation contrasts with a 
study conducted in a high transmission area (Suba dis-
trict) that demonstrated the prevalence of blood-smear 
positive asymptomatic infections was greater in young 
children < 5  years (74%) compared to older children 
(30–50%) [36]. The differences in relative contribution to 
the asymptomatic infectious reservoir by age groups may 
be attributable to intense malaria transmission in Suba, 
where clinical immunity may be acquired more rapidly, 
and differences in assay sensitivity.

To determine whether sensitive molecular assays can 
sufficiently detect the majority of individuals carrying 
low-density P. falciparum infections who are also poten-
tially capable of onward transmission, the relationship 
between asexual parasitaemia and gametocytaemia was 
assessed. The initial goal was to correlate gametocyte 
densities with asexual parasite densities using a multiplex 
RT-qPCR that would contain targets specific to female 
gametocytes, male gametocytes, and asexual blood-stage 
parasites in a single assay, which would facilitate com-
parisons as this strategy eliminates both within subject 
differences in template preparation and assay variability. 
However, parasite densities determined using the cho-
sen asexual-specific target piesp2, which encodes for 
parasite-infected erythrocyte surface protein and previ-
ously shown to be maximally transcribed in the tropho-
zoite stage in laboratory isolates [25–27, 37], showed 
weaker correlation with microscopy-determined parasite 
density than densities derived from varATS qPCR using 
gDNA (Additional file  1: Fig. S2). The weaker correla-
tion for piesp2 could be due to lower piesp2 expression 
in ring stages, which had previously been thought to be 
the predominant asexual form of P. falciparum found in 
peripheral circulation. However, a recent study in Mali 
revealed that more developed trophozoite stages were 
commonly found in asymptomatic P. falciparum infec-
tions [38]. Expression of piesp2 could also vary among 
the field isolates, perhaps due to differential transcrip-
tional regulation related to precise stage at the time of 
collection or host immune pressure. Although specula-
tive, these potential explanations are intriguing given that 
antibodies against PIESP2 associate with protection from 
malaria [39], and PIESP2 has recently been observed to 
bind to brain microvascular endothelial cells in  vitro to 
induce an inflammatory response [40]. The current data, 
combined with these prior findings, suggest that piesp2 
is a poor target for quantifying asexual parasite densities.

Nevertheless, using varATS-derived parasite den-
sities, asexual parasitaemia and residence in a 
high-transmission setting independently predicted 
gametocytaemia, consistent with a recent longitudinal 

Table 3  Multiple logistic regression to assess the risk of 
gametocytemia

For site, Kap-Kip and Webuye were combined given there were only 2 infected 
individuals in Kap-Kip

OR odds ratio, CI confidence interval, ITN insecticide-treated bed net
a Parasite densities were estimated from varATS qPCR Ct values using standard 
curves (see “Methods”)

Variable OR 95% CI p-value q-value

Female 1.00 0.55, 1.85 > 0.9 > 0.9

Age 1.01 0.99, 1.03 0.2 0.3

Recent ITN use (reference: no use) 0.66 0.33, 1.35 0.2 0.3

Recent travel (reference: no travel) 0.34 0.12, 0.87 0.037 0.073

log10 (parasite/μl + 1)a 9.40 6.11, 15.5 < 0.001 < 0.001

Site (reference: Ajigo)

 Webuye or Kap-Kip 0.10 0.05, 0.18 < 0.001 < 0.001
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analysis of gametocyte carriage in Kilifi, Kenya [41]. On 
the surface, this might suggest that treating high-den-
sity infections in high-transmission settings, especially 
with ACT that is highly effective against early stage 
gametocytes (e.g. artemether–lumefantrine or artesu-
nate/mefloquine) [42], would contribute to the over-
all reduction of gametocyte carriage. However, such 

a strategy neglects the potential contribution of sub-
microscopic infections. The observation that a sizable 
proportion of low-density infections (< 40 parasites/μl) 
had estimated gametocyte densities that would favour 
onward transmission is also consistent with prior 
studies that demonstrated a considerable sub-micro-
scopic infectious reservoir [4, 10, 43, 44]. Although 
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the presence of gametocytaemia was only determined 
among individuals who were parasitaemic by varATS 
qPCR, which had a limit of detection of ~ 0.4 parasites/
μl using dried blood spots, the proportion of individu-
als with potential for onward transmission drops off 
below 10 parasite/μl. This finding is in line with recent 
studies suggesting that mosquito infectivity occurs pri-
marily when parasitaemia is > 1  parasite/μl [12, 45], 
which is the limit of detection of standard molecular 
diagnostics. Taken together, the main implication is 
that ultra-sensitive molecular diagnostics capable of 
detecting infections < 1  parasite/μl may not be neces-
sary to achieve significant reductions in malaria trans-
mission using a screen-and-treat strategy. However, 

experimental studies are needed to definitively deter-
mine whether the low-density infections in communi-
ties such as Ajigo and Webuye contribute significantly 
to malaria transmission.

There are several limitations to the current study. 
Although the study excluded individuals who endorsed 
symptoms of acute illness at the time of enrollment and 
sample collection, clinical or laboratory examinations 
that may have uncovered a more subacute or indolent 
disease process beyond self-reported symptoms were 
not performed. No short-term follow-up was conducted 
to assess whether asymptomatic individuals progressed 
to symptomatic malaria as other studies have done [46, 
47]. By including potentially pre-symptomatic individu-
als, the prevalence of true asymptomatic infections may 
have been overestimated. Additionally, the cross-sec-
tional study design provides only a snapshot of infection 
prevalence in these communities during the relatively 
dry season and the current findings may not be general-
izable to the rainy season when malaria transmission is 
more intense. Gametocyte densities were estimated using 
molecular quantification of male and female gameto-
cyte-specific gene expression as a surrogate of potential 
for onward transmission and did not directly measure 
mosquito infectivity using direct or indirect feeding 
assays. Such a surrogate based solely on gametocyte 
density ignores the relative contribution of anti-game-
tocyte immunity in reducing malaria transmission [48]. 
Although male and female gametocyte targets were used 
for gametocyte quantification, sex was not differentiated 
when determining gametocyte densities by microscopy 
for standard curves, which would lead to overestimates 
of sex-specific gametocytaemia. This is especially true for 
male-specific gametocytaemia given that natural infec-
tions are biased towards females, with 3–5 times more 
females [49]. However, no assessments using sex ratio 
were conducted in this study. Furthermore, gametocy-
taemia overestimates would affect all samples consist-
ently and thus would not affect the ranked correlation 
analyses. Importantly, in determining the number of 
individuals capable of onward transmission, the effect of 
overestimating sex-specific gametocytaemia was reduced 
by using higher thresholds for minimum male and female 
gametocyte densities.

Conclusion
In summary, this cross-sectional survey of the preva-
lence and densities of P. falciparum infections among 
asymptomatic individuals in western Kenya provides 
an assessment of the relationship between parasitaemia 
and gametocytaemia in three communities with differ-
ent transmission intensities. These data provide evidence 
of a substantial sub-patent infectious reservoir among 
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asymptomatic carriers in these communities and sup-
ports prior findings that conventional molecular diag-
nostics may be capable of detecting the vast majority of 
infections capable of onward transmission [12]. Develop-
ment of field-deployable molecular diagnostics to be used 
for the identification and treatment of asymptomatic car-
riers of P. falciparum could accelerate progress towards 
malaria elimination by reducing the infectious reservoir.
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