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Analysing human population movement 
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Abstract 

Background:  Human population movement poses a major obstacle to malaria control and elimination. With recent 
technological advances, a wide variety of data sources and analytical methods have been used to quantify human 
population movement (HPM) relevant to control and elimination of malaria.

Methods:  The relevant literature and selected studies that had policy implications that could help to design or target 
malaria control and elimination interventions were reviewed. These studies were categorized according to spatiotem-
poral scales of human mobility and the main method of analysis.

Results:  Evidence gaps exist for tracking routine cross-border HPM and HPM at a regional scale. Few studies 
accounted for seasonality. Out of twenty included studies, two studies which tracked daily neighbourhood HPM 
used descriptive analyses as the main method, while the remaining studies used statistical analyses or mathematical 
modelling.

Conclusion:  Although studies quantified varying types of human population movement covering different spa-
tial and temporal scales, methodological gaps remain that warrant further studies related to malaria control and 
elimination.
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Background
In the past 20 years, there has been significant progress 
in malaria control due to new technologies and increased 
political and financial commitment globally. Since 2000, 
20 countries no longer have endemic malaria [1], annual 
global malaria incidence has decreased by 36% and mor-
tality has decreased by 60% [2, 3]. Currently, nearly half 
of the world has eliminated malaria [4] and eradication 
is envisioned [5]. The last attempt at eradication failed 
50 years ago, with human population movement (HPM) 
cited as one of the major reasons [6].

The World Health Organization (WHO) has declared 
that all countries should aim for malaria elimination as 

their ultimate goal, regardless of their malaria burden. 
Subnational elimination is advocated as a preliminary 
step for large countries when certain areas of the country 
have interrupted local transmission. As most countries 
have diverse transmission intensity, elimination would 
require stratifying a national map by receptivity and 
transmission characteristics for targeted malaria inter-
ventions [7]. Receptivity is the ability of an ecosystem 
to transmit malaria, thus determining local transmis-
sion intensity. In a non-receptive area, vulnerability (the 
risk posed by imported infections) would be the major 
concern [8]. A receptive area would be further strati-
fied according to whether there was transmission. An 
area with transmission would be stratified according 
to whether there was a focus or transmission was dif-
fuse. Areas with diffuse transmission would be stratified 
according to the degree of transmission, while foci would 
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be stratified by whether there was ongoing, interrupted 
or no local transmission [7].

In order to accurately track transmission within and 
between stratified areas, increasingly granular surveil-
lance is needed [7]. In areas of very low transmission, 
surveillance should detect foci at the scale of individual 
villages or health facility catchment areas. Meanwhile, 
countries with high transmission usually stratify their 
subnational areas according to districts or provinces [9, 
10]. Countries require detection and response to intra 
and international transmission on an increasingly fine 
scale as countries approach elimination [11]. Surveil-
lance systems could, therefore, capture HPM of infected 
migrants as well as HPM of the malaria infected local 
population to quickly identify potential importation and 
travel-related hotspots. However, routine collection of 
such data as part of malaria surveillance is often not done 
or is limited in scope. A wide variety of alternative data 
sources and analytical methods have been used to quan-
tify HPM relevant to malaria control and elimination 
covering different spatial and temporal scales and each 
with their own strengths and limitations.

This review categorizes and describes studies of HPM 
patterns relevant for malaria control and elimination, 
including the sources of data used, as well as methods for 
combining and analysing different datasets, to quantify 
varying types of HPM and identify methodological gaps 
for future investigation.

Methods
Paper inclusion criteria
Studies were identified by literature search in PubMed, 
Ovid and Google Scholar. The combination of key-
words “human mobility/mapping/movement/travel” and 
“malaria” was used. The most highly cited and relevant 
literature in the past 10  years were included and refer-
ence lists of related papers were looked at.

Categorizing studies of human population movement 
relevant to malaria control and elimination
Studies were deemed relevant if their findings had policy 
implications that could help to design or target interven-
tions for malaria control and elimination. A framework 
for categorizing HPM according to spatial and temporal 
scales was described by Stoddard et  al. [12]. Here, this 
framework was adapted and extended by identifying 
studies of HPM relevant for malaria control and elimina-
tion. Plotted on the spatial and temporal scales of human 
mobility, studies roughly fell into a few broad categories: 
neighbourhood daily and seasonal HPM, regional peri-
odic HPM, intra-national periodic HPM, international 
periodic HPM, international seasonal HPM, international 

migration HPM (Table  1). The studies were categorized 
by their main method of analysis.

Neighbourhood daily and seasonal HPM
Neighbourhood daily and seasonal HPM is measured 
at the finest spatial and temporal scales. This is impor-
tant as heterogeneity in exposure can greatly affect indi-
vidual risk of infection in a local setting where sustained 
transmission occurs. Tracking movements of susceptible 
hosts to high risk locations, duration spent in each loca-
tion, time of day that movement occurred and routes 
taken can provide insight into individual risk of infection. 
Observation for at least 2 weeks could give insights into 
routines during the work week and overall transmission 
patterns [12].

In recent years, GPS data-loggers and GeoODK (an 
open-source mobile mapping tool) have been used to col-
lect high-resolution data on neighbourhood daily HPM 
in areas with malaria transmission [13–15]. These devices 
may be the best option for tracking HPM in rural areas 
where cell phone coverage is not universal, although 
dense tree coverage can reduce the accuracy of GPS data-
loggers [12, 35–37]. GPS data-loggers and GeoODK have 
been used to track HPM in agrarian [13, 14] and riverine 
[15] populations in malaria transmission settings. These 
devices tracked small-scale movement, with the furthest 
trips limited to 200  km. HPM were tracked for up to a 
year with samples of less than 100 people.

Concurrent travel surveys, malaria risk maps and col-
lection of blood samples have provided important sup-
plementary data [13–15]. GPS has lower indoor accuracy 
and, therefore, may not accurately show whether an indi-
vidual was inside or outside their household. A combi-
nation of objective and recall methods will enable more 
accurate qualification of movements with regard to dis-
ease risk [12].

Studies using GPS data-loggers or GeoODK in areas 
with malaria transmission did not rely solely on the 
device for their sources of data. In combination with 
malaria risk maps, Searle et  al. generated density maps. 
Together with activity space plots, they were able to 
analyse seasonal movement patterns and conclude that 
there was limited movement during the rainy season, 
but increased long-distance travel during the dry sea-
son in rural southern Zambia [15]. Carrasco-Escobar 
et  al. generated heatmaps of transit from GeoODK 
data which showed areas of intensive travel transit and 
high-connectivity units which were occupation-related 
in   the  rural Peruvian Amazon. This information was 
supplemented by a travel survey which provided demo-
graphic information and reasons for travel [13]. Hast 
et al. [14] also supplemented their GPS data with a travel 
survey which included coverage of malaria interventions. 
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Malaria testing of participants and seasonal malaria risk 
maps provided further information. In addition to activ-
ity space plots, movement intensity plots were generated. 
While Searle et  al. and Carrasco-Escobar et  al. [13, 15] 
carried out descriptive analyses, Hast et al. added statis-
tical analyses (Table  2). Malaria risk scores were calcu-
lated using malaria risk maps and the time an individual 
spent at a location. Association of movement patterns 
with demographics, malaria incidence and malaria risk 
were also calculated. These concluded that there was a 
diverse mobility pattern along the banks of Lake Mweru 
in northern Zambia and that no significant associations 
were found [14].

Regional and intranational periodic and seasonal HPM
Regional periodic HPM is measured at fine spatial resolu-
tion units to detect variations at the micro-epidemiologi-
cal level, such as variation in malaria risk between villages 
in an endemic region [38–40]. Micro-epidemiological 
variations in malaria exposure become more apparent in 
low and moderate transmission settings because hetero-
geneity is no longer obscured when a proportion of the 

population remains malaria free for years, while small 
groups of households experience multiple episodes [41–
43]. The area where this cluster of higher-than-average 
malaria prevalence occurs is spatially defined as a hot-
spot [44].

Genetic epidemiologic data can help to define regions 
into spatial units for targeted interventions, identify 
sources and sinks and reconstruct the transmission chain. 
Genetic data such as single nucleotide polymorphisms 
(SNP), short haplotypes, microsatellites and whole 
genomes can be used to derive genetic measures of para-
site relatedness. Meanwhile, epidemiological data regard-
ing clinical cases, population prevalence and history of 
travel can provide a measure of HPM. Genetic data tends 
to underestimate parasite relatedness, while epidemio-
logical data tends to overestimate HPM connectivity [45]. 
Therefore, a combination of genetic and epidemiological 
data may provide a more accurate map of malaria trans-
mission [45, 46].

Knudson et  al. demonstrated the use of genetic epi-
demiologic data to define a spatial unit, which was the 
area that contributed 95% of diagnosed malaria cases in 

Table 1  Literature review data categorized* according to spatiotemporal scales of human mobility

* Definition of spatial and temporal categories [34]:

Spatial categories

Spatial categories were defined according to the spatial resolution of sampling

Neighbourhood: Sampling occurred within a district

Regional: Sampling occurred within an administrative division of a country

Intranational: Sampling occurred within a nation

International: Sampling occurred in two or more nations

Temporal categories

Temporal categories were defined according to the temporal resolution of sampling

Daily: The timing of the usual activities of participants’ days was captured

Periodic: Intermittent movement at intervals was captured. In this paper, these intervals are defined as longer than a day [e.g. weekly, monthly], but not capturing 
seasonal variations

Seasonal: Movement relating to certain seasons of the year was captured, thus capturing seasonal variations of movement

Migration: Movement from one’s place of abode to settle in another country

Spatial scales of human mobility

Neighbourhood Regional Intranational International

Temporal scales of human mobility

 Daily Carrasco-Escobar et al. [13]
Hast et al. [14]
Searle et al. [15]

 Periodic Carrasco-Escobar et al. [13]
Hast et al. [14]
Searle et al. [15]

Knudson 
et al. 2020 
[16]

Sinha et al. 2020 [17], Guerra et al. 2019 [18], 
Chang et al. 2018 [19], Ihantamalala et al. 
2018 [20], Tatem et al. 2014 [21], Weso-
lowski et al. 2014 [22], Wesolowski et al. 
2012 [23],

Le Menach et al. 2011 [24]

Tessema, Wesolowski et al. 2019 [25], Tatem 
et al. 2017 [26], Ruktanonchai et al. 2016 [27], 
Huang et al. 2013 [28]

 Seasonal Hast et al. [14]
Searle et al. [15]

Cohen et al. 2013 [29] Saita et al. 2019 [30]

 Migration Pindolia et al. 2014 [31], Pindolia et al. 2013 [32], 
Tatem et al. 2010 [33]
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a catchment facility in a town on the Columbian Pacific 
Coast. A combination of passive and active surveillance 
was used: passive surveillance at local clinics included 
microsatellite and SNP genotyping of positive samples 
and carrying out travel surveys, while active surveillance 
included testing for asymptomatic malaria in households. 
Using the surveillance data, epidemic curves could show 
not only the temporal distribution of cases in the spatial 
unit by month, but also the regions of origins. Topologi-
cal data analysis generated a network representation of 
parasite populations connectivity underlying the epi-
demic curve. This network was overlaid onto a map to 
show the spatial connectivity of cases in the spatial unit. 
As all three parasite populations were found in the town 
of Guapi, this was deemed a sink for cases imported from 
the surrounding rural areas in the spatial unit [16].

A variety of methods have been used to collect data 
on intra-national periodic and seasonal HPM. Travel 
surveys ranging from a sample size of less than 3000 to 
national surveys have often been used [17–19, 22, 29]. 
These were combined with national malaria incidence 
or prevalence data [17, 18, 20, 22, 29]. Travel surveys 

were also combined with mobile phone call data records 
(CDRs) and genetic data, thereby applying genetic epi-
demiologic data at the national level [19]. The use of 
mobile phone CDRs to measure intra-national HPM has 
become increasingly widespread as mobile phone pen-
etration increased globally, particularly in low-income 
countries. This big data approach allows the direct meas-
urement of individual-level HPM between regions on a 
population scale. Mobile phone CDRs are stored by their 
mobile phone operators. Mobile phone activity such as 
calls, texts, top-ups and sending money are logged as 
digital data points which stores information on the SIM 
card used and the location of the nearest cell phone 
tower [47–49]. Mobile phone CDRs were combined with 
malaria prevalence data [20–23] and traffic data [24]. 
Most studies used mathematical models to analyse the 
combined data, with the exception of three studies [17, 
21, 29].

Cohen et al. [29] classified cases as locally acquired or 
imported, according to travel history. A logistic regres-
sion mixed model was then used to predict whether an 
imported case was associated with a locally acquired 

Table 2  Literature review data categorized by main method of analysis

Main method of analysis Publication Details

Descriptive Carrasco-Escobar et al. [13] Heatmap of transit

Searle et al. [15] Density maps, activity space plots

Statistical Knudson et al. [16] Topological data analysis

Sinha et al. [17] Logistic regression

Hast et al. [14] Movement intensity plots, activity space plots, 
malaria risk score, chi square test, Wilcoxon rank 
sum test

Saita et al. [30] Logistic regression

Tatem et al. [26] Network community detection

Ruktanonchai et al. [27] Logistic regression

Pindolia et al. [31] Hot spot analysis, linear regression

Tatem et al. [21] Regression trees, network analysis

Cohen et al. [29] Logistic regression, regression trees

Huang et al. [28] Network analysis

Pindolia et al. [32] Network analysis

Tatem et al. [33] Network analysis

Mathematical model

 Individual-based Tessema, Wesolowski et al. [25]

Ihantamalala et al. [20]

Wesolowski et al. [22]

Wesolowski et al. [23]

Le Menach et al. [24]

 Compartmental Chang et al. [19]

Guerra et al. [18]

Pindolia et al. [31]

Le Menach et al. [24]
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case. Regression trees were used to create case-based 
malaria risk maps, a method which was also used by 
Tatem et al. [21]. Using network analysis, Tatem et al. [21] 
combined the predicted risk with connectivity (derived 
from mobile phone CDRs), to quantify overall risk flow. 
Sinha et al. [17] used a simple empirical method to clas-
sify sources and sinks by calculating the amount of travel 
to a destination or from an origin, weighted by the num-
ber of enrolled cases resident in the origin subdistrict and 
the Annual Parasite Index (API). Descriptive analysis and 
logistic regression were used to determine which groups 
of people with malaria were travelling, where they were 
travelling and why [17].

Sinha et al.’s study [17] served as a complementary anal-
ysis to Chang et al.’s study which used a compartmental 
model combining genetic data, travel surveys and mobile 
phone CDRs to distinguish areas of high malaria trans-
mission and frequent importation [19]. Two other stud-
ies used compartmental models to estimate transmission 
and importation [18, 24]. Four studies used individual-
based models to identify routes of parasite importa-
tion [20, 22–24]. Ihantamalala et  al. [20] compared two 
methods, using different sources of data in combina-
tion with mobile phone CDRs: one model used preva-
lence estimates from the Malaria Atlas Project, while 
another used nationally reported cases. Both methods 
reached similar conclusions [20]. Wesolowski et  al. [23] 
used mobile phone CDRs and estimates from a malaria 
prevalence map in their model. Subsequently, they esti-
mated the ratio of monthly imported-to-clinical cases 
in Nairobi by comparing their predicted imported cases 
to malaria incidence derived from cross-sectional clini-
cal surveys, thus identifying transmission foci in a low-
risk urban setting [23]. In a later study, Wesolowski et al. 
[22] compared two methods, using different sources of 
data in combination with prevalence estimates from the 
Malaria Atlas Project. One model used travel survey data, 
while another used mobile phone CDRs. Both methods 
reached similar conclusions regarding estimated malaria 
importation, although the volume of exchange was 
smaller for the model using travel survey data [22].

International periodic and seasonal HPM
In addition to using travel surveys [17, 25, 30], genetic 
data [25] and mobile phone CDRs [25, 27], to collect data 
on international periodic and seasonal HPM, flight data 
[28], nationally reported statistics on imported malaria 
[26] and census data [27] have also been used.

Only one study used a mathematical model: Tes-
sema et  al. used an individual-based model combining 
genetic data, travel surveys and mobile phone CDRs to 
track cross-border malaria transmission [25]. Saita et al. 
used logistic regression to analyse seasonal HPM and 

behavioural patterns in malaria hotspots on the bor-
der [30]. Ruktanonchai et  al. compared HPM patterns 
between census-based migration data and mobile phone 
CDRs. They concluded that similar to mobile phone 
CDRs, migration data could predict short-term move-
ment patterns [27]. Two studies examined global malaria 
connectivity through air travel. Using network analy-
sis, Huang et  al. combined prevalence maps from the 
Malaria Atlas Project with flight data [28]. Tatem et  al. 
used national imported malaria statistics and performed 
network community detection to map the importation of 
malaria to non-endemic countries [26].

International migration HPM
Census and malaria  prevalence data were commonly 
combined [31–33], together with travel surveys [32], to 
analyse international migration HPM. Two studies used 
network analysis: Tatem et  al. mapped countries that 
formed communities connected by high levels of infec-
tion movement [33]. With the addition of travel survey 
data to census and prevalence data, Pindolia et al. devel-
oped demographically-stratified estimates of HPM and 
malaria movement [32]. In another study, Pindolia et al. 
used hot spot analysis to map origin-specific immigrant 
hotspots in destination countries. Linear regression was 
used to model migration, and a compartmental-based 
model, developed in previous studies [8, 24], was used to 
estimate malaria importation propensity [31].

Discussion
Most studies combined data to provide a more compre-
hensive picture of HPM patterns [50]. In addition, some 
studies demonstrated that different data sources could 
complement each other [20, 22, 27]. However, evidence 
gaps along the spatiotemporal scales need to be filled 
with future studies.

All studies tracking neighborhood HPM included GPS 
as a data source, which could track not only daily HPM, 
but also seasonal HPM [13–15]. Evidence gaps exist for 
daily HPM beyond the neighborhood (Table  1). Track-
ing daily HPM is measurement at the finest temporal 
scale. Routine activities in a participant’s day would usu-
ally be confined to a relatively short distance. Sampling 
on a larger scale (e.g. regional or intra-national) would be 
expensive [12] and unlikely to detect significant patterns 
due to the lack of overlap in participants’ areas of travel 
and a small sample size. However, detecting daily cross-
border movements (routine contiguous international 
HPM) might be feasible. Despite the frequency and large 
volume of contiguous international HPM travel, there is 
a lack of detailed HPM assessment in this aspect, which 
would have a significant impact on malaria elimination 
[8].
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All studies capturing neighbourhood HPM used GPS 
data-loggers and GeoODK [13–15]. Although this cap-
tured movement at the finest scale, sampling and analysis 
were limited by this method of data collection. Studies 
were limited by a small sample size with non-probability 
sampling. As GPS data-loggers and GeoODK are highly 
subject to user error, children were excluded, limiting 
the representativeness of the population in the neigh-
bourhood. Due to lower indoor accuracy of the devices, 
participants may be inaccurately classified as indoor or 
outdoor, thus affecting the accuracy of activity space-
plots. Data analysis was mostly limited to descriptive 
methods, despite the addition of malaria risk maps and 
travel surveys [13, 15]. Hast et  al. [14] used statistical 
methods which highlighted HPM patterns among demo-
graphic groups. However, the lack of significant associa-
tions with incident parasitaemia may have been due to 
the limited power of the study. In high transmission set-
tings, saturation of malaria risk may result in movement 
patterns not significantly predicting individual risk.

Evidence gaps exist for HPM at the regional scale, with 
only one study in this category, which measured periodic 
HPM (Table  1). Regional HPM patterns might be over-
looked as using GPS would be unfeasible, yet HPM still 
needs to be measured at fine spatial resolution units to 
detect micro-epidemiological changes. Genetic epide-
miologic data used to track regional periodic HPM could 
be analysed to detect whether any seasonality and trends 
existed, to build a more accurate temporal picture and fill 
the existing data gap.

To capture regional HPM, Knudson et  al. [16] used 
genetic epidemiology to define a malaria transmission 
unit. This method may be suitable for areas with low to 
moderate malaria transmission, where hotspots become 
apparent. In high transmission areas, genetic epidemiol-
ogy data might instead be used to evaluate interventions 
by analysing genetic correlates of declining transmis-
sion [45]. In addition to defining a malaria transmission 
unit, Knudson et  al.  [16] used genetic epidemiology to 
estimate the size of the asymptomatic reservoir and pro-
vide information on parasite genetics related to drug 
resistance and false negatives from rapid diagnostic tests. 
However, the use of molecular surveillance is still at an 
early stage. More studies are needed with larger sam-
ple sizes in different transmission settings, to decrease 
bias and explore how genetic and epidemiological data 
can best be combined to accurately track HPM.

Surveys were a commonly used source of data to cap-
ture intra-national and international HPM. Surveys pro-
vide important information on reasons for travel and for 
identifying hotpops (demographic groups with higher-
than-average malaria prevalence) [8, 51]. However, sur-
veys are generally cross-sectional, prone to recall bias, 

may lack detail and are difficult to conduct on a large-
scale, thus they are also prone to sampling bias. Sam-
pling malaria patients from healthcare facilities may be 
biased by differential access to healthcare [17, 29], while 
community surveys may be biased by the lack of work-
ing men and visitors who are active acquirers of infection 
[18, 22]. Qualitative studies could be used to increase the 
granularity of survey data in a few ways: they could pro-
vide some details lacking in surveys, purposefully sample 
populations lacking access to healthcare and explore the 
reasons why, as well as overcome recall bias using diary 
studies, for example.

Despite the lack of routine HPM data, Guerra et  al. 
[18] used annual Malaria Indicator Survey [MIS] data, 
while Cohen et  al. [29] used survey data from the Swa-
ziland National Malaria Control Programme. Guerra 
et  al. [18] identified hotpops and estimated importa-
tion and residual transmission. The analysis was limited 
by the sampling and spatial resolution of the survey. As 
only residents were sampled, importation rates only con-
sidered passive acquirers of infection [returning resi-
dents]. As MIS did not record the off-island destinations 
of travel, it was not possible to map the exact sources of 
malaria transmission. The case-based risk maps gener-
ated by Cohen et al. [29] and Tatem et al. [21] were lim-
ited by small sample sizes, as only one year of data was 
used. Nevertheless, Cohen et al. [29] was the only intra-
national study that took seasonality into account. Sinha 
et al. [17] mapped sources and sinks, hotpops and HPM 
patterns from survey and incidence data, which were 
easily collectable. The analysis was limited by the spatial 
resolution of the geographic data, which was at the union 
level instead of the village level.

Most intra-national studies included mobile phone 
CDRs in their analyses. Unlike surveys, mobile phone 
CDRs have large sample sizes. However, data is limited 
by cell phone tower density and sampling may be biased, 
as subscribers are more likely to be educated, urban 
and male [52]. In addition, it cannot directly identify 
hotpops and cannot track cross-border HPM without 
tracking handset IDs and combining data from multiple 
countries. Despite the differences between surveys and 
mobile phone CDRs, Wesolowski et  al. [22] concluded 
that both sources could quantify broad travel patterns, 
including regional differences. Used together, they could 
potentially complement each other to form a detailed 
picture of HPM. In addition to surveys and mobile 
phone CDRs, Chang et  al. [19] used genetic epidemiol-
ogy data. This was the only intra-national study that used 
genetic epidemiology data. Their genetic mixing index 
was not biased by incidence underestimation and was 
used in a transmission setting and geography where com-
monly used methods could not easily distinguish genetic 



Page 7 of 9Tam et al. Malar J          (2021) 20:294 	

differentiation. However, it was limited by a small sample 
size. Unlike Knudson et al. [16], only passive surveillance 
was used, therefore asymptomatic and subclinical infec-
tions were not sampled and results may not have been 
representative of the entire parasite population.

A few studies used prevalence estimates from the 
Malaria Atlas Project. These were limited by the lack of 
seasonality in the estimates [18, 20, 22]. However, inci-
dence data also had limitations. Incidence data from 
nationally reported cases to health facilities may be 
biased by accessibility to healthcare and representative of 
symptomatic cases only. In endemic areas, there may be 
increased immunity, leading to fewer symptomatic cases. 
In addition, cases were aggregated per month, which 
could influence the accuracy of the mathematical model 
[20].

Only one study included traffic data. Le Menach et al. 
[24] included ferry traffic data, in an attempt to more 
accurately capture travel between Zanzibar and the main-
land. Despite the inclusion, it could not fully account for 
informal movements via small fishing boats.

Two studies tracking international HPM included 
mobile phone CDRs. Tessema et  al. [25] used mobile 
phone CDRs to supplement survey and genetic data. 
This was the only study tracking international HPM 
that included genetic data. Ruktanonchai et al. [27] used 
mobile phone CDRs to compare how well census-derived 
migratory data predicted short-term HPM and found 
that HPM movement patterns were strongly correlated. 
Therefore, census-derived migratory data was used to 
predict HPM patterns across Meso-America. However, 
as the data did not record individual-level risk, inclusion 
of travel history surveys might have complemented the 
analysis.

Two studies tracked HPM through air travel. Tatem 
et  al. [26] used routine data from nationally reported 
statistics on imported malaria. However, the data likely 
represented only one-sixth of all imported cases glob-
ally. In addition, due to global differences in health sys-
tems, there would be heterogeneities in case reporting. 
Mixed species infections might have obscured certain 
species and data was pooled across a decade, in order 
to have sufficient data. Nevertheless, the meta-analy-
sis detected a small number of high-traffic routes that 
accounted for 56% of imported malaria to non-endemic 
countries and the occurrence of strong spatial cluster-
ing of Plasmodium species, which could inform global 
malaria policy. Huang et  al. [28] tracked passenger 
flows weighted by malaria prevalence and highlighted 
risk routes for artemisinin resistance spread in South-
east Asia using Malaria Atlas Project prevalence maps 
and flight schedules. However, this was limited by the 
lack of data on individual-level risk and the reliance 

on travel data when examining artemisinin resist-
ance, thus heterogeneity in resistance throughout the 
region was not accounted for. Amongst studies tracking 
international HPM, only Saita et al. [30] accounted for 
seasonality.

All studies tracking migration used census data [31–
33]. However, census data did not provide fine-scale 
HPM data and may have missed highly mobile popula-
tions that could contribute to malaria transmission.

Conclusion
Evidence gaps exist in tracking routine cross-border 
HPM and HPM at a regional scale. Only a few stud-
ies accounted for seasonality, despite the impor-
tance in malaria transmission. A wide variety of data 
sources and methods were used to analyse HPM data 
for malaria control. The advantages and limitations of 
each one should be considered carefully, to enable dif-
ferent data sources to complement each other and build 
an accurate spatio-temporal picture for malaria con-
trol. For large-scale collection of HPM data outside of 
research settings, especially in lower and lower mid-
dle income countries, the additional cost and resource 
requirements should be addressed.
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