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Abstract 

Background:  Single nucleotide polymorphisms occurring in the Plasmodium falciparum multidrug resistant gene 1 
(pfmdr1) are known to be associated with aminoquinoline resistance and, therefore, represent key P. falciparum mark‑
ers for monitoring resistance both in susceptible groups (children under 5 years old and pregnant women) and in 
the general population. This study aimed to determine prevalence and factors associated with the carriage of pfmdr1 
N86Y, Y184F and D1246Y polymorphisms among pregnant women in a setting of high malaria transmission in Burkina 
Faso.

Methods:  Plasmodium falciparum isolates were collected at the first antenatal care visit (ANC-1) as well as at deliv‑
ery from pregnant women participating in the COSMIC trial (NTC01941264), which assessed malaria preventive 
interventions during pregnancy in the Nanoro Health District. Here, pregnant women received intermittent preven‑
tive treatment with sulfadoxine-pyrimethamine (IPTp-SP) and malaria infections and/or diseases were treated using 
artemether-lumefantrine (AL) during the trial. Parasite DNA was extracted from dried blood spots and the presence of 
pfmdr1 mutations at positions 86, 184 and 1246 was determined using nested PCR, followed by restriction fragment 
length polymorphism (RFLP) analysis.

Results:  A prevalence of 13.2% (20/151) and 12.1% (14/116) of the pfmdr1 86Y mutant allele was found at ANC-1 
and at delivery, respectively, while no mutant allele was observed for Y184F and D1246Y codons at both ANC-1 and 
at delivery. There were no significant factors associated with pfmdr1 86Y mutant allele carriage at ANC-1. However, 
malaria infections at delivery with a parasite density above the median (2237.2 (IQR: 613.5–11,425.7) parasites/µl) 
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Background
Malaria in pregnancy (MiP) is a significant public health 
problem, with substantial adverse effects on both mother 
and fetus, including maternal anaemia, fetal loss, prema-
ture delivery, intrauterine growth retardation, and deliv-
ery of low birth-weight infants, which is a risk factor for 
death [1–4]. MiP current control measures used in most 
endemic countries, according to WHO recommenda-
tions, include the use of insecticide treated nets (ITNs), 
intermittent preventive treatment with sulfadoxine-
pyrimethamine (IPTp-SP) and effective case manage-
ment of malaria, which, since  2010, includes the use of 
artemisinine-based combination therapy (ACT) [5, 6].

Current efforts of malaria control during pregnancy 
rely mostly on the effectiveness of anti-malarial drugs 
used for both IPTp and case management. Indeed, 
although there are other limiting factors, including low 
attendance rate of antenatal services [7–10], low coverage 
and compliance to the preventive treatment by pregnant 
women [11–13] and inadequate protection of fewer than 
three SP doses where malaria transmission is intense [12, 
14], the major hindrance of the effectiveness of IPTp-SP 
policy is the spread of Plasmodium falciparum resistance 
to SP [15–20]. Given the number of studies reporting the 
increased resistance of P. falciparum to SP, there has been 
several responses: (i) the increase of IPTp-SP doses by 
WHO in 2012 [21]; (ii) the evaluation of alternative drugs 
to SP [22, 23]; and, (iii) the assessment of alternative or 
improved strategies to IPTp-SP [24]. However, none of 
the alternative drugs or strategies tested has prompted 
the replacement of the IPTp-SP policy [25, 26]. Reducing 
the burden of malaria during pregnancy in high trans-
mission setting remains challenging.

Since 2015, WHO recommends the use of ACT for 
the treatment of P. falciparum uncomplicated malaria 
during the second and third trimester of pregnancy [27, 
28], and such recommendation has already been adopted 
and implemented by all sub-Saharan African countries 
[29]. However, there is limited knowledge on the effect of 
ACT, treatments such as artemether-lumefantrine (AL), 
on the selection of P. falciparum resistance markers dur-
ing pregnancy that can affect the treatment outcome. 
Indeed, available information in non-pregnant women 

have shown that the P. falciparum multidrug resistance 1 
(pfmdr1) N86 and D1246 alleles might be associated with 
AL resistance [30, 31]. In addition, the combination of 
N86, 184F and D1246, forming the ‘NFD’ haplotype, led 
to a decreased susceptibility to AL and treatment with 
AL selects for such a haplotype [32–34]. There is there-
fore a need for pharmacovigilance studies to monitor any 
delayed parasite clearance by AL and to assess risk fac-
tors associated with the carriage of P. falciparum resist-
ance markers.

Between 2013 and 2016, a multi-centre, cluster-ran-
domized, controlled trial (COSMIC) was conducted in 
three West African countries with high (Burkina Faso, 
Benin) and low (The Gambia) malaria transmission, 
to assess the protective efficacy of adding community-
scheduled screening and treatment of malaria during 
pregnancy (CSST) to standard IPTp-SP (CSST/IPTp-
SP) [35, 36]. The CSST/IPTp-SP strategy was based on 
monthly active follow-up by community health work-
ers using rapid diagnostic tests (RDTs). The aim of the 
combined CSST/IPTp-SP strategy was to provide an 
opportunity to detect and treat malaria infections dur-
ing pregnancy with AL and reduce the prevalence of pla-
cental malaria [35]. As part of the COSMIC trial, it has 
shown a high prevalence of the triple dhfr mutation with 
presence of quintuple mutants (triple dhfr and double 
dhps) in Burkina Faso, confirming concerns about the 
efficacy of IPTp-SP in the near future [37]. This study 
aimed to determine the prevalence and factors associ-
ated with the carriage of pfmdr1 polymorphisms (pfmdr1 
N86Y7, Y184F, D1246Y) among pregnant women within 
the COSMIC trial in Burkina Faso.

Methods
Study site
This study was conducted in Nanoro Health District 
(NHD) in Burkina Faso between 2013 and 2016. NHD 
is a rural setting located in the centre-west region of 
the country, 85  km from the capital city, Ouagadou-
gou. Malaria transmission in the region is endemic and 
highly seasonal. There is year-round malaria transmission 
with high transmission season occurring from July to 

was associated with an increase risk of pfmdr1 86Y mutant allele carriage (AOR = 5.5 (95% CI  1.07–28.0); P = 0.04). In 
contrast, both three or more IPTp-SP doses (AOR = 0.25 (95% CI 0.07–0.92); P = 0.04) and one or more AL treatment 
(AOR = 0.25 (95% CI 0.07–0.89); P = 0.03) during pregnancy were associated with a significant reduce risk of pfmdr1 
86Y mutant allele carriage at delivery.

Conclusion:  These findings suggest that both high coverage of IPTp-SP and the use of AL for the treatment of 
malaria infection/disease during pregnancy select for pfmdr1 N86 wild-type allele at delivery.

Keywords:  Malaria, Pregnancy, Artemether-lumefantrine, pfmdr1 mutations
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December, corresponding to the wet period in the coun-
try. Most malaria cases are due to P. falciparum.

Study participants and sample size
The samples analysed in this study were collected from 
pregnant women enrolled in a clinical trial assess-
ing the effectiveness of MiP preventive treatments, 
known as COSMIC trial (Clinical Trials.gov Identifier: 
NCT1941264). In the COSMIC trial, the protective effi-
cacy of adding CSST during pregnancy to the standard 
IPTp-SP (CSST/IPTp-SP, intervention arm) was com-
pared to IPTp-SP alone (control arm) [35]. CSST inter-
vention was implemented by community health workers 
through monthly screening using RDTs and treatment of 
malaria infection with AL. AL treatment was given for 
both malaria episodes and infections detected by RDTs in 
the intervention arm, whereas in the control arm (stand-
ard IPTp-SP alone), AL was given for clinical episode 
treatment only, according to the national guidelines.

For the present analysis, a total of 324 dried blood 
spots (DBS) collected from finger prick at enrolment 
(first antenatal care visit (ANC-1)) and at delivery were 
selected from participants in Burkina Faso based on light 

microscopy (LM) results as shown in Fig. 1: (i) all availa-
ble DBS collected at delivery from pregnant women with 
a P. falciparum infection (N = 162); (ii) all available DBS 
collected at ANC-1 from pregnant women who expe-
rienced P. falciparum infection both at recruitment and 
delivery (N = 42); and, (iii) a random selection of DBS 
collected at ANC-1 from pregnant women with a P. falci-
parum infection (N = 120).

Laboratory methods
DNA extraction
Plasmodium falciparum genomic DNA was extracted 
using the QIAamp 96 DNA Blood Kit (Qiagen, Germany) 
following the manufacturer’s instructions.

PCR‑RLFP
pfmdr1 86Y, 184F and 1246Y mutations were determined 
using nested PCR followed by restriction fragment length 
polymorphism (RFLP) analysis as previously described 
[38]. PCR products were digested with AflIII (NEB), DraI 
(NEB), and EcoRV (NEB) for the determination of pfmdr1 
N86Y, Y184F, and D1246Y alleles, respectively (Table 1). 
The digested products were visualized by electrophoresis 

Fig. 1  Flow diagram of samples selection
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using 2.5% agarose gel for 2  h at 80  V. The nested PCR 
and digestion reactions were run using 3D7 as wild-type 
control for the three SPNs and V1 (for N86Y) and 7G8 
(for Y184F and D1246Y) as mutant controls.

Sulfadoxine‑pyrimethamine resistance markers
The assessment of P. falciparum mutations in the dhfr 
gene (codons N51, C59, S108) and the dhps gene (codons 
A437, K540) was performed as part of the COSMIC trial 
[35, 37] and, re-analysed in this manuscript. The dhfr and 
dhps genes were amplified by nested PCR and products 
were sequenced to identify the targeted mutations as pre-
viously reported [37].

Statistical analysis
Data were analysed using STATA version 14.0 (Stata-
Corp, USA). The pfmdr1 genotype profile was deter-
mined according to the presence or absence of wild/
mutant alleles. Samples in which both wild and mutant 
alleles were detected were considered as mutant allele 
carriers. Differences between samples collected at ANC-1 
and at delivery were estimated using the Chi-square test 
for proportions. Factors associated with pfmdr1 86Y 
mutant allele carriage were assessed by univariate and 
multivariable logistic regression analyses. Variables with 
P values ≤ 0.10 in univariate analyses were included in 
the multivariable models. The investigated variables 
included: MiP preventive strategy, parasitaemia, age, gra-
vidity, number of malaria episodes, number of IPTp-SP 
doses received during pregnancy, AL treatment during 
pregnancy, haemoglobin levels at delivery, and bed-net 
usage. P values less than 0.05 were considered statistically 
significant.

Results
Characteristics of study population
The characteristics of the study participants are shown 
in Table  2. The mean age of pregnant women infected 
both at ANC-1 and at delivery (21.5 ± 5.6  years) was 
significantly lower than that of women infected only at 
ANC-1 (23.9 ± 5.7 years) and of women infected only at 
delivery (26.5 ± 6.1  years) (P < 0.001). The median para-
site density was 980.5 (IQR: 412.5–2,949.2) parasites/µl 
and 2,237.2 (IQR: 613.5–11,425.7) parasites/µl at ANC-1 
and at delivery, respectively (P = 0.02). Among women 
infected at ANC-1, the median parasite density was sig-
nificantly higher among those infected both at ANC-1 
and at delivery (1,752.5 (IQR: 558.5–5,373.5) parasites/
µl) compared to those infected only at ANC-1 (903 (IQR: 
324.5–2,308.5) parasites/µl; P = 0.01). Among women 
infected at delivery, there was no significant difference 
of the median parasite density between those infected 
only at delivery and those infected both at ANC-1 and 
at delivery (P = 0.84). There was no significant differ-
ence of the proportion of women who benefited from 
CSST intervention between the three groups (P = 0.40). 
The proportion of primigravid and secondigravid women 
infected both at ANC-1 and at delivery was significantly 
higher than that of women infected only at ANC-1 and 
those infected only at delivery (P < 0.001).

Among pregnant women infected at ANC-1, there 
was a significant difference of bed-net use between 
those infected both at ANC-1 and at delivery (72.7% 
(24/42)) and those only infected at ANC-1 (92.8% 
(103/120); P = 0.004). Such a difference was not 
observed among women infected at delivery (P = 0.30). 
Among pregnant women who experienced malaria 
infection at delivery, 69% (29/42) of those infected 
both at ANC-1 and at delivery received at least one AL 

Table 1  Primer sequences used for the nested PCR and restriction enzymes used for the RLFP

Primer name Sequence Restriction enzyme

Nested1 forward Pfmdr1 86 (MDR-A1) TGT​TGA​AAG​ATG​GGT​AAA​GAG​CAG​AAA​GAG​ AflIII (NEB)

Nested1 reverse Pfmdr1 86 (MDR-A3) TAC​TTT​CTT​ATT​ACA​TAT​GAC​ACC​ACA​AAC​A

Nested2 forward Pfmdr1 86 (MDR-A4) AAA​GAT​GGT​AAC​CTC​AGT​ATC​AAA​GAA​GAG​

Nested2 reverse Pfmdr1 86 (MDR-A2) GTC​AAA​CGT​GCA​TTT​TTT​ATT​AAT​GACCAttTA

Nested1 forward Pfmdr1 184 (MDR-A1) TGT​TGA​AAG​ATG​GGT​AAA​GAG​CAG​AAA​GAG​ DraI (NEB)

Nested1 reverse Pfmdr1 184 (MDR-A3) TAC​TTT​CTT​ATT​ACA​TAT​GAC​ACC​ACA​AAC​A

Nested2 forward Pfmdr1 184 (MDR-A4) AAA​GAT​GGT​AAC​CTC​AGT​ATC​AAA​GAA​GAG​

Nested2 reverse Pfmdr1 184 (MDR-A2) GTC​AAA​CGT​GCA​TTT​TTT​ATT​AAT​GACCAttTA

Nested1 forward Pfmdr1 1246 (MDR-O1) AGA​AGA​TTA​TTT​CTG​TAA​TTT​GAT​ACA​AAA​AGC​ EcoRV (NEB)

Nested1 reverse Pfmdr1 1246 (MDR-O2) ATG​ATT​CGA​TAA​ATT​CAT​CTA​TAG​CAG​CAA​

Nested2 forward Pfmdr1 1246 (1246F) ATG​ATC​ACA​TTA​TAT​TAA​AAA​ATG​ATA​TGA​CAAAT​

Nested1 reverse Pfmdr1 1246 (MDR-O2) ATG​ATT​CGA​TAA​ATT​CAT​CTA​TAG​CAG​CAA​
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treatment during pregnancy against 44.2% (53/120) of 
those infected only at delivery (P = 0.02). There was a 
significant difference of the time of AL treatment to 
delivery between women infected only at delivery and 
that of women infected both at ANC-1 and at delivery 
(P = 0.05). The proportion of women who received at 
least three IPTp-SP doses was not significantly differ-
ent between those infected only at delivery and that of 

those infected both at ANC-1 and at delivery (P = 0.21). 
The carriage of triple dhfr 51/59/108 mutation was sim-
ilar among women infected only at delivery and those 
infected both at ANC-1 and at delivery (P = 0.60). Only 
two women were found to carry a double dhps 437/540 
mutant allele at delivery. Of note, data on dhfr-dhps 
mutations among the study popualtion were obtained 
from the main COSMIC trial [36, 37] and re-analysed 
in this manuscript.

Table 2  Characteristics of study population

a   Missing: ITN usage (women infected only at ANC-1 (N = 111), women infected only at delivery (N = 111), Women infected both at ANC-1 and at delivery (N = 33)); 
Haemoglobin level at delivery (women infected only at delivery (N = 118), Women infected both at ANC-1 and at delivery (N = 40)); Triple dhfr 51/59/108 mutation 
(Women infected only at delivery (N = 66), Women infected both at ANC-1 and at delivery (N = 17)

Characteristics Women infected at ANC-1 
(enrolment) (N = 120)

Women infected at Delivery 
(N = 120)

Women infected at ANC-1 
and at delivery (N = 42)

P

Age at enrolment (years, 
mean ± SD)

23.9 (±5.7) 26.5 (± 6.1) 21.5 (5.6)  < 0.001

Parasite density by LM (parasites/μl, Median (IQR))

 ANC-1 903 (324.5–2308.5) – 1752.5 (558.5–5373.5) 0.01

 Delivery – 1955.7 (565.2–9733) 2268 (835–15,485) 0.84

MiP preventive strategy

 IPTp-SP 67 (55.8) 58 (48.3) 20 (47.6) 0.40

 CSST/IPTp-SP 53 (44.2) 62 (51.7) 22 (52.4)

Gravidity

  ≤ 2 63 (52.5) 35 (29.2) 32 (76.2)  < 0.001

  > 2 57 (47.5) 85 (70.8) 10 (23.8)

ITN usagea

 Night before ANC-1 103 (92.8) – 24 (72.7) 0.004

 Night before delivery – 69 (62.2) 24 (72.7) 0.30

IPTp-SP doses during pregnancy

 < 3 – 82 (68.3) 33 (78.6) 0.21

  ≥ 3 – 38 (31.7) 9 (21.4)

AL treatment during pregnancy

 0 – 67 (55.8) 13 (31.0) 0.02

 1 – 33 (27.5) 19 (45.2)

 ≥ 2 20 (16.7) 10 (23.8)

Timing AL treatment to delivery

 No treatment 67 (55.8) 13 (31.0) 0.05

 4 to 28 days – 18 (15.0) 8 (19.0)

 29 to 42 days – 13 (10.8) 10 (23.8)

 43 to 63 days 13 (10.8) 5 (11.9)

  ≥ 64 days 9 (7.5) 4 (14.3)

Haemoglobin level at deliverya

 < 11 g/dl – 63 (53.4) 20 (50.0) 0.72

 ≥ 11 g/dl – 55 (46.6) 20 (50.0)

Malaria episode during pregnancy

 ≤ 2 – 58 (48.3) 0 (0.0)  < 0.001

 > 2 – 62 (51.7) 42 (100)

Triple dhfr 51/59/108 mutation at deliverya

 No 19 (28.8) 6 (35.3) 0.60

 Yes 46 (71.2) 11 (64.7)
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Plasmodium falciparum resistance markers genotyping 
success rate
In total, the success rate for pfmdr1 D1246Y genotyping 
was 92.0% (298/324), with rates of 90.7% (147/162) and 
93.2% (151/162) for samples collected at ANC-1 and at 
delivery, respectively. The pfmdr1 Y184F and N86Y geno-
typing showed similar success rates as the samples under-
went the same nested PCR procedure. The success rate 
for the samples collected at ANC-1 was 93.2% (151/162), 
while the success rate for the samples collected at deliv-
ery was 71.6% (116/162), giving a total success rate of 
82.4% (267/324) for both Y184F and N86Y codons.

Prevalence of pfmdr1 alleles among the study population
The mutant pfmdr1 86Y allele was detected among the 
study participants with a prevalence of 13.2% (20/131) 
and 12.1% (14/116) at ANC-1 and at delivery, respectively 
(P = 0.77). Among women who experienced malaria 
infection both at ANC-1 and at delivery, the preva-
lence of the mutant pfmdr1 86Y allele was 7.9% (3/38) 
and 16.1% (5/31) at ANC-1 and at delivery, respectively 
(P = 0.25). There was no significant difference of the pro-
portion of pfmdr1 86Y allele carriage between women 
infected at ANC-1 and those infected at delivery for both 
women who received the standard IPTp-SP treatment 
(P = 0.63) and those who received the CSST/IPTp-SP 
treatment (P = 0.38). By contrast, no mutant alleles cor-
responding to pfmdr1 Y184F and D1246Y codons were 
observed in the samples collected from either ANC-1 or 
delivery (Table 3).

Factors associated with pfmdr1 86Y mutant allele carriage 
at ANC‑1 and at delivery
Univariate and multivariable logistic regression analy-
ses were performed to assess the factors associated with 
the pfmdr1 86Y mutant allele at ANC-1 and at deliv-
ery (Tables  4 and 5). None of the variables investigated 
in the univariate analysis was significantly associated 
with the carriage of pfmdr1 86Y mutant allele at ANC-1 
(P > 0.1). Consequently, no multivariable analysis was 
undertaken for further assessment (Table  4). At deliv-
ery, univariate analyses showed a tendency of an increase 
risk of pfmdr1 86Y mutant allele carriage with parasite 

Table 3  Prevalence of pfmdr1 N86Y alleles among the study population

*  P value for total mutant (86Y) allele carriage versus wild-type (N86) allele carriage

Codon N86 allele 86Y allele N86 + 86Y alleles Total 86Y allele carriage P*

n % (95%CI) n % (95%CI) n % (95%CI) n % (95%CI)

Total study population

 ANC-1 (N = 151) 131 86.8 (80.3–91.7) 5 3.3 (1.1–7.6) 15 9.9 (5.7–15.9) 20 13.2 (8.3–19.7) 0.77

 Delivery (N = 116) 102 87.9 (80.6–93.2) 2 1.7 (0.2–6.1) 12 10.3 (5.5–17.4) 14 12.1 (6.8–19.4)

Women infected at ANC-1 and at delivery

 ANC-1 (N = 38) 35 92.1 (78.6–98.3) 1 2.6 (0.1–13.8) 2 5.3 (0.6–17.8) 3 7.9 (1.7–21.4) 0.25

 Delivery (N = 31) 26 83.9 (66.3–94.5) 0 0 5 16.1 (5.4–33.7) 5 16.1 (5.4–33.7)

Women who received standard IPTp-SP

 ANC-1 (N = 81) 73 90.1 (81.5–95.6) 1 1.2 (0.03–6.7) 7 8.7 (3.6–17.0) 8 9.9 (4.4–18.5) 0.63

 Delivery (N = 56) 49 87.5 (75.9–94.8) 2 3.6 (0.4–12.3) 5 8.9 (3.0–19.6) 7 12.5 (5.2–24.1)

Women who received CSST/IPTp-SP

 ANC-1 (N = 70) 58 82.9 (72.0–90.8) 4 5.7 (1.6–14.0) 8 11.4 (5.1–21.3) 12 17.1 (9.2–28.0) 0.38

 Delivery (N = 60) 53 88.3 (77.4–95.2) 0 0 7 11.7 (4.8–22.6) 7 11.7 (4.8–22.6)

Table 4  Univariate analyses assessing factors associated 
with pfmdr1 86Y mutant allele at ANC-1

Variables N OR (95%CI) P

Parasite density 151

 < Median (980.5 parasites/µl) 71 1

 ≥ Median 80 1.39 (0.53–3.62) 0.50

MiP preventive strategy 151

 IPTp-SP 81 1

 CSST/IPTp-SP 70 1.89 (0.72–4.92) 0.19

Age 151

 < Mean (23 years ± 6.1) 66 1

 ≥ Mean 85 1.28 (0.50–3.29) 0.61

Gravidity 151

 Primi-secundigravidae 92 1

 Multigravidae 59 1.32 (0.51–3.42) 0.56

ITN usage 136

 No 14 1

 Yes 122 0.97 (0.20–4.73) 0.97
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density above the median (P = 0.08). By contrast, there 
was a tendency towards reduced risk of pfmdr1 86Y 
mutant allele carriage among women who received at 
least three IPTp-SP doses during pregnancy (P = 0.06) 
and those who received at least one AL treatment dur-
ing pregnancy (P = 0.10). In multivariable analyses, these 
associations were confirmed as infections at delivery 
with a parasite density more than the median (2,237.2 

(IQR: 613.5–11,425.7) parasites/µl) was associated with 
an increase risk of pfmdr1 86Y mutant allele carriage 
(AOR = 5.5 (95% CI 1.07–28.0); P = 0.04). In addition, 
both three or more IPTp-SP doses (AOR = 0.25 (95% 
CI 0.07–0.92); P = 0.04) and one or more AL treatment 
(AOR = 0.25 (95% CI 0.07–0.89); P = 0.03) during preg-
nancy were associated with a significant reduce risk of 
pfmdr1 86Y mutant allele carriage at delivery. None of 

Table 5  Univariate and multivariable analyses assessing factors associated with pfmdr1 N86Y mutant allele at delivery

Variables N OR (95%CI) P AOR (95%CI) P

Parasite density 116

 < Median (2,237.2 parasites/µl) 43 1

 ≥ Median 73 4.03 (0.86–19.0) 0.08 5.5 (1.07–28.0) 0.04

Number of SP doses 116

 < 3 78 1

 ≥ 3 38 0.13 (0.02–1.07) 0.06 0.25 (0.07–0.92) 0.04

MiP preventive strategy 116

 IPTp-SP 56 1

 CSST/IPTp-SP 60 0.92 (0.30–2.83) 0.89

Triple dhfr 51/59/108 mutation

 No 25 1

 Yes 58 1.64 (0.30–8.95) 0.57

AL treatment during pregnancy

 0 51 1

  ≥ 1 65 0.39 (0.12–1.24) 0.10 0.25 (0.07–0.89) 0.03

Timing Al treatment to delivery

 No treatment 51 1

 4 to 28 days 20 0.51 (0.10–2.64) 0.43

 29 to 42 days 21 0.001 (0.001–1.01) 0.96

 43 to 63 days 13 0.39 (0.04–3.38) 0.39

  ≥ 64 days 11 1.04 (0.19–5.64) 0.97

Age 116

  < Mean (25.2 years ± 6.4 58 1

 ≥ Median 58 0.88 (0.28–2.71) 0.82

Gravidity 116

 Primi-secundigravidae 55 1

 Multigravidae 61 0.64 (0.21–1.98) 0.44

Malaria episode 116

 < 2 37 1

 ≥ 2 79 0.82 (0.25–2.65) 0.74

Malaria infection at ANC-1 and at delivery

 No 85 1

 Yes 31 1.62 (0.50–5.28) 0.42

Haemoglobin level at delivery 113

 ≥ Mean 11.5 g/dl ± 1.7 55 1

 < Mean 58 0.68 (0.22–2.10) 0.50

 ITN usage 101

 No 34 1

 Yes 67 0.46 (0.13–1.55) 0.21
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the other variables of interest, including MiP preventive 
strategy, triple dhrf 51/59/108 mutation, timing of AL 
treatment to delivery, gravidity, and malaria infection 
both at ANC-1 and at delivery, showed a significant asso-
ciation with pfmdr1 86Y mutant allele carriage (Table 5).

Discussion
Despite the widespread implementation of IPTp-SP to 
prevent MiP, pregnant women in endemic countries 
often experience peripheral and/or placental malaria 
infection at delivery [15, 39, 40]. Although WHO revised 
IPTp-SP guidelines and increased the SP dose, which has 
been shown to improve birth outcomes [41, 42], IPTp-
SP strategy is still threatened by increasing Plasmodium 
falciparum resistance to SP. Consequently, there is a 
need to develop new alternative or improved strategies 
as part of IPTp-SP policy. In line with the latter, CSST of 
MiP, in addition to standard IPTp-SP (CSST/IPTp-SP), 
was tested in Burkina Faso, Benin and The Gambia as an 
intervention to improve maternal health and birth out-
comes in areas of different malaria transmission intensity 
(COSMIC trial, NCT1941264) [35]. In such a context, the 
current study was conducted to determine prevalence 
and factors associated with the carriage of pfmdr1 poly-
morphisms among pregnant women participating in the 
COSMIC trial in Burkina Faso.

Mutations in the gene-encoding pfmdr1 are known 
to be associated with aminoquinoline resistance [43], 
and therefore represent key P. falciparum markers for 
monitoring resistance in both susceptible groups (chil-
dren under 5  years and pregnant women) and the gen-
eral population. In this study, the analysis was focused 
on: (i) mutations in pfmdr1 N86Y and D1246Y codons, 
which have been associated with resistance to chloro-
quine and amodiaquine [44–46], whereas wild-type 
sequences in these alleles were associated with reduced 
sensitivity to lumefantrine [44, 47, 48]; and, (ii) mutation 
in the pfmdr1 Y184F codon, which was associated with 
altered sensitivity to artemisinins and mefloquine [49]. A 
prevalence of 13.2 and 12.1% of the pfmdr1 86Y mutant 
allele was found at ANC-1 and at delivery, respectively. 
No mutant allele was observed for pfmdr1 Y184F and 
pfmdr1 D1246Y codons at both ANC-1 and at delivery. 
The observed prevalence of these mutations at positions 
86, 184 and 1246 in this study lack comparable data in the 
country as previous studies differ with regard to study 
population (children vs adults vs pregnant women), Plas-
modium falciparum isolates (clinical vs asymptomatic 
infections), and study periods [50–53]. However, look-
ing at available reports in the study area, these results 
showed a higher prevalence of the pfmdr1 86Y mutant 
allele in pregnant women at ANC-1 (13.2%) compared 
to that in patients with uncomplicated malaria two years 

before (pre-treatment prevalence of 8.3% in 2010–2012) 
[50]. An early study conducted by the time of adoption 
of ACT as a first-line treatment for uncomplicated falci-
parum malaria in the country (2005), reported a higher 
prevalence of pfmdr1 86Y mutant allele (35–40%) in chil-
dren aged 6–59 months with uncomplicated malaria [51]. 
Surprisingly, no pfmdr1 184F mutant allele was detected 
among the study population while a prevalence of about 
50% was reported among P. falciparum uncomplicated 
malaria patients in 2010–2012 [50]. In the same study, 
only three pfmdr1 1246Y mutant alleles were detected in 
660 isolates, corresponding to a prevalence of 0.4%.

It has been shown that wild-type sequences of pfmdr1 
N86Y, Y184F and D1246Y codons are selected by prior 
use of AL treatment in malaria patients [47, 48, 51–53]. 
By contrast, selection of the pfmdr1 184F mutant allele 
has been observed in prior therapy with AL in malaria 
patients in Uganda [47]. To explore the potential selec-
tion of wild-type/mutant sequences of pfmdr1 polymor-
phisms following AL treatments during pregnancy, the 
prevalence of pfmdr1 86Y mutant alleles at ANC-1 was 
compared to that at delivery. No significant difference of 
the pfmdr1 86Y mutant allele was found neither in the 
general study population (P = 0.77) nor in sub-groups 
represented by women infected both at ANC-1 and at 
delivery (P = 0.25), women who received the standard 
IPTp-SP (P = 0.63) and women who benefitted from addi-
tional screening and treatment of P. falciparum infections 
(asymptomatic infections) using AL (P = 0.38).

To further assess the potential selection of pfmdr1 
N86Y mutant/wild-type alleles by specific factors, fac-
tors associated with pfmdr1 86Y mutant allele carriage 
at ANC-1 and at delivery were investigated. Among the 
variables evaluated, none was significantly associated 
with pfmdr1 86Y mutant allele carriage at ANC-1. How-
ever, Plasmodium falciparum infection at delivery with 
high parasitaemia was significantly associated with nearly 
5.5 times increase risk of pfmdr1 86Y mutant allele car-
riage at delivery after adjusting by confounding factors 
(P = 0.04). By contrast, uptake of at least three IPTp-SP 
doses and at least one AL treatment were found to be 
significant protective factors against pfmdr1 86Y mutant 
allele carriage at delivery in multivariate analyses (75% 
reduction for both with P = 0.04 and P = 0.03, respec-
tively). These results suggest a benefit in reducing the 
risk of aminoquinoline resistance marker carriage by 
high coverage of IPTp-SP doses, which has been shown 
to reduce parasite load in P. falciparum infection during 
pregnancy [54, 55]. Moreover, these findings suggest a 
positive selection of pfmdr1 N86 wild-type allele at deliv-
ery following AL treatment during pregnancy in women 
receiving IPTp-SP, similar to that reported in non-preg-
nant women in Southeast Asia (Thailand) and East Africa 
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(Kenya) [30, 31] and in patients of all age groups in West 
Africa (Burkina Faso) [50].

Studies have demonstrated that recent AL use has more 
of an impact on pfmdr1 N86 wild-type allele prevalence 
than less recent AL use, as lumefantrine levels decline 
over time, resulting in less selection [56, 57]. On the other 
hand, it has been shown that AL could select for pfmdr1 
N86 wild-type allele a few months post-treatment in chil-
dren [58]. This could be explained by genetic variations 
or other factors including the administration of AL with 
fatty foods, leading some individuals to exhibit longer 
artemether or lumefantrine half-lives than other, allow-
ing longer periods of selection [58, 59]. Although, no 
evidence of an impact of the timing of AL treatment to 
delivery on the selection of pfmdr1 N86 wild-type allele 
was observed in this study, the existence of a specific 
selective window in pregnant women should not be ruled 
out given the limited number of pfmdr1 86Y mutant 
allele carriers. In addition, the sub-group of women 
who experienced malaria infection both at ANC-1 and 
at delivery did not show a significant association with 
pfmdr1 86Y mutant allele carriage at delivery and no sig-
nificant difference was found for triple dhfr 51/59/108 
mutations carriage in this sub-group compared to those 
infected only at delivery (P = 0.6), suggesting new infec-
tion parasite population after IPTp-SP and eventually AL 
treatments. In this regard, the lack of Plasmodium falci-
parum genotyping to distinguish recrudescent parasites 
to new infection parasites could be seen as another limit 
of this study. Future investigations on factors associated 
with pfmdr1 gene polymorphisms selection in pregnant 
women living in endemic countries should include large 
sample size and parasites population genotyping.

Conclusion
This study showed that the uptake of three or more IPTp-
SP doses and one or more AL treatments are significantly 
associated with a reduced risk of pfmdr1 86Y mutant 
allele carriage in pregnant women at delivery. These find-
ings suggest that both high coverage of IPTp-SP and the 
use of AL for the treatment of malaria infection/disease 
during pregnancy select for pfmdr1 N86 wild-type allele 
at delivery.
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