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Abstract 

Background:  Cerebral malaria (CM) remains a significant cause of morbidity and mortality in children in sub-Saharan 
Africa. CM mortality has been associated with increased brain volume, seen on neuroimaging studies.

Methods:  To examine the potential role of blood metabolites and inflammatory mediators in increased brain volume 
in Malawian children with CM, an association study was performed between plasma metabolites, cytokine levels and 
phospholipase A2 (PLA2) activity with brain volume.

Results:  The metabolomics analysis demonstrated arachidonic acid and other lysophospholipids to be positively 
associated with brain swelling. These lipids are products of the PLA2 enzyme and an association of plasma PLA2 
enzymatic activity with brain swelling was confirmed. TNFα, which can upregulate PLA2 activity, was associated with 
brain volume. In addition, CCL2 and IL-8 were also associated with brain volume. Some of these cytokines can alter 
endothelial cell tight junction proteins and increase blood brain barrier permeability.

Conclusions:  Taken together, paediatric CM brain volume was associated with products of the PLA2 pathway and 
inflammatory cytokines. Their role in causality is unknown. These molecules will need to undergo testing in vitro and 
in animal models to understand their role in processes of increased brain volume. These observations provide novel 
data on host physiology associated with paediatric CM brain swelling, and may both inform pathogenesis models and 
suggest adjunct therapies that could improve the morbidity and mortality associated with paediatric CM.
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Background
Infection with Plasmodium falciparum remains prevalent 
in many areas of the world and is associated with severe 
disease and mortality, particularly in children living in 
sub-Saharan Africa [1]. Cerebral malaria (CM) is a severe 
disease syndrome with mortality rates ranging from 15 to 

25 % in research settings [2]. In addition, almost a third of 
paediatric CM survivors develop long-term neurological 
complications [2, 3]. Severe brain swelling seen on neuro-
imaging has been reported in paediatric CM. CM associ-
ated brain swelling is associated with poor outcomes in 
Kenyan children and is a significant predictor of mortal-
ity in Malawian children [4–6]. Recently, CM associated 
brain swelling determined by magnetic resonance imag-
ing (MRI) found that swelling in survivors was readily 
reversible and that mortality was not associated with 
peripheral parasitaemia [5]. These observations have 
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provided new insights into CM related morbidity and 
mortality and now can potentially inform development 
of adjuvant therapies to reverse or prevent brain swelling.

The mechanism of CM brain swelling is unknown and 
likely involves several factors including parasite mediated 
venous obstruction, increased permeability of the blood 
brain barrier (BBB), cytotoxic oedema or increased blood 
flow volume [5, 6]. Prior evidence of alterations in BBB 
permeability includes the observation of fibrinogen leak-
age into the brain [7]. Moreover, a reduction in endothe-
lial cell tight junction proteins, which maintain the 
integrity of the BBB, has been reported, providing further 
support for increases in BBB permeability during CM 
[8–10]. A variety of systemic factors can lead to transient 
increase of BBB permeability in other diseases. These 
include the metabolic derangements associated with 
diabetic ketoacidosis and elevated concentrations of oxi-
dized phospholipids [11, 12]. Systemic metabolic abnor-
malities are common in CM, which is often associated 
with a hyperlactataemia, hypoglycaemia and evidence 
of marked inflammation [13–16]. Therefore, metabolites 
measured in a cohort of Malawian children with CM 
were correlated to brain volume, to examine their role as 
potential mediators of brain swelling.

Arachidonic acid, other phospholipase A2 (PLA2) lipid 
metabolites and plasma PLA2 enzymatic activity were 
associated with brain swelling. Expression of the PLA2 
enzyme is upregulated via the nuclear factor-kappa 
B (NFκB) pathway, which in turn is regulated by pro-
inflammatory cytokines, such as tumour necrosis factor 
alpha (TNFα) [17]. An association of TNFα and other 
cytokines with brain swelling was found, suggesting that 
brain swelling is associated with a high inflammatory 
state. These data provide new biochemical insights into 
mechanisms of brain swelling in paediatric CM. Further 
experiments are needed to determine if these associated 
molecules induce increased brain swelling in the setting 
of CM.

Methods
Study population
To identify small molecules associated with brain swell-
ing in paediatric CM, correlations were sought, between 
brain volume and both host factors and plasma metabo-
lites in Malawian children enrolled in an ongoing study 
of malaria pathogenesis in the Blantyre Malaria Project 
(BMP) during the 2009, 2011 and 2013 transmission 
seasons. The BMP study enrolls children with clinically 
defined CM [2], who are between 6 months and 12 years 
of age. This analysis was restricted to children who were 
HIV negative, had negative blood and CSF bacterial 
cultures and evidence of malaria retinopathy [18, 19]. 
The study was restricted to patients with retinopathy 

positive CM, as the presence of retinal abnormalities 
increases the specificity of the clinical diagnosis of CM 
[18]. Plasma collected from the study subjects on admis-
sion, was stored at −80 °C and shipped to Albert Einstein 
College of Medicine in a liquid nitrogen dry shipper for 
subsequent metabolic and cytokine profiling. Plasma 
histidine rich protein 2 (HRP2), a parasite protein that 
represents total body parasite burden [20], was meas-
ured using ELISA, as previously described [21]. Clinical 
and laboratory data were extracted from the study data-
base. Informed consent was obtained from the parent 
or guardian before enrollment into the BMP. This study 
was approved by the Albert Einstein College of Medi-
cine Institutional Review Board (IRB), Michigan State 
University IRB, the University of Rochester IRB, and The 
University of Malawi College of Medicine Research and 
Ethics Committee.

Neuroimaging
Neuroimaging was used to assess brain swelling with a 
0.35T Signa Ovation Excite MRI scanner (GE Healthcare, 
Milwaukee, Wisconsin). The scans were read indepen-
dently by two radiologists as previously reported [5, 6, 
22]. Patient brain volume score was assigned based on a 
consensus interpretation of both radiologists. Brain vol-
ume was measured using a 1–8 scoring system, 1 and 2 
indicating atrophy, 3-normal brain volume, 4-slightly 
increased brain volume, 5-mildly increased brain volume, 
6-moderately increased brain volume, defined as loss of 
some sulcal markings, 7-moderately/severely increased 
brain volume with diffuse sulcal and cisternal effacement 
universally evident but without herniation present, and 
8-severely increased brain volume with the findings of 7 
and with evidence of herniation.

Plasma cytokine quantification
Plasma cytokine data were available from a prior study 
(Feintuch, C.M. personal communication) for patients 
from 2009 and 2011. Cytokine levels were assessed by 
Luminex using the Human Cytokine Panel according to 
manufacturer’s instructions (Millipore) and read on a 
Magpix Multiplex Reader (Luminex).

Metabolomics
Global non-targeted MS metabolomics analysis was per-
formed at Metabolon, Inc. from 100  μL of plasma [23]. 
This method uses ultra-high performance liquid chro-
matography/tandem mass spectrometry in both positive 
and negative ion modes along with gas chromatography/
mass spectrometry to maximize compound detection 
and accuracy. Metabolites were identified by comparing 
the spectral signatures of the plasma samples to a refer-
ence library using software developed at Metabolon [24].
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Plasma PLA2 activity fluorescence assay
To measure plasma PLA2 activity, a PLA2 fluorescence 
assay was performed as previously described with minor 
modifications [25]. Briefly, the liposomes were prepared 
with 2  mg of PG (l-α-Phosphatidyl-DL-glycerol sodium, 
Sigma) mixed with 14  μg of Red/Green BODIPY® PC-A2 
(1-O-(6-BODIPY® 558/568-aminohexyl)-2-BODIPY® FL 
C5-sn-glycero-3-phosphocholine, Life Technologies) in 
1  ml of chloroform, which was subsequently evaporated 
under argon. The liposomes were added in 1 ml of (250 mM 
sucrose, 50 mM Tris–HCl pH 7.5 and 0.02 % sodium azide) 
and the mixture was vortexed for 20 min and sonicated 6 
times for 30  s with 1  min intervals on ice. The liposomes 
were then aliquoted in smaller quantities, stored in −20 °C 
and used within 30  days of preparation. For each sample 
3 μl of patient plasma were mixed with 97 μl of PLA2 assay 
buffer (10 mM Tris–HCl, pH 7.5 and 10 mM CaCl2) into a 
black assay plate (Corning). Subsequently, 1 μl of fluorescent 
phospholipid substrate was mixed with 99  μl PLA2 assay 
buffer, sonicated for 10 s and added to the assay plate for a 
final volume of 200 μl. The plate was shaken for 15 s, incu-
bated at 37 °C for 30 min and fluorescence was recorded at 
470 nm excitation and 515 nm emission (BioTek). Samples 
were run in triplicate and the mean values of the relative 
fluorescence units (RFUs) at 30 min are reported.

Statistical analysis
To determine whether age, vital signs, HRP2, peripheral 
parasitaemia, plasma cytokines, complete blood count on 
admission, or coma resolution time correlated with brain 
volume, Spearman’s correlations were used. Two sided 
p-values <0.05 were considered statistically significant.

For the metabolomics analysis, ion counts were gener-
ated for each metabolite. A maximum likelihood method 
was used to impute left-truncated abundance values for 
each metabolite [26, 27]. First the mean and variance of 
the log transformed abundance values was estimated for 
each metabolite. Then the expectation of the left-trun-
cated normal distribution of each metabolite was used 
to impute censored values. Spearman’s correlations were 
then performed between each metabolite or clinical fac-
tor and brain swelling scores.

The mean plasma PLA2 RFU values at 30 min of incuba-
tion were log10 transformed. Spearman’s correlations on 
the plasma PLA2 activity were then carried out and brain 
volume scores with p < 0.05 were considered statistically 
significant. The correlations were performed using Graph 
Pad Prism 6.03 (GraphPad Software, San Diego, CA, USA).

Results
Study population
Fifty-three Malawian children with retinopathy posi-
tive CM, who were enrolled in the BMP cohort during 

the transmission seasons 2009, 2011, and 2013, and had 
available plasma and neuro-imagining data were stud-
ied. Seven (13 %) children had a volume score of 3; eight 
(15  %) children had a volume score of 4; eleven (21  %) 
children had a volume score of 5; thirteen (25  %) chil-
dren had a volume score of 6; and fourteen (26 %) chil-
dren had a volume score of 7. The cohort had a median 
age of 52 months, haematocrit of 21.2 %, coma resolution 
time of 48 h, and 17 % mortality (Table 1). There were no 
statistically significant correlations between age, coma 
resolution time, vital signs, blood counts, peripheral par-
asitaemia or HRP2 concentration, measured on admis-
sion with brain swelling (Table 1) [5].

Metabolite correlation with brain volume
To identify plasma small molecules associated with CM 
brain swelling, a metabolomics analysis was carried out 
on 30 randomly selected plasma samples from the total 
study population enrolled in 2011 and 2013. There were 
no significant differences in the characteristics reported 
in Table 1 between the metabolomics sub-cohort and the 
total study population (Additional file 1: Table S1).

Brain volume positively correlated to 17 out of the 432 
detected molecules (Spearman’s correlation, p value <0.05) 
(Table 2). A wide range of molecules was identified to be 

Table 1  Clinical and  laboratory data of  admission in  53 
children with  retinopathy positive CM and  correlation 
with brain volume

Description of patient characteristics and correlation with brain oedema scores. 
P-values and Spearman’s r are shown for continuous variables. IQR: interquartile 
range

Characteristic Median (IQR) P-value Spearman’s r

Demographics

 Age (months) 52 (31.5–73) 0.88 −0.02

 Female sex, no (%) 28 (53) NA

Clinical findings

 Temperature (°C) 38.5 (37.6–39.4) 0.70 0.05

 Blood pressure (mmHg) 93 (87–101) 0.14 −0.21

 Heart rate (beats/min) 148 (129.5–163) 0.58 0.08

 Respiratory rate (breaths/
min)

42 (37–52) 0.67 0.06

Laboratory findings

 Parasitaemia (para‑
sites × 103/μl)

69.5 (22.0–338.8) 0.62 0.07

 HRP2 (ng/ml) 7208 (2535–9541) 0.30 −0.15

 Total WBC (×103/μl) 7.9 (6.0–11.0) 0.28 0.15

 Platelets (×103/μl) 61.5 (30.8–100.5) 0.67 −0.08

 Hct (%) 21.2 (17.9–26.4) 0.41 0.12

Clinical outcome

 Coma resolution time (h) 48 (30–82) 0.42 0.13

 Death, no. (%) 9 (17) NA
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associated with brain volume, including lipids. Many of the 
significant lipid metabolites are PLA2 metabolites. PLA2 
is an enzyme that hydrolyzes phospholipids at the sn-2 
position, to liberate lysophospholipids and free fatty acids, 
including arachidonic acid [28]. Brain swelling correlated 
with the lysophospholipids, 1-eicosatrienoylglycerophos-
phoethanolamine and 1-oleoylglycerophosphoethanola-
mine. The fatty acids arachidonic acid and pentadecanoic 
acid, as well as 5-hydroxyhexanoate, a fatty acid metabo-
lite, were also significantly associated with brain swelling.

l-urobilin, a metabolite of the hemoglobin catabo-
lism pathway, was highly correlated with brain volume. 
Among other molecules, the carbohydrate, mannitol was 
also associated with brain swelling (Table 2).

Plasma sPLA2 activity and CM brain swelling
Since PLA2 metabolites correlated with brain swelling, 
the PLA2 enzymatic activity itself was examined for cor-
relations with brain swelling. To determine PLA2 activity, 
a fluorescence PLA2 enzymatic assay was carried out on 
the same BMP study enrollment plasma samples from all 
53 patient samples. A significant correlation of increas-
ing PLA2 activity and brain volume was observed (Spear-
man’s correlation r = 0.31, p value = 0.02) (Fig. 1).

Cytokine activity and CM brain swelling
The PLA2 pathway and its downstream lipid prod-
ucts, such as arachidonic acid mediate inflammatory 
responses [29]. PLA2 can be upregulated by TNFα and 
thus we examined TNFα and other inflammation related 
cytokines for their association with CM brain swell-
ing. Cytokine data were available for 27 samples from 
the total cohort. For this subset of patients, clinical and 
laboratory data were similar to the total study population 
(Additional file 1: Table S1). Statistically significant corre-
lations were observed, between brain volume, and TNFα 
(Spearman’s correlation r = 0.38, p-value = 0.05), CCL2 
(Spearman’s correlation r =  0.44, p-value =  0.02), IL-8 
(Spearman’s correlation r  =  0.43, p-value  =  0.03) and 
IL-10 (Spearman’s correlation r =  0.50, p-value =  0.01) 
(Fig. 2).

Discussion
To identify potential mediators of brain swelling asso-
ciated with paediatric CM, plasma metabolite levels of 
Malawian children with retinopathy positive CM were 
correlated to brain volume. Associations were identified 
between PLA2 metabolites, including arachidonic acid, 
with brain volume. Plasma PLA2 enzymatic activity also 
correlated to brain volume, suggesting an upregulation 
of the PLA2 pathway in children with high brain swell-
ing. TNFα can upregulate PLA2 and this study reports 
that, in conjunction with other inflammatory cytokines, 
TNFα is correlated with brain volume. l-urobilin, a 
haem degradation product and mannitol were also asso-
ciated with brain volume. Collectively, these results 
suggest a higher inflammatory state in children with 
increased brain volume. Further studies on how these 
molecules may be involved in BBB disruption, and why 
some children sustain a higher inflammatory state are 
now warranted.

Table 2  Plasma metabolites associated with brain volume 
in Malawian children with retinopathy positive CM

Analysis carried out on from 30 samples collected in 2011 and 2013 are shown 
(p-value <0.05). Asterisk represents a metabolite that was identified based on its 
chromatographic and mass spectra rather than a purified standard

Metabolite P-value Spearman’s r

Lipids associated with the PLA2 pathway

 Pentadecanoate (15:0) 0.03 0.39

 1-Eicosatrienoylglycerophosphoethanola‑
mine*

0.04 0.38

 Arachidonate (20:4n6) 0.04 0.38

 1-Oleoylglycerophosphoethanolamine 0.05 0.37

Other lipids

 Butyrylcarnitine 0.01 0.46

 2-Linoleoylglycerol (2-monolinolein) 0.02 0.42

 Octanoylcarnitine 0.03 0.41

 5-Hydroxyhexanoate 0.04 0.37

Other metabolites

 Phenylacetate 0.00 0.52

 1,3,7-trimethylurate 0.00 0.52

 Alpha-ketoglutarate 0.01 0.46

 Mannitol 0.01 0.45

 3-hydroxy-2-ethylpropionate 0.02 0.43

 Paraxanthine 0.02 0.42

 Thymol sulfate 0.04 0.38

 l-urobilin 0.04 0.37

 Sucrose 0.04 0.37

Fig. 1  Plasma PLA2 activity correlates to brain volume in Malawian 
children with retinopathy positive CM; Plasma PLA2 activity correlates 
to brain volume. (Spearman’s correlation r = 0.31, p-value = 0.02) 
Medians and interquartile range are depicted. RFU relative fluores‑
cence units
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Brain swelling has recently been shown to be the 
strongest predictor of mortality in paediatric CM, with 
an adjusted odds ratio of 7.5 (95  % CI 2.1–26.9) for 
severe brain swelling among patients who died com-
pared to those who survived [5]. Brain swelling induces 
increased intracranial pressure that may lead to brain-
stem compromise and respiratory arrest. The mecha-
nism of increased brain volume is unknown. Multiple 
mechanisms of increased brain volume may exist in clini-
cal conditions such as CM [30], including processes that 
impact BBB function [5, 7, 10]. This study set out to iden-
tify circulating biochemical mediators that may contrib-
ute to BBB dysfunction. [7, 10].

Positive correlations between brain volume and sev-
eral lipids that are PLA2 metabolites were identified. The 
fatty acids released by PLA2, such as arachidonic acid, 
can be sources of energy, signaling, and of relevance to 
this study, potent mediators of inflammation. Specifi-
cally, arachidonic acid, the precursor of the eicosanoid 
pathway, can increase the permeability of human brain 
microvasculature endothelial cell monolayers via pros-
taglandin E2 activation of EP3 and EP4 receptors [31]. 

Lysophospholipids are also generated by PLA2 and are 
important in cell signaling and membrane biology. PLA2 
enzymatic activity has been associated with neurological 
and inflammatory conditions and inhibitors of the PLA2 
enzyme are being studied to reduce pathologic inflam-
mation [32–36]. Fatty acids and lysophospholipids can 
be generated by enzymes other than PLA2, therefore it 
was confirmed in this study that plasma PLA2 activity 
was also correlated with brain swelling [37, 38]. These 
data extend a prior observation where high PLA2 plasma 
activity was associated with severe malaria and death in 
Malawian children [39]. Why some children have higher 
PLA2 enzyme activity is unknown. PLA2 activity is tightly 
regulated by host responses including TNFα and reac-
tive oxygen species (ROS), both of which can be elevated 
during severe malaria [15, 40, 41]. Thus the PLA2 path-
way and its metabolites may be acting directly on brain 
microvasculature endothelial cells or indirectly through 
their effects on cell signaling or energy metabolism.

l-urobilin, a degradation product of haem also cor-
related with brain volume. Malaria induces erythro-
cyte lysis and subsequent release of haemoglobin into 

Fig. 2  Cytokines correlate to brain volume in Malawian children with retinopathy positive CM; Multiple cytokines significantly correlate with brain 
volume. a TNFα levels (Spearman’s correlation r, 0.38, p-value = 0.05). b CCL2 levels (Spearman’s correlation r, 0.44, p-value = 0.02). c IL-8 levels 
(Spearman’s correlation r, 0.43, p-value = 0.03). d IL-10 levels (Spearman’s correlation r: 0.50, p-value = 0.01). Cytokines were measured by Luminex 
in duplicate and the mean value is displayed
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the circulation. This results in increase of bloodstream 
ROS levels, which can alter BBB permeability [41–44]. 
Lysed erythrocytes can increase BBB permeability and 
result in brain oedema, typically occurring twenty-four 
hours after haemolysis [45–47]. Direct measurement of 
ROS and other haemoglobin metabolites are needed to 
explore the role of erythrocyte lysis in CM associated 
brain swelling.

Plasma mannitol was also found to have a positive cor-
relation with brain swelling. Exogenous mannitol has 
been associated with increased brain oedema or brain 
weight in animal models of vasogenic oedema and brain 
infarct [50, 51]. Mannitol is used therapeutically for the 
treatment of increased intracranial pressure following 
brain injury [48, 49]. Mannitol adjunctive therapy has 
been studied in CM and was found to either have no sig-
nificant effect on clinical outcomes in paediatric CM in 
Uganda [52] or to potentially have adverse outcomes by 
prolonging coma resolution time in adults with CM [53]. 
Further studies to investigate the role of endogenous and 
exogenous mannitol in CM paediatric brain swelling are 
necessary.

Inflammatory cytokines were also associated with 
brain volume and these may directly alter BBB perme-
ability. CCL2 and IL-8 have been previously associated 
with alterations in tight junction proteins including 
occludin, ZO-1 and claudin-5 resulting in increased brain 
endothelial cell permeability [54, 55]. In addition, TNFα 
has been shown to increase retinal endothelial cell per-
meability through protein kinase C zeta (PKCζ) and the 
NFκB pathway by reducing the expression and distribu-
tion of claudin-5 and ZO-1 [56]. Interestingly, inhibition 
of TNFα by soluble TNF p55 receptor attenuates status 
epilepticus-induced oedema in a rat model, which could 
be relevant in CM, as seizures are highly prevalent [3, 
57]. Furthermore, TNFα can regulate the transcription 
of PLA2 proteins via the NFκB pathway, providing a link 
between inflammatory cytokines and the PLA2 pathway 
[17]. The mechanism, where inflammatory cytokines, 
increased PLA2 activity and its lipid metabolites converge 
to disrupt the BBB, in the setting of parasites sequestra-
tion to brain endothelial cells in CM, requires further 
investigation. If the PLA2 pathway is found to play a 
direct role in BBB dysfunction, PLA2 inhibitors could be 
evaluated as potential adjunctive therapy.

The higher inflammation and brain volume do not cor-
relate with peripheral parasitaemia or total parasite body 
load represented by parasite HRP2 levels [58]. The vari-
ability in inflammatory responses during infection could 
be attributed to differences in disease duration, host or 
parasite genetic polymorphism, prior malaria exposures, 
uric acid levels or other host or parasite factors [59–65]. 
Further studies examining how host and/or parasite 

parameters are mediating inflammation and upregulation 
of the PLA2 pathway in the setting of increased brain vol-
ume could inform therapeutic intervention.

A limitation to the design of this study is that the 
plasma metabolome was examined after onset of brain 
swelling. For this reason, it is difficult to know if the 
metabolic profile is a cause of BBB dysfunction or the 
result of changes secondary to increased brain volume. 
A longitudinal study design with repeated metabolic 
sampling over time in correlation to brain swelling sta-
tus would provide a more powerful approach to identify 
potential mediators of BBB permeability. Additionally, 
there were no metabolomics data from patients with 
brain volume scores 1, 2 and 8 due to the low prevalence 
of those brain volume scores. To develop biomarkers of 
brain swelling for regions without MRI, further plasma 
analyses that include all of the brain volume groups 
are warranted. Given the variances observed, larger 
sample sizes would permit corrections for multiple 
comparisons.

Conclusions
This study shows associations between brain volume and 
plasma PLA2 activity, metabolites of the PLA2 pathway, 
inflammatory cytokines, and other molecules in paedi-
atric CM patients. The role of these small molecules and 
cytokines as disease mediators or drug target candidates 
can now be further investigated.
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