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Where have all the mosquito nets 
gone? Spatial modelling reveals mosquito net 
distributions across Tanzania do not target 
optimal Anopheles mosquito habitats
Emily S. Acheson*, Andrew A. Plowright and Jeremy T. Kerr

Abstract 

Background:  Malaria remains the deadliest vector-borne disease despite long-term, costly control efforts. The United 
Republic of Tanzania has implemented countrywide anti-malarial interventions over more than a decade, including 
national insecticide-treated net (ITN) rollouts and subsequent monitoring. While previous analyses have compared 
spatial variation in malaria endemicity with ITN distributions, no study has yet compared Anopheles habitat suitability 
to determine proper allocation of ITNs. This study assesses where mosquitoes were most likely to thrive before imple-
mentation of large-scale ITN interventions in Tanzania and determine if ITN distributions successfully targeted those 
areas.

Methods:  Using Maxent, a species distribution model was constructed relating anopheline mosquito occurrences 
for 1999–2003 to high resolution environmental observations. A 2011–2012 layer of mosquito net ownership was 
created using georeferenced data across Tanzania from the Demographic and Health Surveys. The baseline mosquito 
habitat suitability was compared to subsequent ITN ownership using (1) the average ITN numbers per house and (2) 
the proportion of households with ≥1 net to test whether national ITN ownership targets have been met and have 
tracked malaria risk.

Results:  Elevation, land cover, and human population distribution outperformed variants of temperature and 
Normalized Difference Vegetation Index (NDVI) in anopheline distribution models. The spatial distribution of ITN 
ownership across Tanzania was near-random spatially (Moran’s I = 0.07). Householders reported owning 2.488 ITNs on 
average and 93.41 % of households had ≥1 ITN. Mosquito habitat suitability was statistically unrelated to reported ITN 
ownership and very weakly to the proportion of households with ≥1 ITN (R2 = 0.051). Proportional ITN ownership/
household varied relative to mosquito habitat suitability (Levene’s test F = 3.0037). Quantile regression was used to 
assess trends in ITN ownership among households with the highest and lowest 10 % of ITN ownership. ITN owner-
ship declined significantly toward areas with the highest vector habitat suitability among households with lowest ITN 
ownership (t = −3.38). In areas with lowest habitat suitability, ITN ownership was consistently higher.

Conclusions:  Insecticide-treated net ownership is critical for malaria control. While Tanzania-wide efforts to distribute 
ITNs has reduced malaria impacts, gaps and variance in ITN ownership are unexpectedly large in areas where malaria 
risk is highest. Supplemental ITN distributions targeting prime Anopheles habitats are likely to have disproportionate 
human health benefits.
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Background
Malaria remains the most deadly of all vector-borne 
diseases, infecting an estimated 200  million people and 
causing over 550,000 deaths globally every year [1]. 
Approximately 90 % of all malaria deaths occur in Africa, 
where an estimated 78 % of deaths are in children under 
the age of five [1]. Malaria parasites are transmitted 
exclusively by Anopheles mosquitoes [2], spurring dec-
ades of research not only on the parasite, but also on its 
widespread vector. The spatial variation in vector-borne 
disease distributions such as malaria can likely be attrib-
uted to variations in environmental conditions (e.g. land 
cover, temperature, precipitation) and human popula-
tion distribution that disease vectors depend on for sur-
vival [3]. Ecological niche models (ENMs) correlate these 
environmental factors with georeferenced occurrences 
of Anopheles mosquitoes to improve detection of spa-
tial and temporal variation in biophysical determinants 
of these malaria vectors, often at a countrywide or even 
continent-wide scale [4–8]. Although these modelling 
methods are rapidly advancing, they have yet to incor-
porate anti-malarial intervention data, though such 
approaches have been suggested and encouraged [2]. 
Anti-malarial controls are not only time-intensive but 
also financially burdensome, with $5.1 billion US planned 
but $2.7 billion US expended in 2013 [1]. The synthesis of 
species distribution modelling (or ecological niche mod-
elling) and large-scale mosquito control methods can 
offer a new perspective on the potential effects of anti-
malarial controls [4].

Insecticide-treated nets (ITNs) are an excellent exam-
ple of such vector control methods working on a large 
scale. The percent reduction in malaria deaths in chil-
dren under the age of five was estimated in 43 sub-Saha-
ran African countries from 2001 to 2010, compared to a 
baseline in 2000. Some countries reported no reduction 
by ITN scale-ups, while others reported up to a 26  % 
decrease in malaria deaths in children under the age of 
five [9]. In 2014, a record number of ITNs were distrib-
uted to malaria-endemic African countries, with the total 
number of ITNs delivered to Sub-Saharan Africa reach-
ing 427 million [1]. Within the United Republic of Tanza-
nia alone (hereafter Tanzania), an extensive ITN national 
plan has been implemented over the past 25 years, sup-
ported by the Global Fund to Fight AIDS, Tubercu-
losis and Malaria (GFATM) and the USA President’s 
Malaria Initiative [10]. Since 2004, the Tanzania National 
Voucher Scheme has provided subsidized ITNs to preg-
nant women during antenatal visits [11]. Between 2009 
and 2010, a mass campaign distributed 8.7 million ITNs 
across the country, which were free to families with chil-
dren under the age of five [12]. Despite increases in cov-
erage, analyses of ITN scale-up impacts [9] found only 

a 3 % reduction in malaria deaths in Tanzanian children 
under the age of five from 2001 to 2010. In 2011, a Uni-
versal Coverage Campaign distributed 17.6 million ITNs 
nationally with the goal to increase global use in the gen-
eral population to 80 % [10]. In addition, the GFATM set 
a national target for Tanzania to increase the proportion 
of households with at least one ITN to 90 % by 2013 [13].

Numerous analyses have been conducted to determine 
the effects of ITN use on malaria endemicity [14–17] 
and on mosquito populations at local scales [18–20], 
but none have yet compared ITN coverage with mos-
quito habitat suitability to determine if coverage has been 
optimally allocated. Environments that favour Anoph-
eles mosquito survival and reproduction, as well as more 
densely populated areas that facilitate access to hosts and 
accelerate malaria parasite transmission, will have higher 
malaria risk. Given mass ITN rollouts, is ITN owner-
ship across Tanzania meeting targets in areas with high 
mosquito habitat suitability and increased malaria risk? 
Furthermore, if ITN distributions were optimized to tar-
get the most at-risk groups, areas with greater mosquito 
habitat suitability would be expected to have both greater 
averages and lower variances in ITN ownership rates 
(because coverage rates should be consistently high in 
malaria-endemic areas). Yet, ITN ownership relative to 
vector suitability remains uncertain even in regions, such 
as Tanzania, where national household surveys exist to 
permit such assessments.

Here, a species distribution model is created at 1-km 
resolution of Anopheles mosquitoes across Tanzania in 
2001 (before large-scale ITN distributions) and is com-
pared with countrywide ITN ownership by 2012 (num-
ber of ITNs owned per house and proportion of houses 
with at least one ITN) to assess where mosquitoes were 
most likely to thrive and whether ITN rollouts ensured 
coverage of such areas. This study uses the largest collec-
tion known of Anopheles mosquito occurrence records 
in Tanzania available for this time period, including 400 
published sources, private data collections and online IR 
Mapper and the Malaria Atlas Project databases. This 
study relates species distribution models for Anopheles 
mosquitoes to ITN ownership and may serve as a tem-
plate for integrating Anopheles mosquito distributions 
and disease risk with anti-malaria interventions.

Methods
Study area
The study area included all of Tanzania, including the 
large islands in the Indian Ocean (Fig.  1). Tanzania 
occupies 886,100  km2 [21] and its population exceeded 
45 million people by 2012 [22]. Tanzania remains one 
of the poorest countries in the world, with a per capita 
average yearly income of $630 US as of 2013 [22]. Of all 
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vector-borne diseases in the country, malaria still causes 
the highest morbidity and mortality rates [23]. Over 85 % 
of cases are caused by Plasmodium falciparum, the most 
dangerous malaria parasite [24].

The country has a tropical climate with wet and dry 
seasons that vary due to its topography. The northern 
and eastern regions experience two wet seasons, with 
short rains from October to December and long rains 
from March to May. The western, central, and southern 
regions mainly have one wet season that lasts from Octo-
ber to April or May. About 80 % of the population lives 
in rural arid regions [25] at very low population densi-
ties, with the remaining population in high-density urban 
centers, such as Dar es Salaam, which approaches 3133 
people/km2 [26]. Mosquito net coverage following mas-
sive ITN rollouts is not related to wealth but prioritizes 
pregnant women and families with children under the 
age of five [10].

Entomological records
The main malaria vectors in Tanzania are Anopheles 
arabiensis, Anopheles funestus, and Anopheles gambiae 
s.s. [27]. Over 400 published literature sources were 
reviewed for georeferenced occurrences of Anopheles 
mosquitoes in Tanzania. An observation for Anopheles 

species was recorded if collection localities were speci-
fied for any month and year of collection between 1934 
and 2014. These data were supplemented by unpublished 
data collections (personal comm. Dr. Maureen Coetzee) 
and online database IR Mapper [28] and the Malaria 
Atlas Project database [29]. Each coordinate was verified 
using Google Earth (Version 7.1.2.2019, Google Inc.).

When complete, the database comprised 203 unique 
georeferenced observations of An. gambiae s.l. (35.5 %), 
An. arabiensis (32.4 %), An. funestus s.l. (16.2 %), and An. 
gambiae s.s. (15.9  %) across all years. Identification of 
mosquitoes within the An. gambiae s.l. complex relied on 
polymerase chain reaction or cytogenetics. The database 
details species, month and year of collection, citation 
source, village of collection, and trapping method.

Niche model
Maxent software [30], v.3.3.3k, was used to predict the 
relative habitat suitability of Anopheles mosquitoes 
across Tanzania. Maxent combines presence-only species 
occurrence records with environmental data to create a 
model that predicts areas of relative habitat suitability 
for a given species. Maxent uses a background dataset 
that consists of pseudoabsences (i.e. a random sample of 
non-occurrences) instead of true recorded absences. The 

Fig. 1  United Republic of Tanzania, detailed by districts and elevation. The map shows the 148 Demographic and Health Surveys “admin 2” district 
boundaries, as well as elevation, several major cities, and bordering countries. The inset map details Tanzania’s location within Africa
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output estimates relative habitat suitability and not direct 
occurrence probability since areas where the species was 
not recorded are considered less suitable relative to where 
the species was actually recorded. Maxent niche mod-
els with high training accuracy have been constructed 
for arthropod vectors, including mosquitoes [4, 31–33], 
ticks [34–36], tsetse flies [37–39] and sandflies [40–42]. 
Despite Maxent’s tendency to be more conservative than 
other machine-learning techniques [43], it is one of the 
most reliable species distribution modelling methods, 
even with small numbers of species observations [44, 45]. 
However, internal training and testing accuracies evalu-
ate the model’s fit to existing observations and external 
tests against independent measurements or temporal 
environmental changes provide stronger tests of model 
performance [46].

Since large-scale mosquito net distributions com-
menced in 2004, the niche model building was narrowed 
to the Anopheles coordinates collected between 1999 
and 2003. Many historical records for anopheline mos-
quitoes in the 1999–2003 period do not distinguish spe-
cies within the An. gambiae s.l. complex (e.g. only three 
geographically-unique points were recorded as An. gam-
biae s.s. compared to 54 recorded as An. gambiae s.l.). 
All recorded Anopheles species were combined to build 
the Maxent model. The focus of this study includes any 
of these malaria vectors, despite niche differences among 
species, relative to mosquito net ownership. All eight 
species within the An. gambiae s.l. complex can trans-
mit malaria parasites except Anopheles amharicus, which 
does not occur in Tanzania, and Anopheles quadriannu-
latus, which has not been recorded in the country since 
1968 [47]. The absence of spatially detailed data sufficient 
for these models prevented species-by-species evalua-
tion of habitat suitability for the time period relevant to 
national ITN distribution. In total, 56 occurrence records 
were thus used to build the Maxent model, substantially 
exceeding minimum requirements (>5 observations) to 
produce informative predictions [44] (Fig.  2). Of these 
records, one was An. arabiensis, seven were An. funes-
tus, 46 were An. gambiae s.l. and two were An. gambiae 
s.s., though more than one species was recorded at each 
location.

Multiple models were constructed using elevation, 
human population (Fig. 3), land cover, and variations of 
temperature and NDVI (average, minimum, and maxi-
mum). For assessment of model accuracy, occurrence 
records were randomly partitioned into 75  % for model 
training and 25 % for model testing. Ten replicates were 
run for each model, using tenfold cross-validation, each 
with a randomized partitioning of training and test-
ing data, a technique that can reliably test spatial model 
skill for disease vector distributions [46]. The habitat 

suitability raster maps were then averaged to determine 
the relative probability of suitability per grid cell.

The model’s accuracy was determined using a thresh-
old-dependent binomial omission test and a threshold-
independent receiver operating characteristic analysis 
[30]. For the binomial test of omission, a fixed threshold 
for habitat suitability values of 0.1 was used, which is a 
threshold commonly set in other studies [4, 43]. For the 
threshold-independent analysis, model skill was evalu-
ated using area under the receiver operating characteris-
tic (AUC) [4, 48, 49]. AUC values approaching 1 indicate 
perfect discrimination between suitable and unsuitable 
areas for the target species, and values of 0.5 indicate per-
formance no better than random. Each variable’s unique 
and shared contribution to model accuracy was evaluated 
using jackknife procedures [30]. Each variable’s relative 
contribution to overall model predictions was then calcu-
lated and presented as a percentage.

Environmental data
The histories of many mosquito-borne diseases, includ-
ing malaria, indicate that climate is rarely the principal 
determinant of mosquito distributions in tropical regions 
and that shorter-term consequences of human activities 
often exert greater effects [50, 51]. Relevant climatic fac-
tors include land surface temperature and precipitation 
[4, 43]. Models incorporating satellite-based land cover 
and/or topography as indicators of mosquito habitats 
can pinpoint local variations in malaria risk [52]. Human 
population density is a critical determinant of relative 
malaria risk because of density-dependent transmis-
sion of parasites among individuals in the presence of 
anthropophilic Anopheles vectors [43].

Measurements of environmental conditions were 
used at 500–1000 m resolution across Tanzania derived 
using the Moderate Resolution Imaging Spectroradi-
ometer (MODIS) sensor on the Terra satellite. All 8-day 
Land Surface Temperature composites (LST; MOD11A2, 
1000  m resolution), 12 monthly Normalized Differ-
ence Vegetation Index composites (NDVI; MOD11A3, 
1000  m), and land cover observations (MCD12Q1, 
500  m) were acquired for 2001. NDVI measures green-
ness and photosynthetic activity, which detects vegeta-
tion differences due to irrigation (such as rice-growing 
areas). Digital elevation data at 90-m resolution were 
obtained from the Shuttle Radar Topography Mission 
(SRTM; [53]) and mosaicked for the terrestrial area of 
Tanzania. Finally, 2001 human population distribution 
data were collected from the OakRidges National Labo-
ratory LandScan database at 30 arc second (~1 km) reso-
lution [54] (Fig. 3).

The MODIS data were unprojected from Sinusoidal to 
geographic coordinate system (GCS WGS 1984 datum) 
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using the MODIS Reprojection Tool (MRT, v.4.0 from US 
Geological Survey). Human population and elevation lay-
ers were transformed to the same geographic coordinate 
system using ArcGIS v.10.1 (ESRI 2012, Redlands, CA). 
Some 8-day LST and NDVI mosaics pixels were flagged 
as missing or of low quality, usually due to atmospheric 
haze or cloud cover. Data were imported into R v.3.0.2 
[55] and the raster brick function (package raster) was 
used to extract mean, minimum and maximum tempera-
ture and NDVI, omitting missing and low-quality pixels 
(see Additional file 1 for more details about the R script 
used for the raster brick function). Raster bricks for tem-
perature and NDVI were then exported to ArcGIS 10.1 
and all environmental layers were clipped to a land mask 
for Tanzania and converted to ASCII for use in Maxent.

Mosquito net survey data
This study used 2011–2012 data conducted by the AIDS 
Indicator Survey (AIS) throughout Tanzania, with per-
mission from the Demographic and Health Surveys 
(DHS) Programme [56], funded primarily by the US 
Agency for International Development. AIS fieldwork 
was conducted between December 2011 and May 2012, 
implemented by Tanzania’s National Bureau of Statistics. 
This survey provided data on number of ITNs owned 

per household, including long-lasting insecticide nets 
(LLINs). All DHS procedures and questionnaires were 
reviewed and approved by the ICF International Institu-
tional Review Board. Further details are provided in each 
survey’s final report.

To protect respondent confidentiality, the georefer-
enced cluster points (i.e. sample points that represented 
17–18 surrounding households) were each displaced by 
the DHS, with shifts in latitude and longitude under set 
parameters [57]. Urban clusters were displaced 0–2  km 
and rural clusters were displaced 0–5  km, with 1  % (or 
every 100th point) displaced from 0 to 10  km. Shifts in 
direction and distance were both random. In addition, 
displacement of the georeferenced clusters was restricted 
at the district (admin2) level for the 2011–2012 AIS sur-
vey (Fig. 1). During the randomized cluster displacement 
process, clusters could cross localized administrative 
boundaries (e.g. ward boundaries), but not a DHS region 
or district boundary.

Mosquito net ownership layers
For the 2011–2012 AIS survey for Tanzania, 10,496 
households were selected for sampling, of which 10,040 
were successfully sampled and included in the final sur-
vey results. The survey’s GPS dataset comprised of 583 

Fig. 2  Map of 56 Anopheles occurrence points used in Maxent. Insets show clustering of biased sampled points around a Mount Kilimanjaro and b 
Kilombero Valley
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georeferenced survey cluster points, where each clus-
ter point represented 17–18 surrounding households. 
Ten clusters were removed due to missing data. Of the 
remaining 573 clusters, 440 were in rural locations and 
133 were in urban locations. Using this data set, mos-
quito net ownership was measured in two ways: first, the 
average number of mosquito nets owned per household 
and, second, the proportion of houses with ≥1 mosquito 
net (Fig.  4). While both offer distinct perspectives on 
mosquito net ownership, the latter is particularly relevant 
to the stated national target of 90 % of households with at 
least one mosquito net [13]. For each layer, the resulting 
calculated value from the surrounding households was 
assigned to their corresponding cluster coordinate.

Mosquito net ownership patterns were expected to be 
spatially autocorrelated and be used to estimate mos-
quito net ownership rates throughout unsurveyed areas 
of Tanzania. To test this possibility, extrapolations were 
attempted using kriging and inverse distance weight-
ing techniques in ArcGIS. Predicted mosquito net own-
ership from extrapolated surfaces were compared to 

observed mosquito net ownership rates using tenfold 
cross validation, but model fit was very poor. Mosquito 
net ownership shows practically no spatial autocorrela-
tion (measured using Moran’s I on cluster points = 0.07, 
p < 0.05, where Moran’s I scales as the Pearson product-
moment correlation between 1 and −1, with 0 indicating 
no autocorrelation). Further analyses were restricted to 
point-based measurements.

Buffer zones were created surrounding each sur-
vey cluster, with urban clusters having a circular buffer 
zone with a radius of 2  km and rural clusters having a 
circular buffer zone with a radius of 5 km. Since cluster 
points were randomly relocated but did not cross district 
boundaries, buffer zones that crossed into an adjacent 
district could be made more spatially precise by clip-
ping along the district boundary. Buffer zones were con-
sequently retained only within the district particular to 
each survey locality. This processing resulted in a total of 
912 mosquito net polygons. The area of the buffer zone 
was assigned the value attributed to its cluster point for 
the average number of mosquito nets and the proportion 

Fig. 3  Map of human population distribution from LandScan with pixel size of ~1 km2
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of houses with ≥1 ITN. For overlapping buffer areas, the 
averaged value of the individual buffers was calculated 
(see Additional file 2 for the R script used to create this 
layer).

Statistical analyses
To relate mosquito habitat suitability to mosquito net 
ownership, the habitat suitability map created in Maxent 
and the mosquito net buffer layers created in ArcGIS 10.1 
were imported into R statistical software (v.3.0.2, [55]). 
Since each buffer zone had either a 2- or 5-km radius, 
and had been clipped depending on proximity to district 
boundaries, R was used to calculate average habitat suit-
ability for each unique cluster and surrounding buffer 
(see Additional file  3 for the R script used for this pro-
cess). Ordinary least squares (OLS) regression models 
were then constructed to test whether Anopheles habitat 
suitability predicted either average numbers of mosquito 
nets owned per household or proportions of households 
with ≥1 mosquito net. For each regression analysis, Lev-
ene’s tests were used to test whether variances differed 
between household clusters that were grouped by deciles 
according to predicted suitability for anopheline mosqui-
toes. Residual spatial autocorrelation and the associated 
Moran’s I were calculated using R. In addition, possible 
relationships were tested between the two measures of 
mosquito net ownership as a function of mosquito habi-
tat suitability by performing quantile regression analyses 
in the 0.1 (the 10 % of household clusters with the lowest 
predicted suitability for mosquitoes) and 0.9 (the 10 % of 

household clusters with the highest predicted suitability 
for mosquitoes) deciles. Quantile regression is a method 
for providing a more complete view of possible causal 
relationships in ecological processes aside from the mean 
of the response variable distribution [58]. Using quantile 
regression to analyse the highest and lowest 10 % of the 
data may reveal changes in ITN coverage within these 
households as mosquito habitat suitability increases 
that could be undetected by common regression models 
through the mean of the response variable. If ITN own-
ership is consistently high, regardless of an area’s pre-
dicted suitability for anopheline mosquitoes, no trend is 
expected (slope =  0) among quantiles. Less favourably, 
ITN ownership rates could increase toward areas with 
high suitability for these vectors, suggesting that prior-
ity for ITN distribution had been given to localities with 
the greatest malaria risk. Finally, ITN ownership might 
decline toward areas with high anopheline suitability.

Results
Habitat suitability model
Elevation, human population distribution and land cover 
provided stronger predictions of mosquito habitat suit-
ability than any temperature- or NDVI-based measure-
ments (Table  1). Model fits were comparable whether 
the latter measurements were omitted (AUC  =  0.872) 
or included (AUC  =  0.862–0.875). Elevation made the 
greatest contribution to the model, followed by human 
population distribution and land cover. Jackknife analy-
sis attributed the maximum training gain to elevation 

Fig. 4  The 573 raw georeferenced cluster points provided by the 2011–2012 DHS survey. Cluster points are colour coded to represent spatial varia-
tion in a average number of mosquito nets used per household or b the proportion of households with at least one mosquito net across Tanzania
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(0.828), which indicates this variable contains the most 
information that is not present in the other variables 
(Fig.  5). Concentrated areas of high habitat suitabil-
ity are found in low elevation areas, mainly along east-
ern coastlines and extending into Kilombero Valley and 
south toward Mozambique (Fig.  6). Areas surrounding 
Lake Victoria and north of Lake Malawi also contain 
extensive areas with high habitat suitability for anophe-
line mosquitoes. Dense shrub land and cropland/natu-
ral vegetation mosaic land covers were associated with 

higher mosquito habitat suitability. Internal accuracy of 
the model through the threshold-dependent binomial 
omission test was also high, with an omission error rate 
of 7.14 % with a suitability threshold of 0.1 with the omis-
sion error rate remaining below 20 % up to a set thresh-
old of 0.25 (n =  56). Removing elevation from Maxent 
models degraded model fit substantially (AUC = 0.765), 
increasing proportional contributions of human popula-
tion distribution and land cover (65 and 25.1 %, respec-
tively), with minor increases in temperature and NDVI 

Table 1  Contribution of environmental variables to Anopheles Maxent model, including and excluding variants of tem-
perature and NDVI

Variants of temperature and NDVI (mean, maximum, minimum) were attempted in different models, but yielded similar minor contributions to the model. AUC, or 
area under the curve, values approaching 1 indicate the model’s perfect discrimination between suitable and unsuitable areas for the target species, and values near 
0.5 indicate performance no better than random. Model 4 was retained for analyses

Variable % Contribution to model AUC with variable alone AUC without variable Model AUC

Model 1

 Elevation 66.2 0.817 0.772 0.869

 Human population distribution 28.2 0.727 0.773

 Land cover 4.2 0.634 0.865

 Mean temperature 1.2 0.615 0.874

 Mean NDVI 0 0.593 0.869

Model 2

 Elevation 65.9 0.817 0.769 0.875

 Human population distribution 28.0 0.727 0.815

 Land cover 4.3 0.634 0.870

 Max temperature 1.4 0.546 0.876

 Max NDVI 0.5 0.542 0.875

Model 3

 Elevation 64.3 0.817 0.766 0.862

 Human population distribution 27.1 0.727 0.800

 Land cover 4.0 0.634 0.857

 Min NDVI 2.9 0.606 0.875

 Min temperature 1.6 0.575 0.862

Model 4

 Elevation 66.5 0.812 0.764 0.872

 Human population distribution 28 0.732 0.794

 Land cover 5.5 0.640 0.876

Fig. 5  Jackknife plot of testing gain for Maxent niche model building. Green bars represent test gain without the specified variable. Blue bars repre-
sent test gain with only the specified variable. The red bar represents the test gain with all variables included
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(7.1 and 2.8  %, respectively). The final model excluding 
temperature and NDVI, but maintaining a high AUC 
value of 0.872, was retained.

ITN ownership and mosquito habitat suitability
The relationship between the average number of mos-
quito nets owned per house and mosquito habitat suit-
ability was not significant (p  >  0.05, Fig.  7a). Average 
mosquito net ownership per house did not significantly 
differ between rural (2.485 mosquito nets) and urban 
(2.491 mosquito nets) clusters (t  =  0.13, p  =  0.8967). 
Variance did not significantly differ among deciles of 
habitat suitability (F = 0.7821, p = 0.6331; Fig. 7b). There 
is no relationship between mean numbers of ITNs owned 
per household and predicted habitat suitability among 
households in areas among highest or lowest mosquito 
habitat suitability (the top or bottom deciles, or 10 %, of 
clusters, respectively) (p > 0.05; Fig. 7a).

There is a slight tendency for the proportion of 
households with at least one mosquito net to decrease 

toward areas with higher mosquito habitat suitability 
(R2 = 0.051, p < 1 × 10−6; Fig. 7c). Overall, 93.41 % of sur-
veyed households had at least one mosquito net (93.51 % 
in rural households and 93.05  % in urban households). 
Variance in ITN ownership rates across surveyed house-
holds with at least one mosquito net did differ signifi-
cantly between deciles of habitat suitability (F = 3.0037, 
p = 0.0015; Fig. 7d). While the 0.9 quantile of the propor-
tion of households with at least one mosquito net showed 
no significant trend relative to mosquito habitat suit-
ability, the 0.1 quantile of the proportion of households 
with at least one mosquito net significantly decreased 
as mosquito habitat suitability increased (β = −0.0753, 
t = −3.38, p < 0.001; Fig. 7c).

Discussion
The World Health Organization (WHO) estimates ~50 % 
of African households had access to ≥1 ITN by 2010 but 
only ~3  % in 2004 [1]. This study’s analysis of the DHS 
survey data across Tanzania from 2011 to 2012 suggests 

Fig. 6  Maxent output of relative Anopheles mosquito habitat suitability (n = 56). The habitat suitability map ranges from blue to red, with blue repre-
senting lowest predicted relative habitat suitability for Anopheles mosquitoes. The suitability map is overlaid with the “admin 2” districts of Tanzania. 
Predicted relative habitat suitability in many areas are coterminous with the LandScan human population data (e.g. the southeastern polygonal area 
of low habitat suitability corresponds substantially with the Selous Game Reserve, where human population approaches zero in most areas.)
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more optimistic results, with >93 % of Tanzanian house-
holds having one or more nets, meeting the 90 % national 
target set for 2013 [13]. There is no difference in ITN 
ownership rates between rural and urban households. 
However, the effectiveness of ITN distributions varies 
among communities, many of which have much lower 
rates of ITN ownership than national averages. Among 
such communities, the proportion of households with at 
least one mosquito net is inversely related to mosquito 
habitat suitability. There is a clear opportunity to improve 
ITN effectiveness at a national scale by targeting supple-
mental net distributions in areas where current owner-
ship rates are low but mosquito habitat suitability peaks. 
The unexpected decrease in ITN presence in some sur-
veyed areas where malaria risk is high likely contributes 

to persistent, high malaria morbidity and mortality 
(20,900 deaths in 2013 [59]). Other factors clearly con-
tribute to malaria persistence, including increasing 
insecticide resistance among Anopheles mosquitoes in 
Tanzania [60–62].

It is imperative that ITNs reach households where 
mosquito habitat suitability, and thus malaria risk, is 
highest. Areas with higher mosquito habitat suitabil-
ity were expected to have the most comprehensive ITN 
coverage and lowest variance in the number and pro-
portion of households with one or more ITNs, but the 
opposite trends were observed. In areas with the highest 
anopheline habitat suitability, proportional ITN presence 
in households declines below both the national targets 
for ITN coverage (90  %) and the more modest (≥80  %) 

Fig. 7  Scatterplots and corresponding boxplots of mosquito net use as a function of mosquito habitat suitability. a Scatterplot of the average 
number of mosquito nets per house as a function of relative Anopheles habitat suitability with quantile regression and ordinary least squares (OLS) 
regression lines shown. The 0.9 quantile line is shown in blue, the ordinary least squares regression line is shown in green, and the 0.1 quantile line 
is shown in red. b Boxplot of mean and standard deviation of average number of mosquito nets used per house as a function of Anopheles relative 
habitat suitability, where habitat suitability is divided into deciles (e.g. 1 corresponds to lowest 10 %, etc.). Boxplot whiskers extend to the maximum 
and minimum values. c Scatterplot of the proportion of houses with mosquito nets as a function of relative Anopheles habitat suitability (i.e. houses 
with ≥1 mosquito net were assigned a value of 1; otherwise, 0), with quantile regression and ordinary least squares (OLS) regression lines shown. 
The 0.9 quantile line is shown in blue, the ordinary least squares regression line is shown in green, and the 0.1 quantile line is shown in red. d Boxplot 
of mean and standard deviation of the proportion of houses with mosquito nets as a function of relative Anopheles habitat suitability, where habitat 
suitability is divided into deciles
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international targets (77  % of households have ≥1 ITN; 
Fig.  7c). In other words, the proportion of households 
reporting no ITN ownership increases in areas where 
mosquito habitat suitability is highest. This gap in ITN 
ownership is consequential from a human health per-
spective but is not detectable using models describing the 
response variable’s central tendency. Coarse resolution 
analyses have revealed similarly uneven mosquito net use 
relative to malaria endemicity among 23 African coun-
tries [14]. If internal transportation networks through 
which ITNs and supporting programmes are delivered 
(e.g. road access) caused local variability in ITN owner-
ship rates, those patterns should have shown strong auto-
correlation. Causes of variation in ITN ownership and 
use need investigation. These include beliefs in malaria 
risk, trust in health workers distributing nets, perceived 
benefits of the nets, education, number of children under 
five in the household, and availability and use of other 
vector control measures [63].

This study’s prediction of mosquito habitat suitability 
relates strongly to georeferenced malaria cases and to 
independent distribution models of Anopheles mosquito 
species in Tanzania. The binomial test of omission was 
repeated with the fixed threshold of 0.1 to test the model 
against independently-collected data on unique georefer-
enced records of Plasmodium falciparum across Tanzania 
from the MAP website. This study’s prediction of mos-
quito habitat suitability corresponded strongly to malaria 
records from 1985 to 2008 (model omission rate = 0.1246 
for 568 geographically-unique P. falciparum records) as 
well as those specifically within the 1999–2003 period 
used in this study (omission rate = 0.1321 for 107 P. fal-
ciparum records). Model prediction (based on the fixed 
threshold of 0.1) was qualitatively consistent with the 
predicted occurrence maps for An. gambiae, An. arabi-
ensis, An. funestus, and An. gambiae s.s. developed inde-
pendently [64]. However, this study’s model predicted a 
narrower distribution than Malaria Atlas Project (MAP) 
predictions, which likely reflects differences in the time 
period considered and that MAP models are intended 
for continental applications and have less within-country 
detail. This study’s predictions for An. gambiae s.l. dis-
tributions were also constructed using high resolution, 
regional satellite data and more extensive vector obser-
vation data, which may reveal more subtle variation in 
relative suitability in Anopheles habitats. Although this 
study’s Anopheles training records excluded the Lake Vic-
toria region, this study’s model correctly predicted high 
relative habitat suitability there. This region is a malaria 
hotspot [65], with malaria steadily spreading to higher 
altitudes and aggravated by climate variability and pov-
erty [66].

The distribution of anopheline mosquitoes and malaria 
is strongly influenced by land cover [6, 67] and human 
population distributions [43, 68] in addition to climatic 
and topographical factors [43, 69–71]. Elevation also 
limits Anopheles distributions [4, 43, 72] and its omis-
sion from ecological niche models can severely degrade 
both model fit and prediction accuracy [73]. In this study, 
mosquito habitat suitability increased particularly in 
cropland/natural land cover, where irrigation and water 
pooling are common, and in dense shrublands. Land fea-
tures, such as soil type, are not directly measured in these 
satellite land cover data but may help explain such find-
ings through differences in soil water holding capacity 
that can alter mosquito breeding success [67]. Tempera-
ture and NDVI explained little unique variation in habitat 
suitability, though both can relate to mosquito distri-
butions under some circumstances [4, 8, 72, 74]. Tem-
perature shows relatively little spatial variation across 
Tanzania except along elevation gradients [75], which are 
more directly measured by the elevation variable. NDVI 
relates to vegetation greenness, productivity, and mois-
ture availability, which are also strongly related to mos-
quito reproduction [76]. However, satellite-based land 
cover measurements provide similar measurements that 
may more accurately detect the influences of vegetation 
on mosquito distributions. Furthermore, highly produc-
tive vegetation (i.e. areas with high NDVI) can be found 
in many regions of Tanzania, including at high elevations 
that are too cold to permit malaria transmission, eroding 
the capacity for such measures to discriminate between 
suitable and unsuitable mosquito habitats at this scale of 
analysis.

While this study’s dataset includes the most compre-
hensive collection of spatially-unique georeferenced 
Anopheles records for this region to date, systematic, ran-
domized, broad-scale sampling that identifies species in 
the An. gambiae complex would be extremely valuable. 
Presence-only species observations assembled from an 
array of sources that differ in sampling effort and geo-
graphical focus could bias models toward areas with eas-
ier access (e.g. roadsides, proximity to research centres). 
In addition, lack of species-by-species evaluation for the 
historical period forced the combination of Anopheles 
species. By combining the occurrence records across the 
An. gambiae s.l. complex, the applicability of model pre-
dictions to particular species is limited (e.g. An. arabien-
sis inhabits more arid regions than An. gambiae s.s. and 
An. funestus, better tolerating decreasing precipitation 
and interruptions in rainfall patterns in certain regions 
of Tanzania [8]), but the relationship with malaria risk 
remains very strong. Systematic sampling at the species 
level, including observations of absence, is needed. ITN 
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ownership and subsequent use may differ depending on 
which Anopheles species is locally common (e.g. An. ara-
biensis is more common outdoors [72], rendering it less 
affected by ITNs than An. gambiae s.s. and An. funestus 
[77]). Systematic, repeated sampling of Anopheles mos-
quitoes across Tanzania could significantly improve the 
capacity to target interventions, and would provide a 
stronger basis for predicting how distributions of these 
vectors would change through time [78].

Conclusions
Insecticide-treated nets have been broadly distributed 
across Tanzania but ownership is uneven and declines 
in areas where anopheline mosquitoes are concentrated. 
The combination of species distribution models, drawing 
on high-resolution satellite information, and georefer-
enced mosquito net data can provide useful perspective 
on the effectiveness of such interventions in areas where 
georeferenced vector and vector control data exist. These 
techniques are transferrable to other vector-borne dis-
ease systems. With 3.2 billion people at risk of malaria 
infection worldwide [1], the need to control malaria is 
critical. Linking ITN ownership rates to validated mos-
quito species distribution models can help optimize 
allocation of limited resources, reveal gaps in such inter-
vention programmes, and help minimize malaria cases 
where risk is greatest.
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