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Abstract
Background Phosphofructokinase P (PFKP) is a key rate-limiting enzyme in glycolysis, playing a crucial role in various 
pathophysiological processes. However, its specific function in tumors remains unclear. This study aims to evaluate 
the expression and specific role of PFKP across multiple tumor types (Pan-cancer) and to explore its potential clinical 
significance as a therapeutic target in cancer treatment.

Methods We analyzed the expression of PFKP, immune cell infiltration, and patient prognosis across various cancers 
using data from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Additionally, we 
conducted a series of experiments in lung cancer cells, including Western blot, CCK-8 assay, colony formation assay, 
transwell migration assay, scratch wound healing assay, LDH release assay, and flow cytometry, to evaluate the impact 
of PFKP on tumor cells.

Results PFKP was found to be highly expressed in most cancers and identified as a prognostic risk factor. Elevated 
PFKP expression is associated with poorer clinical outcomes, particularly in lung adenocarcinoma (LUAD). Receiver 
operating characteristic (ROC) curve analysis indicated that PFKP can effectively differentiate between cancerous and 
normal tissues. The expression of PFKP in most tumors showed significant correlations with tumor mutational burden 
(TMB), microsatellite instability (MSI), immune score, and immune cell infiltration. In vitro experiments demonstrated 
that PFKP overexpression promotes lung cancer cell proliferation and migration while inhibiting apoptosis, whereas 
PFKP deficiency results in the opposite effects.

Conclusion PFKP acts as an oncogene involved in tumorigenesis and may influence the immune microenvironment 
within the tumor. Our findings suggest that PFKP could serve as a potential biomarker for predicting prognosis and 
the efficacy of immunotherapy in tumors.
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Introduction
Cancer remains one of the leading causes of death world-
wide, with high incidence and mortality rates, making it 
a critical public health concern. Traditional cancer treat-
ments, such as surgery, radiation therapy, and chemo-
therapy, have been supplemented in recent years by rapid 
advancements in immunotherapy and molecular tar-
geted therapies. Despite some progress in comprehensive 
cancer treatment, tumor progression remains a signifi-
cant challenge, and the average survival rates for cancer 
patients are still low. Therefore, it is crucial to thoroughly 
analyze the genomic characteristics of tumors to iden-
tify effective therapeutic targets and strategies, which are 
essential for improving treatment outcomes and patient 
prognosis.

The PFKP gene is situated on the diminutive extrem-
ity of chromosome 10 within the human genome [4]. 
PFKP exhibits 8 diverse transcript variants, and isoform 
1 emerges as the most protracted of these, spanning a 
length of 784 amino acids. The regulation of PFKP gene 
expression is intricately entwined with the process of 
glycolysis. Phosphofructokinase (PFK) is a pivotal rate-
limiting enzyme in glycolysis, which accelerates the 
consumption of glucose [5]. PFK encompasses three sub-
types: PFKP (platelet), PFKM (muscle), and PFKL (liver). 
Moreover, all subtypes are found in other tissues as well 
[6]. PFKP exhibits expression in various cell types, gain-
ing recognition for its crucial role in different types of 
cancers, including non-small cell lung cancer and breast 
cancer [7, 8]. Research indicates that the downregulation 
of PFKP reduces glucose uptake rate, thereby inhibiting 
the growth of lung cancer cells. Additionally, PFKP regu-
lates non-glycolytic functions related to metabolic stress 
induced by glucose deprivation in NSCLC cells through 
AMPK-mediated regulation of long-chain fatty acid oxi-
dation. Thus, PFKP may serve as a prognostic indicator 
for lung cancer, and its regulatory role in glycolysis could 
be a potential therapeutic target for the disease. Gao et 
al. reported the involvement of Nuclear PFKP in pro-
moting CXCR4-dependent infiltration by T-cell acute 
lymphoblastic leukemia. However, the critical role of 
PFKP in most tumors remains unexplored. The advent 
of next-generation sequencing (NGS) technology and 
in-depth exploration of cancer genome atlas (TCGA) 
datasets gradually reveal genomic and transcriptomic 
data of common tumors to researchers. Therefore, this 
is an optimal approach for scrutinizing and revealing 
the prospective prognostic and predictive significance of 
biomarkers through Pan-cancer analysis in the realm of 
precision medicine.

In this study, we identified significant differences in the 
expression of PFKP by analyzing differentially expressed 
genes between tumor cells of epithelial origin and normal 
cells. Furthermore, we explored the expression of PFKP 

in Pan-cancer and its clinical relevance. Additionally, we 
analyzed the relationship between PFKP expression and 
tumor mutation burden, microsatellite instability, and 
immune phenotype scores. Lastly, we determined the 
status of immune infiltration and immunotherapy sensi-
tivity in different subgroups.

Materials and methods
Data acquisition and processing
We downloaded the RNA-Seq expression data of 33 dif-
ferent tumors from the TCGA database. We determined 
the expression levels of PFKP in 33 types of tumors. 
Additionally, we used a web-based analysis tool, the Gene 
Expression Profiling Interactive Analysis (GEPIA) [9], to 
visualize the PFKP expression levels in different stages 
of all tumors. Then, we explored the protein expression 
level of PFKP between normal and tumor tissues through 
the University of ALabama at Birmingham CANcer data 
analysis Portal (UALCAN) [10]. To verify the expression 
of PFKP between the tumor and normal cells in LUAD, 
the single-cell RNA transcriptome data of GSE117570 
were downloaded from the GEO database.

Survival analysis
Patients were divided into high- and low-expression 
groups using the minimum P-value method. Cox regres-
sion analysis for TCGA datasets was performed using 
RStudio software with the “survival” and “forestplot” 
packages to investigate the correlation between PFKP 
expression and cancer prognosis, including overall sur-
vival (OS), disease-specific survival (DSS), disease-free 
interval (DFI), and progression-free interval (PFI). We 
calculated the log-rank P-value and hazard ratio (HR) 
with 95% confidence intervals (95% CI) via the “survival” 
package and utilized the “forestplot” package to visual-
ize the survival analysis [11]. We also implemented the 
Kaplan-Meier survival analysis to estimate the clinical 
outcomes of patients with PFKPlow or PFKPhigh tumors by 
executing the “survival” and “survminer” R packages. For 
grouping, we employed the minimum P-value approach 
to identify the optimal cutoff for the continuous variable 
X. First, X was sorted, and potential cutoff points were 
assessed, dividing the data into two groups. The P-values 
for each cutoff were calculated using the Log-rank test, 
with the smallest P-value determining the optimal cutoff. 
To address multiple testing issues, Bonferroni correc-
tion was applied to adjust the P-values, ensuring robust 
results. The final optimal cutoff was then used in subse-
quent survival analyses to evaluate the impact of X on 
outcomes.
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Correlation analysis of PFKP with TMB, MSI, 
immunophenotype scores, and tumor immune 
microenvironment
The genome alterations of PFKP included copy number 
amplification, deep or shallow deletion, missense muta-
tion with uncertain significance and messenger RNA 
(mRNA) upregulation. Tumor mutation burden (TMB) 
is calculated as total somatic nonsynonymous muta-
tion counts in coding regions. Numerous studies have 
explored the significance of using TMB as a biomarker 
for identifying patients sensitive to checkpoint inhibi-
tors [12]. Microsatellite instability (MSI) is featured by 
the widespread length polymorphisms of microsatellite 
sequences resulting from DNA polymerase slippage [13]. 
The TMB and MSI scores were obtained from TCGA 
database and Spearman’s rank method was used to deter-
mine the correlation of PFKP with TMB and MSI. The 
correlation results for TMB and MSI were visualized in 
radar maps. We also retrieved the immunophenoscore 
(IPS) for LUAD patients from The Cancer Immunome 
Atlas. The IPS is calculated based on four significant cate-
gories of tumor immunogenicity determinants, including 
effector cells, immunosuppressive cells, MHC molecules, 
and checkpoints/immunomodulators [14]. Regarding the 
level of immune cell infiltration, these differences were 
further explored using seven methods from the TIMER 
2.0 website, including (TIMER [15], XCell [16], EPIC 
[17], QUANTISEQ [18], CIBERSORT-ABS [19], MCP 
counter method [20] and CIBERSORT [20]. Pearson cor-
relation analysis was conducted to assess the correlations 
between risk scores and immune scores, as well as their 
association with immune-infiltrating cells.

We made comparisons of IPS for the PFKPlow and PFK-
Phigh groups and subsequently evaluated their responses 
to anti-PD1/PDL1/PDL2 and anti-CLA4 treatments. The 
stromal score and immune score were compared among 
different groups by the ESTIMATE (Estimation of Stro-
mal and Immune cells in Malignant Tumor tissues using 
Expression data) method [21].

Comprehensive analysis of single cell datasets and cell 
cluster annotation
The single-cell sequencing data, including BRCA (Breast 
Cancer), CHOL (Cholangiocarcinoma), COAD (Colon 
Adenocarcinoma), ESCC (Esophageal Squamous Cell 
Carcinoma), GIST (Gastrointestinal Stromal Tumor), 
LIHC (Liver Hepatocellular Carcinoma), LUNG (Lung 
Cancer), OVCA (Ovarian Cancer), PAAC (Pancreatic 
Adenocarcinoma), PDAC (Pancreatic Ductal Adeno-
carcinoma), PRAD (Prostate Adenocarcinoma), STAD 
(Stomach Adenocarcinoma), THCA (Thyroid Carci-
noma), and UCEC (Uterine Corpus Endometrial Car-
cinoma), are derived from GSE210347, GSE145370 and 
GSE203612. We analyzed the scRNA-seq data using the 

R package Seurat [22]. The data were normalized using 
the SCTransform method and integrated using the Inte-
grateData function. T-distributed stochastic neighbor 
embedding (t-SNE) and Uniform Manifold Approxima-
tion and Projection (UMAP) were applied to reduce the 
dimensions. The FindNeighbors and FindClusters func-
tions were used for cell clustering analysis.

Cell culture and transfection
The six human NSCLC cell lines (H1915, A549, PC9, 
H460, H1650, and H1299) were obtained from Labora-
tory of Medical Genetics (Department of Biology, Harbin 
Medical University, Harbin, China). Cells were cultured 
in RPMI-1640 (Invitrogen Corporation, Carlsbad CA, 
USA) supplemented with 10% FBS (PAN-Biotech, Aiden-
bach Germany). Cell cultures were kept in a humidified 
incubator at 37℃ with 5% CO2.

The H1299 cells were transfected with PFKP siRNA to 
knock down the PFKP expression according to the manu-
facturer’s protocols. The duplex sequences of the three 
siRNA targeting PFKP were as follows: First, sense, 5′-  G 
G A G C A A U U G A U A C C C A A A T T-3′, and antisense, 5′- U 
U U G G G U A U C A A U U G C U C C T T-3′; Second, sense, 5′- 
G C A A C G U A G C U G U C A U C A A T T-3′, and antisense, 5′- 
U U G A U G A C A G C U A C G U U G C T T-3′; Third, sense, 5′-  
C C C U C U C C A U U U G A U A G A A T T-3′, and antisense, 5′- 
U U C U A U C A A A U G G A G A G G G T T-3′.

Western blot
Cells were lysed using RIPA buffer (Solarbio, Beijing, 
China). Protein samples were electrophoresed in 15% 
SDS-PAGE and transferred to PVDF membranes. After 
blocking with PBST containing 5% nonfat milk, mem-
branes were incubated with primary antibodies against 
PFKP (ab119796, Abcam, UK) and GAPDH (2118 S, Cell 
signaling technology, USA) at 4  °C overnight. Then, the 
membranes were incubated with a secondary antibody 
(Beijing Zhongshan Golden Bridge Biotechnology Co. 
Ltd., Beijing, China) for 1 h at room temperature. Finally, 
the ECL (Tanon, Shanghai) detection system was used to 
visualize the protein bands.

Cell proliferation assay
Cells with a density of 3 × 103/ml were seeded in a 96-well 
plate, and cultured for 24, 48, and 72  h. the OD values 
were measured using Cell Counting Kit 8 (CCK-8, Elab-
science, China). Subsequently, the OD values were mea-
sured at 450 nm with a microplate reader.

Colony formation assay
Cells were plated in a 12-well plate at a density of 500 
cells per well. Cells grew for ten days in a 37 °C incubator 
until more than 50 cells were available for most clones. 
Then, cells were fixed with 4% paraformaldehyde for 
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20 min, followed by staining with 0.2% crystalline violet 
solution for half an hour at room temperature and wash-
ing with PBS three times.

Wound-healing assay
For wound healing assay, a wound was generated in a 
6-well plate by scratching the surface with a 1 mL pipette 
tip. Scratch width change was measured under a light 
microscope (Nikon, Tokyo, Japan) after 24 h of culture in 
serum-free 1640 medium.

LDH Release Assay
Cell suspensions of treated cancer cells were added to 
96-well plates at a density of 1,000 to 5,000 cells per well. 
After cell attachment, LDH was determined at 24, 48, 
and 72  h using an LDH Cytotoxicity Assay Kit (C0016, 
Beyotime Biotechnology, China), following the manufac-
turer’s instructions.

Apoptosis analysis
Apoptosis was detected using Annexin V-FITC Apop-
tosis Detection Kit (C1062M, Beyotime Biotechnology, 
China). Briefly, according to the manufacturer’s protocol, 
cells were stained with FITC- and PE-conjugated anti-
bodies and incubated in the dark for 20 min. Quantifica-
tion of apoptotic cells was then performed using a FACS 
Calibur flow cytometer.

Migration assay
Serum-free tumor cell suspensions were added to the 
upper chambers of Transwell inserts at a density of 
5 × 104 cells per well, while the lower chambers were filled 
with culture medium containing 10% FBS. After 18  h, 
the cells were fixed, stained, and photographed under a 
microscope.

Statistical analysis
All bioinformatic analyses were carried out with the R 
software version 4.1.3. The survival curve was plotted 
by Kaplan-Meier survival curve. The Wilcoxon test was 
applied in analyzing differences between clinical feature 
distribution, immune infiltration, and therapy response. 
Double-tailed p < 0.05 was considered statistically 
significant.

Results
Expression level of PFKP in pan-cancer single-cell 
sequencing (scRNA-seq)
The flowchart of this study was shown in Fig. 1. We first 
collected pan-cancer single-cell datasets from 14 types 
of tumors, including BRCA (Breast Cancer), CHOL 
(Cholangiocarcinoma), COAD (Colon Adenocarci-
noma), ESCC (Esophageal Squamous Cell Carcinoma), 
GIST (Gastrointestinal Stromal Tumor), LIHC (Liver 

Hepatocellular Carcinoma), LUNG (Lung Cancer), 
OVCA (Ovarian Cancer), PAAC (Pancreatic Adenocar-
cinoma), PDAC (Pancreatic Ductal Adenocarcinoma), 
PRAD (Prostate Adenocarcinoma), STAD (Stomach 
Adenocarcinoma), THCA (Thyroid Carcinoma), and 
UCEC (Uterine Corpus Endometrial Carcinoma), obtain-
ing a total of 943,839 cells from scRNA-seq data. After 
log normalization and dimensionality reduction, these 
cells were further annotated into six cell types based on 
the expression of cell markers (Fig. 2A). The bubble plot 
of marker genes is shown in Fig. 2B. Next, we validated 
the accuracy of cell subtype annotations by examining 
the UMAP expression plots of marker genes across dif-
ferent cell clusters (Fig.  2C-J). Finally, we analyzed the 
expression of PFKP across various cell subtypes in the 
pan-cancer single-cell data (Fig.  2K). The results show 
that PFKP is highly expressed in tumor cells, particularly 
in LUNG, OVCA, and PAAC, suggesting a potential link 
between PFKP and tumorigenesis.

Expression levels of PFKP in pan-cancer
We first compared PFKP expression between tumor and 
normal tissues from the TCGA database. The results 
showed that the expression level of PFKP in the tumor 
tissues of CHOL, COAD, ESCA, HNSC, KIRC, KIRP, 
LIHC, LUAD, LUSC, PCPG, STAD, and UCEC is much 
higher than the corresponding normal tissues (Fig.  3A). 
In paired samples, PFKP expression was significantly ele-
vated in multiple cancer types, including CHOL, COAD, 
HNSC, KIRC, KIRP, LIHC, LUAD, LUSC, and STAD 
(Fig. 3B). Furthermore, PFKP expression levels increased 
with tumor progression in ACC, KIRC, KIRP, LIHC, 
LUAD, LUSC, TGCT, and UVM (Fig. 3C). The UALCAN 
online tool confirmed that PFKP protein levels were sig-
nificantly upregulated in RCC, HNSCC, LUAD, PAAC, 
and GBM (Fig. 3D).

Correlation between PFKP expression and prognostic 
implications
The Kaplan-Meier analysis was used to evaluate the asso-
ciation between PFKP expression and OS, DSS, DFI, PFI 
in pan-cancer (Supplementary Figs.  1–4). Additionally, 
we further compared the survival contribution of PFKP 
in multiple cancer types, estimated using univariate Cox 
regression analyses (Fig. 4A–D). For example, the results 
showed that high PFKP as a risk factor for OS in ACC, 
CESC, HNSC, LAML, LIHC, LUAD, MESO, and UVM. 
Results for DSS, DFI, and PFI are shown in Fig. 4B–D. It 
is worth noting that PFKP was significantly associated 
with the survival of LUAD (all P < 0.05). These results 
suggested that PFKP expression had a strong prognostic 
power in different tumors, and the relevance of PFKP to 
clinical relevance may shed new light on the underlying 
pathogenesis of tumors.
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Fig. 1 The flow chart of our study
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Fig. 2 Pan-cancer single-cell transcriptome analysis of PFKP. (A). The UMAP plots showing the patients, cancer types and identified cell types. (B). Bubble 
diagram of cellular subpopulation marker genes. (C-J). The UMAP expression map of cellular subpopulation marker genes (K). Heatmap of PFKP expres-
sion in various cell populations in pan-cancer single cell data
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Fig. 3 The expression of PFKP in pan-cancer. (A). Differential expression of PFKP in normal and tumor samples of 33 tumors in TCGA database. (B). The 
differential expression of PFKP in paired samples. (C). Expression of PFKP in different pathological stages of indicated tumors. (D). PFKP protein expression 
levels between cancers and normal tissues. * P < 0.05, ** P < 0.01, and *** P < 0.001
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Diagnostic value of PFKP for pan-cancer
Given the significant differences in the expression levels 
of PFKP in different tumor tissues and corresponding 
normal tissues, we used the receiver operating charac-
teristic (ROC) curve to initially investigate the diagnostic 
value of PFKP mRNA expression levels for discriminating 

between tumor and normal tissues (Fig. 5). The area under 
curve (AUC) values suggested that PFKP had a strong 
ability to discriminate, especially UCEC (AUC = 0.665), 
THCA (AUC = 0.605), PAAD (AUC = 0.730), 
PCPG (AUC = 0.927), PRAD (AUC = 0.676), STAD 
(AUC = 0.686), CESC (AUC = 0.642), KIRP (AUC = 0.803), 

Fig. 4 Prognostic Potential of PFKP in Pan-Cancer. (A–D). The forest plots of univariate Cox regression analysis for OS (A), DSS (B), DFI (C), and PFI (D)
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LUSC (AUC = 0.965), LUAD (AUC = 0.923), LIHC 
(AUC = 0.710), KIRC (AUC = 0.937), KICH (AUC = 0.858), 
HNSC (AUC = 0.696), ESCA (AUC = 0.875), and GBM 
(AUC = 0.982). It can be seen that the PFKP mRNA 
expression level has a high diagnostic value for distin-
guishing tumors from normal tissues.

Association of PFKP expression with microsatellite 
instability, tumor mutation burden, and 
immunophenotype scores
Both microsatellite instability (MSI) and tumor mutation 
burden (TMB) are pivotal characteristics of tumors, and 
affect response to immunotherapy in cancers [23, 24], we 
next performed association analyses of PFKP expression 
with MSI and TMB. As shown in Fig. 6A, PFKP expres-
sion was positively correlated with MSI in BRCA, COAD, 
LGG, LUSC, STAD, and THYM, while negatively corre-
lated with MSI in DLBC (all P < 0.05). PFKP expression 

Fig. 5 Accuracy of PFKP in discriminating tumor from normal tissue in pan-cancer
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Fig. 6 Correlation between the expression of PFKP with MSI, TMB, and immune infiltration in pan-cancer. (A-B). Radar maps of correlations between PFKP 
expression and MSI (A) or TMB (B). (C-F). The difference of IPS between PFKPhigh and PFKPlow expression groups. * P < 0.05, ** P < 0.01, and *** P < 0.001
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was also positively correlated with TMB of ACC, BRCA, 
COAD, HNSC, LUAD, PAAD, SKCM, STAD, THCA, 
THYM, UCEC, and UCS, but negatively correlated with 
that of LAML, LGG, LIHC, and PRAD (all P < 0.05) 
(Fig.  6B). Then, we used immunophenoscore (IPS) for 
LUAD patients from The Cancer Immunome Atlas to 
determine the sensitivity to immune checkpoint inhibi-
tors for the PFKP (Fig.  6C-F). Our results showed that 
the high expression group possessed significantly higher 
immunophenotype scores (IPS) than the low expression 
group in PRAD and THCA. Moreover, the high expres-
sion group was more likely to gain benefits from anti-
CTLA4 therapy in BRCA, COAD, PRAD, THCA, and 
respond to anti-PD1/PDL1/PDL2 therapies in BLCA, 
BRCA, COAD, LIHC, PRAD, READ, and THCA. Finally, 
the high expression group tended to respond to both 
anti-PD1/PDL1/PDL2 and anti-CTLA4 antibodies in 
BLCA, BRCA, COAD, LIHC, PRAD, READ, and THCA.

The association between PFKP and tumor immune 
microenvironment
Although our above investigations have demonstrated 
the prognostic ability of PFKP in pan-cancer, its poten-
tial role warranted further research. The development of 
malignant tumors is closely related to the tumor immune 
microenvironment (TIME) in which the tumor cells are 
located. TIME contains not only tumor cells but also 
immune cells, fibroblasts, and many other cells and extra-
cellular matrix, which is the basis for the survival and 
development of tumor cells [25, 26]. It is unclear whether 
PFKP impacts the recruitment of immune cells. With 
several algorithms including EPIC, TIMER, QUAN-
TISEQ, XCELL, MCP-counter, quanTIseq, CIBERSORT 
and CIBERSORT-ABS, we evaluated the correlation 
between the immune cell infiltration and PFKP expres-
sion in pan-cancer (Supplementary Figs.  5–7). Results 
indicated that PFKP was significantly associated with 
immune cell subsets in BRCA, HNSC, KIRC, LUAD, 
TGCT, and SKCM. In contrast, no correlation was found 
between PFKP expression and immune cell infiltration 
in ACC, CHOL, DLBC, KICH, MESO, and UCS. PFKP 
exhibited positive associations with dendritic cells, 
CD4+ T helper 2 cells, and negative associations with B 
cells, CD8+ T cells, native CD4+ T cells in the majority 
of tumors. Next, by adopting the ESTIMATE method, we 
computed the immune and stromal scores of cancer tis-
sues. As Fig. 7 indicated, PFKP was positively correlated 
with the immune scores in BLCA, BRCA, COAD, LIHC, 
PRAD, and UVM, but negatively correlated with the 
immune score in ACC, CESC, GBM, HNSC, KIRP, LGG, 
LUSC, PAAD, TGCT, and THYM. For the analysis of the 
stromal score, we have obtained similar results (Supple-
mentary Fig. 8).

PFKP promoted proliferation and migration in LUAD cells
We then conducted in vitro experiments to validate the 
effects of PFKP. First, we assessed the expression lev-
els of PFKP across different non-small cell lung cancer 
(NSCLC) cell lines (Fig.  8A). Based on the endogenous 
PFKP expression levels, we selected H1299 and A549 
cells for PFKP gene knockdown and overexpression, 
respectively. Western blot analysis was performed to 
confirm the efficiency of these genetic manipulations 
(Fig. 8B). Silencing PFKP significantly reduced prolifera-
tion and colony formation in H1299 cells, whereas PFKP 
overexpression markedly enhanced proliferation in A549 
cells (Fig.  8C-D). Additionally, we observed that PFKP 
knockdown inhibited migration in H1299 cells, while 
PFKP overexpression accelerated cell motility in A549 
cells (Fig. 8E-F). Furthermore, PFKP knockdown signifi-
cantly increased LDH release and apoptosis in H1299 
cells, while PFKP overexpression suppressed LDH release 
and apoptosis in A549 cells (Fig. 8G-H).

Discussion
Our study has unveiled, for the first time, the critical role 
of PFKP in Pan-cancer. Through multidimensional analy-
sis, we discovered that PFKP is consistently upregulated 
in the majority of tumors, with its expression increasing 
along with tumor stage in various cancers such as LUAD, 
LUSC, KIRC, HNSC, COAD, among others. Further-
more, high expression of PFKP is associated with poorer 
prognosis in most cancer patients. Negative correlations 
were observed between PFKP expression and overall sur-
vival rates in several tumors, including KICH, HNSC, 
LUAD, and others. Importantly, consistent results were 
obtained when analyzing different datasets, and pub-
lished studies have also demonstrated the tumorigenic 
role of PFKP [7, 8, 27]. These findings suggest that PFKP 
possesses widespread oncogenic characteristics in can-
cer, holding significant prospects in the field of cancer 
research.

The tumor microenvironment (TME) is a highly struc-
tured ecosystem comprising various immune cells, can-
cer-associated fibroblasts (CAFs), endothelial cells (ECs), 
stromal cells, and other cell types, all embedded within 
a dynamic, vascularized extracellular matrix. These com-
ponents are involved in intercellular communication, 
which can either promote or inhibit tumor progression 
[28, 29]. The TME plays a crucial role in determining 
the fate of tumor cells, not only by regulating their pro-
liferation, invasion, and metastasis but also by influenc-
ing therapeutic outcomes [30]. Our findings indicate a 
correlation between the expression levels of PFKP and 
the TME across multiple cancer types. Consequently, 
we further investigated the relationship between PFKP 
and immunotherapy response. Microsatellite instabil-
ity (MSI), tumor mutational burden (TMB), and the 
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expression levels of various immune checkpoint markers 
are closely associated with responses to immunotherapy 
and are important indicators for clinicians to identify 
patients who may benefit from such treatments [31]. Our 
analysis revealed a positive correlation between PFKP 
and MSI in six cancer types, including LUSC, BRCA, and 
COAD. Additionally, a significant correlation between 
PFKP and TMB was observed in 16 cancer types, 
including LUAD, BRCA, and HNSC. Furthermore, the 

expression of PD-1 and CTLA-4 was also associated with 
PFKP across various cancers. In summary, this analysis 
employed clinically relevant indicators commonly used 
to assess the potential responsiveness of cancer patients 
to immunotherapy across 33 different tumor types, along 
with the corresponding targets of widely used immune 
checkpoint inhibitors. We did find correlations between 
PFKP and some cancers, though not all tumors showed 
a direct relationship with these indicators. However, it is 

Fig. 7 Correlation between the expression of PFKP with immune scores in pan-cancer. (A-P). The scatter plots of correlation between PFKP expression 
and immune scores in multiple cancers. * P < 0.05, ** P < 0.01, and *** P < 0.001
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important to note that the regulation of gene sensitivity 
to immunotherapy varies significantly across different 
tumor types, reflecting the complexity of the TME and 
the diversity of gene regulatory mechanisms across can-
cers [32, 33]. These findings provide preliminary insights 
into the potential role of PFKP in various cancers and 
lay the groundwork for further research. Additionally, 
these comparisons help identify the unique behavior of 
this gene in specific cancers, which could inform future 
research on personalized immunotherapy strategies. 
Moreover, we focused on widely used clinical indica-
tors for our correlation analysis. As cancer research pro-
gresses, more precise biomarkers may be developed in 
the future to better predict and enhance the effectiveness 

of immunotherapy, thereby strengthening both clinical 
and basic research efforts.

Lastly, we validated the role of PFKP in lung cancer 
through in vitro experiments. Compared to normal bron-
chial epithelial cells, PFKP exhibited higher expression 
in lung cancer-associated tumor cell lines. Depletion 
of PFKP suppressed the proliferation and migration of 
H1299 cells. Conversely, overexpression of PFKP pro-
moted the malignant phenotype of lung cancer cell lines.

Here, we have determined the crucial role of PFKP 
based on mining public databases and conducting in 
vitro experiments. With the release of a large volume 
of high-throughput data, researchers in this field have 
gained rich information and enlightening insights into 

Fig. 8 The function of PFKP in lung cancer cells. (A). Differential expression of PFKP in lung cancer cells. (B). Examination of PFKP expression in A549 and 
H1299 cells stably infected lentiviral vectors overexpressing PFKP and lentiviral vectors carrying shPFKP, respectively. (C, D). The effects of overexpression 
or knockdown of PFKP on cell proliferation were verified by CCK-8 assay (C) and clone formation assay (D). (E, F). Transwell assay (E) and wound healing 
assay (F) verified the effect of overexpression or knockdown of PFKP on cell migration. (G, H). LDH release assay (G) and flow cytometry (H) were used to 
verify the effect of overexpression or knockdown of PFKP on cell apoptosis. * P < 0.01, ** P < 0.01, and *** P < 0.001
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the understanding of the tumor microenvironment and 
the development of targets. However, it is important to 
note that results derived from public data and statisti-
cal algorithms may inevitably be influenced by signifi-
cant heterogeneity and possible biases. The findings of 
bioinformatics analysis should be interpreted cautiously 
and cannot be directly translated into a clinical setting. 
In conclusion, we have identified PFKP as a potential 
biomarker for predicting different tumor prognoses and 
tumor immunogenicity, providing new avenues for the 
development of potential therapeutic targets in a clinical 
context.
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