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Abstract 

Background  Drug resistance poses a significant challenge in cancer treatment, particularly as a leading cause 
of therapy failure. Cisplatin, the primary drug for lung adenocarcinoma (LUAD) chemotherapy, shows effective treat-
ment outcomes. However, the development of resistance against cisplatin is a major obstacle. Therefore, identifying 
genes resistant to cisplatin and adopting personalized treatment could significantly improve patient outcomes.

Methods  By examining transcriptome data of cisplatin-resistant LUAD cells from the GEO database, 181 genes 
associated with cisplatin resistance were identified. Using univariate regression analysis, random forest and multivari-
ate regression analyses, two prognostic genes, E2F7 and FAM83A, were identified. This study developed a prognostic 
model utilizing E2F7 and FAM83A as key indicators. The Cell Counting Kit 8 assay, Transwell assay, and flow cytometry 
were used to detect the effects of E2F7 on the proliferation, migration, invasiveness and apoptosis of A549/PC9 cells. 
Western blotting was used to determine the effect of E2F7 on AKT/mTOR signaling pathway.

Results  This study has pinpointed two crucial genes associated with cisplatin resistance, E2F7 and FAM83A, 
and developed a comprehensive model to assist in the diagnosis, prognosis, and evaluation of relapse risk in LUAD. 
Analysis revealed that patients at higher risk, according to these genetic markers, had elevated levels of immune 
checkpoints (PD-L1 and PD-L2). The prognostic and diagnosis values of E2F7 and FAM83A were further confirmed 
in clinical data. Furthermore, inhibiting E2F7 in lung cancer cells markedly reduced their proliferation, migration, 
invasion, and increased apoptosis. In vivo experiments corroborated these findings, showing reduced tumor growth 
and lung metastasis upon E2F7 suppression in lung cancer models.

Conclusion  Our study affirms the prognostic value of a model based on two DEGs, offering a reliable method 
for predicting the success of tumor immunotherapy in patients with LUAD. The diagnostic and predictive model 
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based on these genes demonstrates excellent performance. In vitro, reducing E2F7 levels shows antitumor effects 
by blocking LUAD growth and progression. Further investigation into the molecular mechanisms has highlighted 
E2F7’s effect on the AKT/mTOR signaling pathway, underscoring its therapeutic potential. In the era of personalized 
medicine, this DEG-based model promises to guide clinical practice.
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Introduction
Lung cancer is the leading cause of cancer-related deaths 
globally, with more than a million fatalities each year [1]. 
Non-small cell lung cancer (NSCLC), which includes 
about 85% of all lung cancer cases, is primarily lung ade-
nocarcinoma (LUAD), accounting for nearly half of all 
lung cancer cases [2, 3]. Despite progress in chemother-
apy, surgical techniques, and comprehensive treatments, 
the 5 year survival rate for advanced LUAD remains low, 
primarily due to postoperative metastasis and recurrence 
[4, 5].

Platinum-based chemotherapy, especially cisplatin, 
is a fundamental treatment for advanced NSCLC [6, 7]. 
Although used alongside other medications and radio-
therapy, cisplatin’s effectiveness is significantly hampered 
by drug resistance [8]. Research indicates that cancer 
stem cells are resistant to cisplatin, contributing to tumor 
recurrence and metastasis [9]. Thus, investigating the 
mechanisms underlying cisplatin resistance and iden-
tifying molecular markers for early diagnosis, survival 
prediction, and relapse monitoring in LUAD are thus 
of paramount importance [10, 11]. In this light, bioin-
formatics serves as an essential tool for uncovering the 
molecular details of LUAD progression and pinpointing 
potential therapeutic targets.

Recent research emphasizes the critical role of can-
cer metabolism in not only supporting the growth and 
survival of tumors but also in influencing antitumor 
immune responses through metabolic byproducts and 
affecting the expression of immune molecules [12–14]. 
Specifically, the pathway involving cisplatin-induced acti-
vation of the glucocorticoid receptor, leading to resist-
ance through microtubule-associated serine/threonine 
kinase 1 through the reprogramming of the mitogen-
activated protein kinase (MAPK) pathway [15], has been 
highlighted. Cheng et al., utilizing high-throughput stim-
ulated Raman scattering imaging and single-cell analysis, 
discovered that cisplatin-resistant cells exhibit increased 
fatty acid uptake along with reduced glucose uptake and 
lipogenesis. This indicates a shift from glucose-based to 
fatty acid-dependent metabolism for both anabolism 
and energy [16]. Furthermore, studies have shown that 
glutathione peroxidase-2 (GPX2) is significantly overex-
pressed in the cisplatin-resistant A549 cell line. Suppress-
ing GPX2 reduces the activities of GPX and superoxide 

dismutase, as well as ATP production and glucose uptake 
in A549 drug-resistant cells, leading to an increase in 
malondialdehyde and reactive oxygen species. This 
results in inhibited cell proliferation and tumor growth 
[17]. Additionally, the relationship between thiamine and 
the p53/P21 axis, affecting the anti-proliferative effective-
ness of cisplatin in LUAD cells through the modulation 
of 2-oxyglutarate/glutamate metabolism [18], has been 
explored. These insights suggest that exploring the link 
between cisplatin resistance and tumor metabolism in 
LUAD is a promising path toward developing more effec-
tive treatments.

The dynamic between the innate and adaptive immune 
systems significantly influences the tumor microenvi-
ronment through continuous immune surveillance [19]. 
This environment consists of a complex network of cells, 
including tumor cells, fibroblasts, immune cells, and 
endothelial cells [20–23]. Cancer cells often evade anti-
tumor immune responses by upregulating inhibitory 
molecules such as cytotoxic T lymphocyte-associated 
antigen-4 (CTLA4) and programmed death-1 (PD-1)/
programmed death-ligand 1 (PD-L1), as well as suppres-
sive cytokines. These factors collectively lead to the inac-
tivation of tumor-infiltrating T cells, thus preventing 
them from targeting adjacent tumor cells [24–28]. Cur-
rently, platinum-based chemotherapy combined with 
immune checkpoint inhibitors is the standard treatment 
for patients with LUAD. The use of anti-PD-1/PD-L1 
monoclonal antibodies with platinum-based chemo-
therapy represents a significant advancement in treating 
metastatic NSCLC, designed to overcome resistance to 
single-agent therapy. Clinical trials have demonstrated 
that this combined treatment is more effective than 
chemotherapy alone in patients with mNSCLC, regard-
less of their cancer characteristics [6, 8], suggesting a 
wide applicability and potential for improved patient out-
comes in this challenging field of oncology.

In studies on lung tumor models, the combined use of 
MEK inhibitors (MEKi) and cisplatin/pemetrexed has 
been shown to enhance the recruitment of CD8 T cells 
through CXCL10 secretion by cancer cells, thus improv-
ing the effectiveness of immune checkpoint inhibitors 
(ICIs). This combination not only promotes mitochon-
drial autophagy in an optineurin-dependent manner but 
also triggers CXCL10 production, which is stimulated 
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by mitochondrial DNA and Toll-like receptor 9 (TLR9). 
Blocking TLR9 or autophagy/mitochondrial autophagy 
compromises the therapy’s antitumor efficacy [8]. More-
over, Ginsenoside Rg3 shows promise in reducing the 
growth of cisplatin-resistant A549/DDP cells and their 
resistance to cisplatin by diminishing cisplatin-induced 
PD-L1 expression, which enhances T cell cytotoxic-
ity against cancer cells [29]. These findings underscore 
the importance of developing an immunoassay model 
for patients with LUAD who have cisplatin resistance to 
assess the effectiveness of immune checkpoints compre-
hensively, leading to more precise and efficient treatment 
approaches.

This research analyzed 181 cisplatin resistance genes in 
LUAD using the TCGA and GEO databases. Cox regres-
sion analysis revealed that E2F transcription factor 7 
(E2F7) and Family with sequence similarity 83 member 
A (FAM83A) was crucial for predicting LUAD diagnosis 
and prognosis. This study also delved into the connec-
tions between cisplatin resistance, tumor metabolism, 
and immune checkpoints in LUAD, developing a prog-
nostic model that assesses the risk of negative outcomes. 
Additionally, this study explored the effect of E2F7 
knockdown affects tumor growth and metastasis, both 
in vivo and in vitro, aiming to improve the early detection 
of cisplatin-resistant LUAD and support tailored treat-
ment strategies.

Materials and methods
Screening of cisplatin‑resistant related differentially 
expressed genes
The raw data of gene expression were sourced from 
GSE21656, a dataset on cisplatin resistance in NCI-
H460 cells. In brief, H460 cells were treated with 3  µM 
cisplatin for seven days, with the surviving cells catego-
rized as drug-resistant. Differentially expressed genes 
(DEGs) were identified between cisplatin-resistant and 
non-resistant cells using the “limma” R package (ver-
sion 3.5.1), applying a log2-fold change (FC) ≥ 1 and an 
adjusted P-value < 0.05 as the selection criteria.

Pathway enrichment analysis of the DEGs
To investigate the potential functions of these DEGs, GO 
and KEGG pathway enrichment analyses were conducted 
utilizing public databases: OmicsBean (www.​omics​bean.​
cn/), the Database for Annotation, Visualization, and 
Integrated Discovery (DAVID, https://​david.​ncifc​rf.​gov), 
and the Metascape database (http://​metas​cape.​org/) 
[30]. A P-value < 0.05 was the criterion for significantly 
enriched pathways, with a focus on the top 20 most sig-
nificant signaling pathways.

Prognostic related gene signature construction 
and survival prediction reliability evaluation
The random forest algorithm was utilized to identify 
genes correlated with overall survival (OS) in patients. 
This process involved the use of the "random forest" in 
R package, setting the number of random forest deci-
sion trees to 500, and applying the default parameters. 
Subsequently, a prognostic risk score for the DEGs iden-
tified by the Random Forest algorithm was developed 
using multivariate Cox regression analysis. The formula 
for the risk score is as follows: risk score = [Expression 
level of Gene 1 × coefficient] + [Expression level of Gene 
2 × coefficient] + … + [Expression level of Gene n × coef-
ficient]. Patients with LUAD who had survival data were 
divided into high- and low-risk groups based on the 
median risk score. Kaplan–Meier (K–M) survival plots 
were created to compare the overall survival rates of the 
low- and high-risk groups, utilizing the “survival” pack-
age in R. The time-dependent receiver operating char-
acteristic (ROC) curve analysis was conducted to assess 
the predictive capability of the gene signature, using the 
“survival ROC” package. Additionally, the GSE31210 and 
GSE30219 LUAD patient datasets, which include survival 
information, were retrieved from the GEO database for 
validation purposes (Fig. 1).

Nomogram construction and validation
A predictive nomogram was developed to estimate the 
prognosis of patients with LUAD, integrating independ-
ent prognostic factors from multivariate Cox regression 
analyses, using the “rms” package in R. Calibration curves 
were generated to verify the nomogram’s accuracy, with 
the proximity of these curves to the 45° reference line 
indicating the nomogram’s prognostic prediction efficacy 
(nfold = 10). Time-dependent ROC curves were also plot-
ted to evaluate the predictive accuracy and sensitivity of 
the nomogram compared with individual prognostic fac-
tors. The consistency index (C index) was calculated to 
measure the nomogram’s predictive performance regard-
ing OS.

Gene set enrichment analysis
The DEGs related to metabolism were determined in the 
high- and low-risk groups. Gene set enrichment analysis 
(GSEA) was carried out, setting the significance thresh-
old for enriched pathways at P < 0.05.

Estimation of immune cells infiltrating
The correlation between immune cell infiltration and risk 
score was analyzed. The “CIBERSORT algorithm” pack-
age in R was used to assess the abundance of 22 types of 
immune cells in the low- and high-risk groups of patients 
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with LUAD. The TCGA cohort served as the training set, 
with the GSE31210 and GSE30219 cohorts as validation 
sets. To explore the relationship between gene signature 
and immune checkpoint expression levels (PD-L1/PD-L2/
IDO1/B7H3), crucial for tumor immune evasion, this 
study utilized sequences from the TCGA database, which 
were normalized before comparing the expression levels 
of these genes in high- and low-risk LUAD patient groups.

Estimate the independent prognostic value 
of the two‑gene signature
Univariate and multivariate Cox analyses identified 
whether the signature of cisplatin-resistant genes was a 
significant independent prognostic factor in predicting 
the OS of patients with LUAD, compared with other clin-
ical parameters. A P-value of less than 0.05 was deemed 
statistically significant, with 95% confidence intervals 
(CIs) and hazard ratios (HRs) calculated for each variable.

Diagnostic model establishment
A stepwise logistic regression analysis was conducted to 
establish a diagnostic model utilizing two genes associ-
ated with cisplatin resistance. The TCGA cohort served 
as the training set, and the GSE102287 cohort functioned 
as the validation set.

Cell culture and transfection
Human NSCLC cell lines A549, PC9, and the mouse 
Lewis lung cancer cell line (LLC) were acquired from 

ATCC (Manassas, VA, USA). A549 and PC9 were cul-
tured in Roswell Park Memorial Institute (RPMI) 1640 
medium, whereas LLC was cultured in Dulbecco’s 
modified Eagle medium (DMEM), both supplemented 
with 10% fetal bovine serum (FBS) and 1% penicillin–
streptomycin-gentamicin (PSG) solution, in a 5% CO2 
atmosphere at 37  °C. For gene silencing, two siRNA 
sequences targeting E2F7, “GCA​AAU​GGC​CUA​CCU​
CCA​ATT” and “UUG​GAG​GUA​GGC​CAU​UUG​CTT”, 
were obtained from GenePharma (Shanghai, China). 
The siRNAs were delivered into cells using jetPRIME® 
transfection reagent (Polyplus-transfection, Stras-
bourg, France). The transfection mixture was prepared 
by diluting 1  nmol of siRNA in 200 μL of jetPRIME® 
buffer, followed by vortexing and brief centrifugation. 
Then, 4 μL of jetPRIME® reagent was added to the mix-
ture, vortexed, and incubated for 10 min at room tem-
perature. Approximately 200  μL of this transfection 
mixture was added to each well of a 6-well plate when 
the cells reached 50% confluency. After 24 h of incuba-
tion, the cells were ready for subsequent experiments.

Cisplatin‑resistant A549 IC50 assay
Cisplatin-resistant A549 cells were transfected with 
either a non-coding control (NC) or E2F7-specific 
siRNA. Both NC and E2F7 knockdown cells were then 
plated in 96-well plates (2 × 103 cells/100  μL per well) 
and treated with varying concentrations of cisplatin 
(10, 20, 40, and 80 μg/mL) for 24 h. The absorbance was 
measured at 450 nm using a Cytation microplate reader 
(Bio Tek, California, USA).

RNA expression data for LUAD cell lines 

resistant to cisplatin, obtained fromTCGA 

and GEO database

Prognostic model

Nomogram

Differential expression 

analysis (181 genes)

E2F7, FAM83A

Explore  the role of E2F7 in  LUAD progression

Univariate Cox 

regressionc (30 genes)

Random Forest (11 genes)

Multivariate Cox regression

Diagnostic model

Performance of genes in predicting OS of LUAD 

Immunotherapy response

LUAD and normal subjects

Molecular mechanism

Fig. 1  Process flowchart for analysis
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Quantitative real‑time PCR
Total RNA extraction was performed using TRIzol rea-
gent (Thermo Fisher Scientific, Massachusetts, USA), fol-
lowed by reverse transcription using PrimeScript™ RT 
Master Mix (Takara, Tokyo, Japan). Quantitative RT-PCR 
(qRT-PCR) was carried out with TB Green Premix Ex 
Taq™ (Takara, Tokyo, Japan) and specific primers (Sup-
plementary Table 4).

Cell viability assay and colony formation assays
Cell proliferation was assessed using the Cell Count-
ing Kit-8 (CCK-8) assay. NC and E2F7 knockdown cells 
were plated in 96-well plates (2 × 103 cells/100  μL per 
well) and incubated for 24, 48, 72, and 96 h. Then, 10 μL 
of CCK-8 solution (Beyotime, Beijing, China) was added 
to each well and incubated for an additional 2 h at 37 °C. 
Absorbance at 450  nm was measured using a Cytation 
microplate reader. For colony formation assays, cells were 
seeded in a 6-well plate at a density of 2 × 103 cells and 
allowed to grow for two weeks. Colonies were then fixed 
with 4% paraformaldehyde and stained with 0.5% crys-
tal violet. The number of colonies was determined using 
ImageJ software.

5‑Ethynyl‑2’‑deoxyuridine (EdU) assay
Transfected and non-transfected cells were cultured 
in 12-well plates and incubated overnight. They were 
treated with 10  μM EdU (Beyotime, Beijing, China) for 
2 h, then fixed with 4% paraformaldehyde at room tem-
perature for 15 min. Following this, the cells were washed 
with phosphate-buffered saline (PBS) containing 5% 
bovine serum albumin and permeabilized with 0.5% Tri-
ton X-100 in PBS for 10 min. EdU detection was achieved 
using Alexa Fluor 488 through a click chemistry reac-
tion, incubated in the dark for 30  min. The cells were 
then stained with Hoechst 33342 for 10 min and exam-
ined under a fluorescence microscope (BX53; Olympus, 
Tokyo, Japan).

Cell apoptosis assay
After transfection, cells were seeded in 12-well plates and 
incubated for 24 h. The cells were collected, washed with 
PBS, and resuspended in binding buffer. Annexin V-FITC 
and propidium iodide (PI) were added for 10–15  min 
as per the Annexin V-FITC apoptosis detection kit’s 
instructions (Beyotime, Beijing, China). Analysis was 
conducted using a flow cytometer Cytoflex S (Beckman, 
California, USA).

Wound‑healing and transwell assays
The monolayer of cells was scratched to a straight line in 
a 6-well plate, and incubated without serum for 24 h. The 

migration was recorded at 0 h and 24 h by BX53 (Olym-
pus, Tokyo, Japan). Transwell assays were employed to 
detect cell migration and invasion ability. The cells were 
collected and suspended in a serum-free medium. About 
600  μL of medium containing 10% FBS was added to a 
24-well plate, and 200  μL cell suspension was added to 
the upper chamber, both with and without matrigel. 
After being incubated at 37 ℃ for 24 h, the chamber was 
fixed in 4% paraformaldehyde and stained with crystal 
violet. The images were observed under a microscope, 
and the number of migration and invasive cells were cal-
culated by Image J.

Western blotting
The total proteins were extracted from LUAD cell lines, 
and protein concentrations were detected by a BCA pro-
tein assay kit (Beyotime, Shanghai, China). Sodium dode-
cyl sulfate‐polyacrylamide electrophoresis (SDS‐PAGE) 
gel was employed to fractionate protein samples, which 
were subsequently transferred to a polyvinylidene fluo-
ride (PVDF) membrane (Millipore, Massachusetts, USA). 
After blocking with 5% skim milk for 1 h, the membranes 
were incubated with primary antibodies overnight at 4 ℃ 
(Supplementary Table 5). Next, they were incubated with 
goat anti-rabbit or anti-mouse IgG, linked with HRP, for 
1  h. The membranes were developed by chemilumines-
cence on a Chemidoc touch (BioRad, California, USA).

Immunohistochemistry staining
Tissue samples were dewaxed and underwent antigen 
retrieval in sodium citrate for 20 min. After permeabili-
zation and blocking, they were incubated with primary 
antibody overnight at 4  °C. Lung tissue sections were 
specifically stained with anti-E2F7 at 4 °C overnight, fol-
lowed by secondary antibody and DAB staining. Paraffin 
sections from 10 LUAD tissue cases were obtained from 
The Second Affiliated Hospital of Zhejiang University 
School of Medicine. The study received approval from 
the institutional review committee of The Second Affili-
ated Hospital of Zhejiang University School of Medi-
cine (approval number: 2019–466/I2019001631). All the 
patients have written informed consent before surgery.

Animal experiments
Six-week-old C57 mice, sourced from SLAC (Shanghai, 
China), were used to establish a xenograft mouse model 
through subcutaneous injection of LLC cells (1 × 106) 
transfected with shE2F7 or shNC. Tumor size was moni-
tored every three days starting on day 6 post-injec-
tion. On day 18, the mice were euthanized, and tumor 
weights were recorded. For the pulmonary metastasis 
model, LLC cells (1 × 106) were injected into the tail vein. 
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After 20  days, mice were euthanized, and lung tissues 
were processed for H&E staining. All procedures were 
approved by the Zhejiang University School of Medi-
cine’s committee.

Statistical analysis
Statistical analyses were conducted using Prism 7.0 
(GraphPad, San Diego, CA, USA), comparing two 
groups with a two-sided Student’s two-sided t-test. The 
results were presented as mean ± SD, with p-values being 
two-tailed. A p-value < 0.05 was deemed statistically 
significant.

Results
DEG screening for cisplatin resistance in lung 
adenocarcinoma
In our study on cisplatin resistance in lung adenocar-
cinoma, the GSE21656 dataset was analyzed to com-
pare cisplatin-resistant cells with their non-resistant 
counterparts. The findings, illustrated in a volcano plot 
(Fig.  2A), revealed 181 DEGs by employing a threshold 
of FDR < 0.05 and |log2 FC|≥ 1. In the cisplatin-resistant 
cell group, 73 genes were upregulated, marked in red, 
and 108 genes were downregulated, indicated in green. 
Detailed information on these DEGs for both cisplatin-
resistant and non-resistant LUAD cohorts is provided in 
Supplementary Table 1.

Further examination through GO and KEGG analyses 
identified the top 20 significant pathways, depicted in 
a bar plot (Fig.  2B) and a network plot (Fig.  2C). These 
pathways include blood vessel development, regulation 
of T-helper 1 cell cytokine production, transmembrane 
receptor protein tyrosine kinase signaling pathway, tissue 
morphogenesis, and central nervous system projection 
neuron axonogenesis, all significantly affected.

Upon screening the DEGs, univariate regression 
analysis was applied to identify 30 genes associated 
with poor prognosis (HR > 1, P < 0.05; Supplementary 
Table  2). Subsequent analysis using a random forest 
curve pinpointed 11 genes with a significant effect on 
adverse prognosis, using a cutoff value of 0.2 (Supple-
mentary Table  3). Among these, multivariate regres-
sion analysis (P < 0.05) singled out two genes, E2F7 and 
FAM83A, as critical to our predictive model, detailed 
in Table  1. This study established a risk score model as 
follows: Risk score = (0.256255 × expression level of 
E2F7) + (0.009532 × expression level of FAM83A). By 
using the median score value, patients with LUAD were 
categorized into the respective risk groups.

Survival prediction of patients with LUAD according 
to the gene signature
The median value was utilized as the cutoff to clas-
sify patients with LUAD into different risk groups. 
The risk score model was calculated as follows: Risk 
score = (0.256255 * expression level of E2F7) + (0.009532 
* expression level of FAM83A). A heatmap demonstrated 
the distribution of clinical features, using the median 
value to segregate patients into high-risk and low-risk 
categories, as illustrated in Fig.  3A. Figure  3B shows 
a higher number of deceased patients in the high-risk 
group. Kaplan–Meier curve analysis revealed a signifi-
cant association between risk scores and OS time, with 
low-risk patients having a considerably longer OS than 
those at higher risk (p < 0.0001; HR = 2.14; 95%CI 1.6–
2.87) (Fig.  3C). The area under the curve (AUC) values 
for the 0.5, 1, 2, and 3 year ROC curves were 0.67, 0.72, 
0.71, and 0.66, respectively, indicating the model’s effec-
tiveness in predicting survival time within this training 
dataset (Fig. 3D). These findings were corroborated using 
two related GEO datasets (i.e., GSE31210 cohort and 
GSE30219 cohort), with patients divided into high- and 
low-risk categories based on the median value. Impor-
tantly, the risk score among the deceased was higher 
than that among the living. The Kaplan–Meier curve sug-
gested that patients with high-risk scores were linked to 
shorter survival times compared to individuals with low-
risk scores (GSE31210 cohort [p = 0.026; HR = 2.2; 195% 
CI 1.13–4.34], GSE30219 cohort [p = 0.019; HR = 2.05; 
195% CI 1.14–3.68]). The AUC areas at 1, 3, 5, and 7 years 
were 0.7, 0.61, 0.69, and 0.68 in the GSE31210 cohort 
and 0.63, 0.67, 0.66, and 0.63 in the GSE30219 cohort, 
respectively. This finding aligns with the results observed 
in the TCGA cohort findings (Fig.  3E, L). These results 
emphasize the predictive power of the risk score model, 
including E2F7 and FAM83A, for survival outcomes in 
patients with LUAD and highlight the prognostic signifi-
cance of combined DEGs in determining LUAD survival 
prospects.

Correlations between risk scores and tumor metabolic 
pathways
Subsequently, this study explored the association 
between varying risk scores and tumor metabolic path-
ways. Principal component analysis (PCA) was used to 
discern patterns between high- and low-risk patients, 
revealing distinct distributions as shown in Fig.  4A. 
Gene set enrichment analysis (GSEA), presented in 
Fig.  4B, confirmed the significant association between 
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risk scores and tumor metabolism pathways. Violin 
plots (Fig.  4C–H) further clarified this association, 
showing enhanced gene enrichment in several tumor 
metabolic pathways, such as fatty acid, cysteine and 
methionine, fructose and mannose, glucose, and both 
purine and pyrimidine metabolism among high-risk 

Fig. 2  Identification and functional annotation of DEGs. A Volcano plot of upregulated and downregulated DEGs. B, C. GO and KEGG analyses 
of the genes in the differential network shown as a bar chart (B) and a functional annotation graph of protein-protein interactions (C)

Table 1  Two cisplatin resistant-related genes were significantly 
associated with the OS of the LUAD patients

Gene Name HR HR.95L HR.95H P value

E2F7 1.292082965 1.164664198 1.433441838 1.31E-06

FAM83A 1.009578229 1.006864996 1.012298773 3.85E-12
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Fig. 3  Kaplan-Meier survival analysis, risk score distribution, and time-dependent ROC curves of a prognostic model in the LUAD cohort from TCGA. 
A, B Distribution of risk score, survival status, and expression of two DEGs for patients in the low- and high-risk groups in the TCGA training set. C, D 
Kaplan-Meier survival analyses (C) and time-dependent ROC curve analyses (D) in the TCGA training set according to the risk score. E, F Distribution 
of risk score, survival status, and expression of two DEGs for patients in the low- and high-risk groups in the GSE31210 validation cohort. G, H 
Kaplan-Meier survival analyses and (G) time-dependent ROC curve analyses (H) in the GSE31210 validation cohort according to the risk score. I, J 
Distribution of risk score, survival status, and expression of two DEGs for patients in the low- and high-risk groups in the GSE30219 validation cohort. 
K, L Kaplan–Meier survival analyses and (K) time-dependent ROC curve analyses (L) in the GSE30219 validation cohort according to risk score
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Fig. 4  High- and low-risk groups exhibited distinct distribution patterns and varied gene-set enrichment results. A PCA results 
of the low- and high-risk groups based on the two gene signature. B Heatmap of the metabolic pattern between the low- and high-risk groups. C 
Comparison of fatty acid metabolism levels. D Comparison of cysteine and methionine metabolism levels. E Comparison of fructose and mannose 
metabolism levels. F Comparison of glucose metabolism levels. G Comparison of purine metabolism levels. H Comparison of pyrimidine 
metabolism levels
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patients. These findings underline the relevance of met-
abolic pathways in understanding tumor progression 
risk profiles.

Analysis of immune cell infiltration and expression 
of immune checkpoints in patients with LUAD 
with different risk scores
In examining the link between our prediction model and 
immune infiltration status, this study analyzed risk scores 
and 21 types of infiltrating immune cells across three 

cohorts: TCGA-LUAD, GSE32110, and GSE30219. The 
correlations were visually represented, with red points 
for positive and blue points for negative correlations. 
Despite variability in immune infiltration among the 
cohorts, consistent immune responses, including infiltra-
tion by CD4+ memory resting T cells and CD4 memory-
activated T cells, were identified, as shown in Fig.  5A. 
Cohort-specific analyses revealed that patients with high 
risk scores in the TCGA cohort had increased infiltra-
tion of CD8+ T cells and CD4 memory-activated T cells 

Fig. 5  Correlations between low- and high-risk scores with immune infiltration and immune checkpoint. A Correlation between risk 
score and immune cell infiltration was determined by analyzing TCGA, GSE31210, and GSE30219 datasets. B Differences in the abundance 
of immune cell infiltration were defined by the two gene signatures in the TCGA training set. C Differences in the abundance of immune 
cell infiltration were defined by the two gene signatures in the GSE31210 validation cohort. D Differences in the abundance of immune cell 
infiltration defined by the two gene signatures in the GSE30219 validation cohort. E Heatmap of the expression levels of immune-related genes 
in the low- and high-risk groups. F Comparison of PD-L1, PD-L2, IDO1, and B7H3 expression levels
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(Fig.  5B), a trend consistent with the GSE31210 and 
GSE30219 cohorts (Fig.  5C, D). These findings suggest 
a connection between higher risk scores and increased 
immune activation in patients with LUAD.

Subsequently, this study investigated the relationship 
between the risk score and the expression levels of com-
mon immune checkpoints. The heatmap shown in Fig. 5E 
displays the distribution of these checkpoints among 
patients with varying risk levels. Notably, those in the 
high-risk group exhibited increased expression levels of 
significant immune checkpoints, including PD-L1, B7H3, 
IDO1, and PD-L2, as shown in Fig. 5F. This pattern indi-
cates that patients with LUAD having higher risk scores 
may be more amenable to immunotherapy, underscor-
ing the importance of personalized treatment strategies 
based on risk evaluation.

Construction of the nomogram predicting overall survival 
for patients with LUAD in the TCGA cohort
To verify the two-gene signature-derived risk score as 
an independent biomarker, COX proportional hazards 
regression analysis was applied on the TCGA cohort. 
The results, depicted in Fig.  6A, revealed that T stage 
(P = 0.006, HR = 1.401, 95% CI = 1.100–1.786), N stage 
(P = 0.015, HR = 1.471, 95% CI = 1.078–2.007), and the 
risk score (P < 0.001, HR = 1.096, 95% CI = 1.054–1.139) 
were significantly linked to the OS of patients with 
LUAD. This confirms the risk score as a unique prognos-
tic factor for LUAD. To improve the precision of patient 
prognosis, a prognostic nomogram model incorporat-
ing significant factors from the multivariate analysis was 
developed. The results showed that the risk score was a 
more reliable survival predictor than T and N stages, as 
illustrated in Fig. 6B. The calibration curve demonstrated 
that the prediction probability of the nomogram closely 
matched actual outcomes (Figs. 6C–E). The AUCs for 1-, 
2-, 3-, 5-, and 7 year predictions in the nomogram were 
0.750, 0.759, 0.743, 0.703, and 0.668, respectively, proving 
the model’s accuracy and reliability (Figs. 6F–J). Moreo-
ver, the model’s concordance index (C-index) exceeded 
those of other individual indices, highlighting its superior 
predictive power (Fig. 6K).

Construct a diagnostic model for distinguishing LUAD 
from normal samples
The pressing requirement for a diagnostic model that aids 
in the early detection of LUAD for timely clinical inter-
vention prompted the development of a model through 
stepwise logistic regression analysis. The training set 
included 58 normal and 58 matched LUAD samples 
from the TCGA database. For validation, 25 normal sam-
ples and 25 matched tumor samples were used from the 
GSE102287 dataset. As illustrated in Figs. 7A, B, the sen-
sitivity and specificity were 0.95 and 0.98 in the TCGA 
cohort and 0.80 and 0.92 in the GSE102287 cohort. The 
AUC was 0.995 for the training set and 0.950 for the 
validation set (Fig.  7C, D). Additionally, Fig.  7E and G 
showed that the two genes could effectively distinguish 
LUAD samples from normal ones in unsupervised hierar-
chical clustering analysis. The correlation and combined 
effects of these two risk genes were further confirmed 
in both the TCGA and GSE102287 cohorts, as shown in 
Fig.  7F and H. In summary, our diagnostic model dem-
onstrated high specificity and sensitivity in differentiating 
between LUAD and normal lung tissue.

Knockdown of E2F7 inhibits cell proliferation 
and migration in LUAD cells
FAM83A plays a crucial role in regulating lung cancer 
proliferation, colony formation, and invasion [31–36]. 
Decreasing FAM83A levels using siRNA/shRNA cul-
tured suppresses cell proliferation and induces cell apop-
tosis. Additionally, cell mobility is markedly reduced 
following FAM83A silencing, which leads to notable inhi-
bition of subcutaneous tumor growth and lung metasta-
sis in vivo [37]. FAM83A facilitates the proliferation and 
invasion of lung cancer cells by affecting the Wnt and 
Hippo signaling pathways and the epithelial-to-mesen-
chymal transition (EMT) process in A549 and H1975 
cells [38]. E2F7 has been identified as a cancer-promot-
ing gene in glioblastoma, liver cancer, and colon cancer 
[39–41]. However, its role in LUAD remains unclear. 
E2F7 was silenced in A549 cisplatin-resistant cells (A549/
DDP) and PC9 cells (Fig.  8A, 9A), finding that E2F7 
knockdown restores the sensitivity of A549/DDP cells 
(Fig.  8B). A CCK8 assay was used to evaluate cell pro-
liferation, revealing that E2F7 knockdown significantly 

(See figure on next page.)
Fig. 6  Development of a nomogram for predicting overall survival in patients with LUAD based on the TCGA cohort. A Univariate and multivariate 
Cox regression analyses shown as a forest plot of correlations between the two-gene signature and clinical characteristics with overall survival. B 
Nomogram plot for predicting 1-, 3-, and 5 year overall survival of patients with LUAD based on clinical information and risk score. C–E Calibration 
plots were built to assess the predictive accuracy of the nomogram at 1-, 3-, and 5 year overall survival. F–J Time-dependent ROC curves were 
drawn to compare the prognostic accuracy of T stage, N stage, risk score, and a combination of all three (1, 2, 3, 5, and 7 years). K Time-dependent C 
index built according to T stage, N stage, risk score, and a combination of all three
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Fig. 6  (See legend on previous page.)
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inhibits the proliferation (Fig. 8C, 9B) of A549 and PC9 
cells. Knocking down E2F7 also suppresses colony for-
mation (Fig. 8C, 9B, D). The EDU experiment confirmed 
that E2F7 knockout inhibits the proliferation of A549 and 
PC9 cells (Figs. 8E, 9E). Additionally, this study examined 
E2F7’s role in regulating LUAD migration and invasion, 
finding that its knockdown suppresses A549 and PC9 
cell migration and invasion (Fig.  8F, G, 9F, G). Further-
more, this study examined the ability of E2F7 to regulate 
cell apoptosis. The annexin V-PI staining results showed 
that E2F7 knockdown promotes apoptosis in A549 and 
PC9 cells (Fig. 8H, 9H). The cell proliferation, cell cycle, 
apoptosis, and EMT-associated proteins were assessed 
by western blot, observing decreased expression of 
p-mTOR, PTEN, Fibronectin, CyclinD1, and CDK6 after 
E2F7 knockdown, while cleaved PARP increased (Fig. 8I, 
9I). These findings suggest that E2F7 knockdown effec-
tively suppresses malignant behaviors in LUAD cells, 
highlighting its potential as a therapeutic target in lung 
cancer treatment.

Knockdown of E2F7 suppresses lung cancer progression 
and metastasis in vivo
In another set of experiments, IHC staining detected 
high expression of E2F7 in the tumor areas of patients 
with LUAD, consistent with bioinformatics analysis 
results (Fig.  10A). The antitumor effect of E2F7 knock-
down was evaluated in  vivo using the LLC mouse lung 
cancer model. As shown in Fig. 10B, knockdown of E2F7 
significantly inhibited tumor development, as indicated 
by the reduced weight of shE2F7 tumors compared to the 
control (Fig. 10C). To assess the effect on tumor metas-
tasis, LLC cells were injected via the tail vein, resulting 
in fewer pulmonary metastatic foci in the shE2F7 group 
compared with the control group 20 days later (Fig. 10D). 
H&E staining confirmed that E2F7 knockdown markedly 
reduced lung metastasis of LLC cells (Fig. 10E). Together, 
these findings demonstrate that E2F7 knockdown sig-
nificantly impedes lung cancer progression and metasta-
sis, underscoring its potential as a therapeutic target in 
LUAD.

Fig. 7  The diagnostic model effectively differentiates tumors from normal samples. A, B Confusion matrix highlighting the binary classification 
outcomes of the diagnostic model in both the training group (A) and the validation group (B). C, D ROC curves are employed to evaluate 
the predictive capability of the diagnostic model in the training (C) and validation (D) groups. E, G Unsupervised hierarchical clustering analysis 
of two cisplatin-related genes is conducted for the diagnostic model in the training group (E) and the validation group (G). F, H Analysis 
of the interrelationship among E2F7 and FAM83A is presented for the TCGA paired cohort (F) and the GSE102287 cohort (H)
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Discussion
Lung cancer remains the leading cause of cancer-related 
deaths globally [1]. Platinum-based drugs, particularly 
cisplatin, play a critical role in treating lung cancer, but 
resistance to cisplatin significantly hampers chemother-
apy success, often leading to more aggressive and meta-
static disease [42]. While many genetic markers have 
been identified for their prognostic value in LUAD [43], 
the focus on cisplatin resistance-related genetic markers 
as predictors for immune response is lacking. Identify-
ing new genes or gene combinations related to cisplatin 
resistance is vital for optimizing early diagnosis and treat-
ment strategies, thereby enhancing treatment outcomes.

By examining transcriptome data of cisplatin-resistant 
LUAD cells from the GEO database, 181 genes associated 
with cisplatin resistance were identified. These genes are 
involved in pathways that facilitate tumor progression, 
such as "vascular development" and "transmembrane 
receptor protein tyrosine signaling." Using univari-
ate regression analysis, random forest and multivari-
ate regression analyses, two prognostic genes, E2F7 and 
FAM83A, were identified. These genes help segregate 
patients into low-risk and high-risk categories based on 

their median risk scores, correlating higher risk scores 
with increased mortality and shorter survival times. The 
dual-gene marker was also proven to be a reliable pre-
dictor of OS for LUAD patients and was confirmed as 
an independent prognostic factor through Cox regres-
sion analysis. Finally, we validated the prognostic accu-
racy of our gene markers with corresponding histological 
figures, establishing their strong predictive value for the 
prognosis of LUAD patients.

This study developed a prognostic model utiliz-
ing E2F7 and FAM83A as key indicators. The effect 
of FAM83A on LUAD tumor development has been 
widely studied, demonstrating its significant effect 
on crucial cellular functions such as proliferation, 
autophagy, and apoptosis. These processes are essen-
tial for the growth and progression of LUAD. Spe-
cifically, FAM83A has been shown to accelerate lung 
cancer progression through modulation of the Wnt and 
Hippo signaling pathways. It also triggers epithelial-
to-mesenchymal transition (EMT) in NSCLC through 
the PI3K/AKT/Snail pathway [44]. Research stud-
ies have examined the gene expression of FAM83A in 
362 patients with NSCLC, discovering that FAM83A 
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is notably overexpressed in patients with lung cancer, 
which correlates with a poorer prognosis [45]. Fur-
thermore, the role of the microRNA/E2F7 axis in the 
development of LUAD has been highlighted. Specifi-
cally, the Circ-AASDH/miR-140-3p/E2F7 regulatory 
axis plays a crucial role in advancing LUAD, while the 
progression of NSCLC is effectively hindered by celas-
trol through its action on the circ_SATB2/miR-33a-5p/
E2F7 signaling pathway. Additionally, E2F7’s close asso-
ciation with the metastasis of small cell lung cancer has 
been documented. A recent study introduced a novel 
m7G score to measure the level of m7G modification in 
LUAD, basing the score on four genes (E2F7, FAM83A, 
HOXA13, and PITX3) to improve the assessment of 
chemotherapy and immunotherapy strategies. This 
research proposed a model for predicting the prognosis 
of LUAD and the response to immunotherapy through 
the lens of m7G,although the specific role of m7G in 
cancer development and its clinical relevance are yet to 
be fully elucidated [49]. To address this, our study con-
ducted in  vitro cell experiments to investigate E2F7’s 
function in regulating LUAD tumor cells, revealing that 
silencing E2F7 significantly reduced cell proliferation, 
migration, invasion, and subcutaneous tumor growth, 
thereby confirming E2F7’s involvement in LUAD and 
the precision of our analysis methods.

To investigate the biological roles of E2F7 and FAM83A 
further, this study performed GSEA, which indicated 
their involvement in metabolic pathways, including 
those for cysteine, methionine, glucose, fructose, man-
nose, purine, and pyrimidine. The interaction between 
these genes and metabolic molecules, and the potential 
regulatory effects of these molecules on the genes, war-
rant further study with clinical samples in metabolomics 
research.

Moreover, the significance of tumor-infiltrating 
immune cells in cancer dynamics and response to treat-
ment is increasingly recognized. The advent of immune 
checkpoint inhibitors has transformed the therapeu-
tic landscape for metastatic lung cancer, with notable 
successes. Yet, the effect of cisplatin resistance on the 
immune microenvironment is still to be understood. 
Our research examines the association between gene 
features, differential gene expression, and the immune 
microenvironment. The results showed that, compared 
with low-risk patients, those at high risk showed greater 
infiltration of CD4 memory-activated T cells and CD8+ 
T cells, suggesting a potential higher benefit from immu-
notherapy for this group. Our findings indicate a pro-
inflammatory microenvironment in high-risk patients 
with LUAD, prompting further investigation into the 
underlying mechanisms.

Cancer cells avoid immune system detection by utiliz-
ing inhibitory pathways, notably through the increased 
expression of checkpoint genes. Our analysis exam-
ined the relationship between specific gene features and 
immune checkpoint genes. The findings indicated that 
the expression of PD-L1, PD-L2, B7H3, and IDO1 was 
higher in patients within the high-risk category. This 
suggests these patients might have stronger pro-tumor 
immune responses, potentially contributing to their 
poorer prognosis. Research into tumor immune escape 
mechanisms has shown that ICIs are effective in treating 
lung cancer, with the treatment response closely linked to 
the expression of immune checkpoints within the tumor 
environment. Thus, linking our prognostic model to 
immune checkpoint expression levels could aid in identi-
fying patients likely to benefit from ICIs.

This study performed in vitro experiments to demon-
strate that reducing E2F7 levels has anti-cancer effects 
on LUAD, achieved by hindering cell growth through 
the AKT/mTOR signaling pathway and increasing 
apoptosis signals. Moreover, in  vivo tests indicated 
that lowering E2F7 levels could reduce the growth and 
spread of lung cancer tumors. Overall, our research 
offers new potential treatment and management strate-
gies for patients with LUAD. However, the in vivo stud-
ies used mouse cells, necessitating further research 
with human lung cancer cell xenografts in mice.

Our LUAD research provides valuable insights but 
also acknowledges limitations: (1) Data source limita-
tions, with primary data from the TCGA and GEO 
databases requiring additional cohorts for more robust 
external validation, especially for immunotherapy. (2) 
Insufficient Clinical Samples, with a limited number of 
LUAD clinical samples affecting our ability to evaluate 
different prognostic models due to missing tumor stag-
ing data. (3) The role of E2F7 in the immune microenvi-
ronment was not thoroughly explored, focusing mainly 
on tumor cell responses and cisplatin resistance. Future 
work will delve into E2F7’s role in the cisplatin-resist-
ant LUAD tumor environment. (4) Animal experiments 
and regulatory mechanisms need further exploration to 
understand E2F7’s regulatory mechanisms and confirm 
our prognostic model’s accuracy through prospective 
data analysis.
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