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Abstract 

Background  Disulfidptosis and Ferroptosis are two novel forms of cell death. Although their mechanisms differ, 
research has shown that there is a relationship between the two. Investigating the connection between these two 
forms of cell death can further deepen our understanding of the development and progression of cancer, and pro-
vide better prediction models for accurate prognosis.

Methods  In this study, RNA sequencing (RNA-seq) data, clinical data, single nucleotide polymorphism (SNP) data, 
and single-cell sequencing data were obtained from public databases. We used weighted gene co-expression net-
work analysis (WGCNA) and unsupervised clustering to identify new Disulfidptosis/Ferroptosis-Related Genes (DFRG), 
and constructed a LASSO COX prognosis model that was externally validated. To further explore this novel signature, 
pathway and function analysis was performed, and differences in gene mutation frequency between high- and low-
risk groups were studied. Importantly, we also conducted research on immune checkpoint, immune cell infiltration 
levels and immune resistance indicators, in addition to analyzing real clinical immunotherapy data.

Results  We have identified four optimal disulfidptosis/ferroptosis-related genes (ODFRGs) that are differentially 
expressed and associated with the prognosis of Lung Adenocarcinoma (LUAD). These genes include GMPR, MCFD2, 
MRPL13, and SALL2. Based on these ODFRGs, we constructed a robust prognostic model in this study, and the high-
risk group showed significantly lower overall survival (OS) compared to the low-risk group. Furthermore, this model 
can also predict the immunotherapy outcomes of LUAD patients to some extent.
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Introduction
Lung cancer is one of the main causes of cancer death 
worldwide. According to statistics from the World Health 
Organization, more than 1.8 million people die from lung 
cancer each year [1]. Among them, lung adenocarcinoma 
is the most common type, accounting for 40–50% of 
cases [2]. The early prognosis model study has shown 
that the treatment effect of lung cancer is affected by 
the death mode, and thus, the role of these death modes 
needs to be studied more deeply. The treatment of lung 
adenocarcinoma is challenging, with poor prognosis. 
Current treatments have many side effects and risks, and 
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their impacts on survival and long-term effectiveness 
are still uncertain. Therefore, researchers are actively 
searching for new treatment methods and strategies, 
such as immunotherapy, gene therapy, targeted therapy, 
interventional therapy, and exploring molecular 
biomarkers of lung adenocarcinoma prognosis. These 
studies aim to bring new breakthroughs and progress in 
the treatment and prognosis of lung adenocarcinoma.

Disulfidptosis and Ferroptosis are two regulatory forms 
of cell death. Disulfidptosis is a novel form of cell death 
recently discovered in the field of biology. When the 
expression level of the Solute Carrier Family 7 Member 
11 (SLC7A11) gene is high in cells and encounters glucose 
deprivation, disulfidptosis is triggered [3]. Its defining 
characteristic is the formation of compounds containing 
disulfide bonds inside the cell, which accumulate on the 
cell’s actin cytoskeleton, leading to cytoskeleton collapse 
and eventual cell death. SLC7A11 has a dual regulatory 
role in cell death/survival and redox homeostasis. High 
expression of SLC7A11 promotes cell death due to 
rapid depletion of NADPH and accumulation of toxic 
cystine. Disulfidptosis is a distinct mechanism of cell 
death that involves disruption of actin filaments, unlike 
ferroptosis. The regulation of disulfidptosis involves the 
formation and rupture of disulfide bonds, as well as the 
involvement of proteins such as NCKAP1 and signaling 
pathways related to redox and cellular metabolism. 
The significance of disulfidptosis lies in its potential as 
a target for cancer therapy, especially in cancer cells 
with high expression of SLC7A11. Inhibition of glucose 
transporter proteins (GLUT) has shown therapeutic 
efficacy against SLC7A11-high expressing cancer cells 
by inducing disulfidptosis. Various methods, including 
glucose deprivation experiments, cystine accumulation 
analysis, disulfide detection, observation of actin collapse, 
and cell death assays, have been used to characterize 
and study disulfidptosis [4, 5]. Overall, understanding 
the regulatory mechanisms and significance of 
disulfidptosis contributes to a deeper exploration of 
cellular homeostasis and provides potential strategies 
for targeted cancer therapy. As for ferroptosis, it is a 
special form of iron-dependent cell death that primarily 
occurs through lipid peroxidation and cell membrane 
damage [6]. In cancer therapy, ferroptosis plays a crucial 
role. Tumor cells often contain higher levels of iron 
and have a stronger dependence on it compared to 
normal cells [7]. Therefore, by inducing ferroptosis, it 
is possible to selectively kill cancer cells while causing 
minimal damage to non-malignant cells. Compared to 
other forms of cell death, the molecular mechanisms 
of ferroptosis are more unique. It involves a series of 
specific molecular processes and pathways [6], such as 
iron accumulation, lipid peroxidation, oxidative stress, 

and cell membrane disruption. Studies have found that 
ferroptosis can be induced through various pathways, 
including endogenous and exogenous pathways [8–10]. 
The endogenous pathway is initiated by inhibiting cell 
membrane transport proteins (such as cystine/glutamate 
transporter) or activating iron transport proteins (such 
as transferrin and lactoferrin). The exogenous pathway, 
on the other hand, activates by blocking intracellular 
antioxidant enzymes (such as glutathione peroxidase 
4, GPX4). GPX4 is an important regulatory factor 
in ferroptosis, inhibiting its occurrence by reducing 
the formation of phospholipid hydroperoxides [11]. 
Ferroptosis is not only associated with the sensitivity of 
cancer cells to anticancer drugs but also closely related 
to tumor initiation and development. Studies have 
confirmed that overexpression of GPX4 and decreased 
expression of SLC7A11 are associated with treatment 
resistance in certain types of cancer [8]. Therefore, 
inducing ferroptosis holds potential as a therapeutic 
strategy for tumors. Depending on the specific tumor 
type, iron content, gene expression levels, and mutations, 
appropriate drugs can be selected to promote ferroptosis 
and achieve more effective treatment outcomes [10].

Although Disulfidptosis and Ferroptosis are two 
independent forms of cell death, they share common 
regulatory factors. The expression of the important 
regulatory gene SLC7A11 in Disulfidptosis can affect 
the iron ion content in cells [12–15]. Therefore, in this 
study, we innovatively link Disulfidptosis and Ferroptosis, 
and screened out Disulfidptosis/Ferroptosis-related 
genes through public databases. These genes can be 
used as markers for Disulfidptosis and Ferroptosis. We 
have constructed a prognosis model related to DFRGs 
to predict the prognosis and immune score of LUAD 
patients. Based on this study, we hope to provide help for 
personalized treatment of patients.

Material and methods
Data resources
This study obtained RNA-seq data and clinical data of 
lung adenocarcinoma patients from the TCGA database 
(https://​portal.​gdc.​cancer.​gov/) and the GEO database 
(https://​www.​ncbi.​nlm.​nih.​gov/​geo/, ID: GSE68465 
GSE72094). Single-cell sequencing data (ID:GSE131907) 
and single nucleotide variation data were also obtained 
from the TCGA database. In addition, we obtained 512 
ferroptosis-related genes and 17 disulfidptosis-related 
genes(DRGs) from the FerrDb database (http://​www.​
zhoun​an.​org/​ferrdb/​curre​nt/) and literature.

https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/
http://www.zhounan.org/ferrdb/current/
http://www.zhounan.org/ferrdb/current/
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Identification of genes related to disulfidptosis 
and ferroptosis
In this study, the RNA-seq and clinical data were 
preprocessed to remove missing values. Gene Set 
Variation Analysis (GSVA) was performed using the 
"GSVA" R package to obtain the enrichment scores 
of disulfidptosis and ferroptosis on all samples of 
GSE68465. Based on the GSVA results, Weighted 
Gene Co-expression Network Analysis (WGCNA) was 
conducted to identify DFRGs. The "PickSoftThreshold" 
function was employed to automatically select a soft 
threshold and different power values were used to 
conduct unscaled hierarchical clustering on modules. 
The corresponding dissimilarity matrix (1-TOM) and 
topological overlap matrix (TOM) were obtained. 
Co-expression modules were subjected to Pearson 
correlation analysis based on GSVA scores, and the 
module with the highest correlation with disulfidptosis 
and ferroptosis was chosen as the DFRGs identified 
through WGCNA.

Based on the results of R package 
"ConsensusClusterPlus" and GSVA, consensus 
clustering analysis was performed on samples related 
to disulfidptosis in GSE68465. The clustering variable 
(K) was increased from 2 to 10, and the best K value 
was found, which provided the highest intra-group 
correlation and the lowest inter-group correlation. The 
DRGs related clusters were analyzed using Kaplan–
Meier (KM) analysis through the R packages "survival" 
and "survminer" to compare the differences of OS. In 
addition, the differential expression of 17 DRGs between 
the two clusters was analyzed. Then, the R package 
"DeSeq2" was used to perform differential analysis on 
the clustered genes (|log2FC|≥ 1 and FDR < 0.05) to 
obtain new DFRGs. Subsequently, immune scores were 
obtained using TIMER, ssGSEA, Cibersort, and Estimate 
algorithms to explore the relationship between the DRGs 
related clusters and the immune system.

Subsequently, unsupervised clustering analysis was 
performed on the training set based on the ferroptosis 
gene set obtained from the FerrDb database. The 
ferroptosis-related clusters were then analyzed for 
survival, clinical, and immune-related information. The 
intersection of the genes selected by the three methods 
mentioned above results in the DFRGs.

Development and validation of the DFRGs prognostic 
model
Perform Univariate Cox analysis on DFRGs, select DFRGs 
that are statistically significant (P < 0.05) and related 
to survival. Using the R packages "randomForestSRC", 
"glmnet", "xgboost", "gbm", "xgboost", and "survival", 
evaluate the weight calculation average related to DFRGs 

survival based on five machine learning algorithms: 
decision trees, random forests, LASSO, gradient boosting 
decision trees (GBDT), and extreme gradient boosting 
(XGBoost), and rank them. Following that, the top ten 
genes were chosen based on their survival weights. The 
lasso cox model was constructed using the R packages 
"glmnet" and "survival". Initially, the ten-fold cross-
validation technique was applied using the "cv.glmnet" 
function to determine the optimal penalty coefficient (λ) 
for model fitting and subsequent analysis and prediction. 
Subsequently, the "coef" function was utilized to extract 
DRGs that were associated with non-zero coefficients. 
The risk score was calculated by summing the product of 
the coefficients and expression levels of these DRGs. Use 
the median of the training set’s risk score as the cutoff 
value to divide all samples into high-risk and low-risk 
groups. Perform KM analysis on the high-risk and low-
risk groups, and evaluate the model’s accuracy through 
ROC (receiver operating characteristic curve) analysis 
using the "timeROC" R package. In addition, we display 
the differences between the high-risk and low-risk 
groups in terms of gender, age, and clinical stage using a 
heatmap to explore the relationship between risk scores 
and clinical information, and investigate the expression 
of genes used in constructing the model and their 
relationship with clinical information.

Enrichment analysis related to signaling pathway 
and function
Based on the GSEA (Gene Set Enrichment Analysis) 
and GSVA (Gene Set Variation Analysis) algorithms, 
we conducted a comprehensive analysis of pathway and 
functional relationships in relation to risk subtypes. 
GSEA was performed using the GSEA software 
(version 4.2.3), with gene sets sourced from the KEGG 
database. GO enrichment analysis was conducted at 
three levels: MF (Molecular Function), CC (Cellular 
Component), and BP (Biological Process). In addition, 
we also analyzed the correlation between risk scores and 
tumor-related pathways as well as pathways associated 
with disulfidptosis and ferroptosis. Important signaling 
pathways in tumors include Hippo, Wnt, MAPK, 
PI3K/AKT, TGF-β, NF-kB, Notch, AMPK, JAK-STAT, 
PD-1/PD-L1, mTOR, Ras, TNF, HIF-1, and ErbB. 
Disulfidptosis/ferroptosis-related pathways and functions 
include actin cytoskeleton, glucose starvation, lipid 
homeostasis, tricarboxylic acid cycle, iron metabolism, 
P53 signaling pathway, glutathione peroxidase activity, 
and pentose phosphate pathway.

Analysis of immune cell infiltration and immune score
The tumor microenvironment refers to the complex 
network of cells, molecules, and signaling pathways that 
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interact with tumor cells. It has a significant impact 
on tumor growth, invasion, metastasis, and treatment 
response. In this study, we obtained evaluation results 
of immune cell infiltration abundance from various 
algorithms in the TIMER2.0 (http://​timer.​cistr​ome.​org/) 
database, including TIMER, CIBERSORT, CIBERSORT-
ABS, QUANTISEQ, MCPCOUNTER, XCELL, and EPIC. 
Moreover, single sample gene set enrichment analysis 
(ssGSEA) was conducted on LUAD samples to analyze 
immune cell infiltration abundance using R packages 
"GSVA" and "GSEABase." The ESTIMATE algorithm was 
used to evaluate the relationship between tumor purity 
and subtype, including ESTIMATE Score, Immune 
Score, and Stromal Score. In addition, we assessed the 
expression of immune checkpoints and differences in risk 
between risk subgroups in LUAD samples.

Analysis of single‑cell sequencing data
This study collected single-cell sequencing data from 
15 LUAD samples in the GEO database. We used the 
Seurat R package in R language to analyze the sequencing 
data. Specifically, we first used the "CreateSeuratObject" 
function to perform preliminary screening of the 
original data and retained high-quality cells. Then, we 
used the "PercentageFeatureSet" function to calculate 
the percentage of mitochondrial genes in each cell, 
with the selection criteria being the expression of 
genes in at least 3 cells and the percentage of ribosomal 
genes below 20%. We normalized the data using the 
"LogNormalize" method in the "NormalizeData" 
function. Next, we identified highly variable genes 
using the "FindVariableFeature" function, performed 
PCA dimensionality reduction using the "RunPCA" 
function, and identified important principal components 
through the "jackstraw" function. Finally, we used 
the t-SNE algorithm to select the top 20 principal 
components for cell clustering analysis and used the 
"FindAllMarkers" function to annotate cell clusters 
and calculate differential genes for each cluster. This 
experiment combined single-cell sequencing technology 
and the "Seurat" R package in R language to explore the 
expression patterns of individual cells in tumor tissues, 
revealing the heterogeneity of tumor cells.

Analysis of risk subtypes and gene mutations
Single-nucleotide polymorphism (SNP) data in 
TCGA refers to information on single-nucleotide 
polymorphisms in the genomic DNA of cancer cells. 
SNPs refer to variation that occurs at a single nucleotide 
(A, C, G, or T) position that may be related to the 
occurrence and development of cancer. TCGA SNP data 
provides genotype information for millions of SNPs, 
which can be used to study the relationship between 

SNPs and cancer, helping to gain a deeper understanding 
of the genetic basis of cancer. We obtained SNP data 
for LUAD from the TCGA database. The MAFTOOL 
software was used to display the top-ranked mutated 
genes in the high-risk and low-risk groups, as well as 
their mutation types and frequencies, and to assess the 
correlation between mutation counts and risk score.

Analysis of the expression level of ODFRGs
We used RNA-seq data from normal lung samples and 
lung adenocarcinoma samples in the TCGA database. 
Subsequently, we analyzed the expression of ODFRGs 
(including GMPR, MCFD2, MRPL13 and SALL2) in 
tumor and normal samples. Furthermore, to demonstrate 
the reliability of the sequencing data, we also obtained 
the immunohistochemical results of ODFRGs in lung 
adenocarcinoma tissues from The Human Protein Atlas 
(HPA).

Immunohistochemistry
Five Lung adenocarcinoma tissue chips were 
purchased from Shanghai Outdo Biotech Company 
(Shanghai, China).The paraffin removal process: After 
overnight baking in a 65  °C oven, the tissue chips were 
deparaffinized in xylene II solution (each for 10  min), 
followed by a series of ethanol gradients (100%, 95%, 
80%, 70% for 2 min each), and washed three times with 
PBS (5 min each time). Endogenous peroxidase blocking: 
Remove excess water from the slides and place them in a 
humidified box. Add 3% hydrogen peroxide and leave at 
room temperature for 10 min, followed by three washes 
with PBS (5  min each time). Antigen retrieval: Add 
sodium citrate antigen retrieval solution to a pressure 
cooker and place the slides inside. Once the pressure 
cooker reaches maximum pressure, set the timer for 
2.5 min. After turning off the power, let it cool to room 
temperature. Wash the slides three times with PBS 
(5 min each time). Antibody incubation: Remove excess 
water from the slides and place them in a humidified box. 
Incubate with primary antibody reagent (1:100) at 35 °C 
for 1 h, followed by three washes with PBS (5 min each 
time). Remove excess water from the slides and place 
them in a humidified box. Incubate with the secondary 
antibody of goat anti-mouse/rabbit IgG conjugated with 
enzyme for 30  min, followed by three washes with PBS 
(5 min each time). DAB staining: Prepare DAB working 
solution by mixing DAB buffer solution with 4u DAB 
concentrate per milliliter. Apply the evenly mixed DAB 
working solution onto each slide and observe the staining 
intensity under a light microscope. Rinse with distilled 
water to stop the staining. Counterstaining: Place the 
slides in a staining dish containing hematoxylin for 2 min, 

http://timer.cistrome.org/
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followed by a 1-min rinse with distilled water. Then, 
immerse the slides in hydrochloric acid ethanol for 2  s, 
followed by a 1-min rinse with distilled water. Finally, 
place the slides in ammonia for 10 s and rinse again with 
distilled water for 1  min. Dehydration: Dehydrate the 
slides sequentially in ethanol gradients (70%, 85%, 95% 
for 2 min each), and then immerse them in xylene I and II 
solutions for 2 min each. Place the slides in a fume hood 
for 2 h for ventilation. Mounting: Apply neutral adhesive 
onto the slides and cover them with coverslips.

Result interpretation: Semi-quantitative scoring 
was performed based on the staining intensity and 
percentage of positive cells. Under a microscope, two 
pathologists independently and blindly determined the 
immunohistochemical staining results. No staining, weak 
positivity (pale yellow particles), positivity (brownish-
yellow particles), and strong positivity (dark brown 
particles) were scored as 0, 1, 2, and 3, respectively. Based 
on the percentage of positive stained cells relative to the 
total number of cells, 0% was assigned a score of 0, 1% to 
25% was assigned a score of 1, 26% to 50% was assigned a 
score of 2, 51% to 75% was assigned a score of 3, and 75% 
was assigned a score of 4. The final expression score of 
ODFRGs for each sample was calculated by multiplying 
the staining intensity by the percentage score of positive 
cells. A score of ≤ 6 was classified as low expression, 
and a score of > 6 was classified as high expression. 
For each slide, five random high-power field views at 
400 × magnification were selected, and the staining 
intensity and percentage of positive cells were scored for 
each region, with the average value being the final score 
result.

Quantitative real time polymerase chain reaction 
(qRT‑PCR)
Normal lung epithelial cells BEAS-2B and three human 
lung adenocarcinoma cell lines, A549, H1299, PC9, were 
obtained from the Central Laboratory of Shandong First 
Medical University Affiliated Provincial Hospital. PCR 
ARRAY was purchased from Shanghai Audoo Biological 
Technology Company (Shanghai, China). Total RNA 
was extracted using TRIzol reagent (Invitrogen, USA). 
Complementary DNA (cDNA) was synthesized using the 
PrimeScript RT kit (Takara).

Western blotting
Cells were lysed in cold RIPA buffer. An equal quantity 
of protein was then subjected to SDS-PAGE and 
subsequently transferred to a PVDF membrane. The 
membrane was blocked with nonfat dry milk containing 
TBST for 1 h. The primary antibody (a universal primary 
antibody used for western blot and IHC) was diluted 
as per the manufacturer’s instructions and incubated 

overnight at 4  °C. Following washing with TBST, the 
secondary antibody was added and incubated for 1 h at 
room temperature. After washing the membrane, it was 
developed using an enhanced chemiluminescence (ECL) 
chromogenic solution.

CCK‑8 assay
Cell proliferation was assessed using the CCK-8 assay. 
A549 and PC9 cells were seeded in 96-well plates and 
cultured for 0, 24, 48, and 72  h. Afterward, they were 
incubated with the CCK-8 solution in the dark for 1  h. 
The absorbance values were then measured at 450  nm 
using a microplate reader.

Colony formation assay
A549 and PC9 cells were cultured in 6-well tissue 
culture plates for one week until cell colonies formed. 
The resulting cell colonies were fixed with 0.5% 
polyformaldehyde (Servicebio, Beijing, China) for 25 min 
and stained with 2.5% methylene violet dye for 15  min. 
Following washing, the cell colonies were recorded and 
counted.

Wound healing assay
For the wound-healing assay, 24-well plates were utilized 
to seed cells. Cells were scratched perpendicular to the 
previously marked line using a sterile tip. Cell migration 
was measured at time points of 0 and 24 h after imaging 
the scratch wounds with a light microscope.

Transwell assay
We performed Transwell assays using 24-well transwell 
chambers to evaluate the invasiveness of A549 and PC9 
cell lines. Cells were seeded in the upper chambers with 
or without Matrigel in serum-free culture medium. 
The lower chambers were filled with 600  μl of culture 
medium containing 10% serum. After 24 h, the cells were 
fixed and stained.

Statistical analysis
In this study, we used various testing methods in 
statistical and bioinformatics analyses, including 
Wilcoxon rank-sum test, Pearson’s chi-squared test, 
t-test, and logarithmic transformation test. The Wilcoxon 
rank-sum test was used to compare differences between 
two sample groups, while Kruskal–Wallis test was used 
to analyze differences among sample groups with more 
than two samples. We set the threshold of statistical 
significance at p < 0.05. Data analysis was conducted 
using R exclusively.
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Results
Identification of disulfidptosis/ferroptosis‑related genes
The specific process of this study is shown in Fig.  1. 
First, we used WGCNA to analyze the RNA-seq data of 
the training set. The "pickSoftThreshold" function in the 
WGCNA R package was used to automatically select a 
soft threshold of 7 (Fig. 2A). Multiple gene modules were 
identified using a dynamic cut method and all modules 
were further clustered using the "mergeCloseModules" 
function to obtain the final module (Fig.  2B). We used 
Pearson correlation analysis to identify the most relevant 
module, which was called "green" and contained a total 
of 970 genes related to disulfidptosis and ferroptosis 
(Fig. 2C).

Based on DRGs, we performed unsupervised cluster-
ing of the samples from GSE68465. The cluster value (K) 
was evaluated for 2–10 results. The results showed that 
the intra-group relationships were the strongest and the 
cluster stability was the highest when K = 2 (Additional 
file 1: Fig. S1A). In addition, to further study the clusters 

related to disulfidptosis, we analyzed the expression of 
DRGs, clinical data, and immune cell infiltration levels, 
including ssGSEA, CIBERSORT, TIMER, and ESTI-
MATE. The results showed that almost all DRGs had 
statistically significant differences between two clusters 
(p < 0.05) (Fig.  3A), and the Kaplan–Meier (KM) curve 
showed statistically significant differences in OS of sam-
ples from cluster1 and cluster2 (Fig. 3B). Comprehensive 
heatmaps were constructed to analyze the clinical data 
and immune scores (Fig. 3C), which showed differences 
between the two clusters in terms of gender, smoking his-
tory, and immune cell infiltration abundance. Differential 
analysis of clusters related to DRGs identified 4612 new 
DRGs (|logFC|≥ 1, p < 0.05).

The selection of new FRGs was also obtained through 
unsupervised clustering, and the stability was best when 
K = 2 (Additional file 1: Fig. S1B). There were differences 
in the survival of the two clusters related to ferroptosis 
(Additional file  1: Fig. S1C). A total of 6074 new FRGs 
(|logFC|≥ 1, p < 0.05) were identified through differential 

Fig. 1  Workflow of the study. This figure shows the construction process and subsequent analysis of the DFRG model
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analysis. Finally, a total of 576 DFRGs were screened by 
combining the three rounds of screening (Fig. 3D).

Development and validation of DFRGs signature
To screen survival-related DFRGs, we performed 
univariate Cox analysis (Additional file 1: Fig. S1D). Based 
on machine learning algorithms, we evaluated the weights 
associated with survival-related DFRGs and constructed 
LASSO Cox models using the top 10 genes (Additional 
file 2: Table S1) (Fig. 4A). Next, we demonstrated the KM 
curves for the gene high-expression and low-expression 
groups in the construction of the model(Fig.  4B). The 

high-expression groups of GMPR and SALL2 showed 
higher OS rates compared to the low-expression groups, 
indicating their protective role. On the other hand, the 
low-expression groups of MCFD2 and MRPL13 showed 
higher OS rates compared to the high-expression groups, 
suggesting their association with increased risk. These 
analyses all exhibited statistically significant differences. 
The risk score calculation was as follows:

Fig. 2  Discovery of prognostic DFRGs by WGCNA. A Displays the distribution and trends of the scale-free topology model fit and mean 
connectivity with soft threshold. B Shows the clustering of genes among different modules by the dynamic tree cut and merged dynamic method. 
The gray modules depict unclassified genes. C Depicts the average correlation between multiple modules and tumor development, disulfidptosis 
and ferroptosis. The cell color indicates the strength of correlation, while the P-value for the correlation test appears in parentheses
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Risk Score = (−0.1928 ∗ GMPR exp.)

+ (0.2762 ∗ MCFD2 exp.)

+ (−0.1568 ∗ SALL2 exp.)

+ (0.0837 ∗ MRPL13 exp.)

We selected the median value of the risk score of the 
training set samples as the cutoff value and divided the 
LUAD patients into high- and low-risk groups. The 
KM curves showed that the OS of patients in the high-
risk group was significantly lower than that of those in 

Fig. 3  Consensus clustering for screening disulfidptosis-related genes. A Difference in expression of disulfidptosis-related genes between two 
clusters. B Kaplan–Meier curve for disulfidptosis-related clusters. C Differences in clinical data and abundance of immune cell infiltration 
in DRG-related clusters. (D) Using algorithms such as WGCNA and unsupervised clustering, we identified a total of 576 DFRGs
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the low-risk group in the training set (GSE68465) and 
validation set (TCGA cohort, GSE72094) (Fig.  4C). The 
ROC curves showed that the AUC values of the risk 
scores for GSE68465, TCGA cohort, and GSE72094 were 
0.746, 0.741, and 0.744(Fig.  4D), respectively, indicating 

that the signature is highly stable.Through univariate and 
multivariate Cox analysis, we found that age (HR = 1.039, 
95% confidence interval (CI) = 1.023–1.056, p < 0.001), T 
stage (HR = 1.430, 95% CI = 1.124–1.818, p = 0.004), N 

Fig. 4  Screening of ODFRGs and construction of models. A Choose the best value of λ through LASSO regression and configure the LASSO 
coefficients. B There is a significant difference in survival between high and low expression groups of ODFRGs (namely GMPR, MCFD2, MRPL13, 
SALL2). C Survival differences between high-risk and low-risk groups in the training set and test set. The table below shows the number of patients 
still alive in each year. D The ROC curves showed the predictive efficiency of risk scores and clinical characteristics
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stage (HR = 2.096, 95% CI = 1.731–2.537, p < 0.001), and 
risk score (HR = 2.161, 95% CI = 1.337–3.491, p = 0.002) 
were independent prognostic factors (Additional file  1: 
Fig. S1E, F).

Clinical analysis of signature associated with DFRGs
We used Kruskal–Wallis test to analyze the relationship 
between ODFRG (GMPR, MCFD2, MRPL13, SALL2) 
and clinical data. The results showed that there were 
differences in ODFRG expression levels between dif-
ferent clinical stages and T stages. When the expres-
sion levels of GMPR and SALL2 were high, the stage 
and T stage were generally higher, while MCFD2 and 
MRPL13 had the opposite trend (Fig. 5A). There was a 
correlation between GMPR, MCFD2, MRPL13, SALL2 
and immune cell infiltration levels (Fig.  5B). In addi-
tion, there were differences in gender, stage, T stage, 

N stage between the high-risk group and the low-risk 
group (Fig. 6A).

Immunological analysis of DRG signature
To verify the association between risk subtypes and 
disulfidptosis, the expression levels of DRGs in the high 
and low-risk groups were analyzed. The results showed 
statistical differences (p < 0.05) in the expression levels 
of RPN1, ACTR3, ACTR2, CYFIP1, MYH10, SLC3A2, 
SLC2A1, LRPPRC, NCKAP1, SLC7A11, and NDUFS1 
between the high and low-risk groups. Subsequent 
immune checkpoint analysis showed differences in 
CD274 (PDL1), PDCD1LG2 (PDL2) and others between 
the high and low-risk groups. Furthermore, TIDE and 
TMB also showed differences between the high and 
low-risk groups. The analysis of immune cell infiltration 

Fig. 5  Clinical analysis and correlation analysis of immune cell infiltration for DFRGs. A The relationship between gene expression of GMPR, MCFD2, 
MRPL13, and SALL2 and tumor stage and T stage in LUAD patients. B Correlation analysis of expression levels of GMPR, MCFD2, MRPL13, SALL2 
and abundance of immune cell infiltration (p < 0.05; p < 0.01; **p < 0.001)
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abundance includes multiple algorithms in ssGSEA and 
the TIME2.0 database. The results of ssGSEA (Fig.  6A) 
showed that the infiltration levels of aDCs, Neutrophils, 
Mast cells, iDCs, and Th2 cells differed significantly 
(p < 0.05) between the high and low-risk groups. The 
results of TIMER data (Fig.  6B), including immune cell 
infiltration algorithms such as TIMER, CIBERSORT, 
CIBERSORT-ABS, QUANTISEQ, MCPCOUNTER, 
XCELL, and EPIC, also showed significant differences 
(p < 0.05) between the high and low-risk groups.

Overview of the scRNA‑Seq data generated from LUAD
This study used 12 samples for single-cell sequencing, 
considering factors such as RNA content, gene expres-
sion quantity, RNA integrity, cell category, and reaction 
quality control when selecting cells. A total of 57,219 
cells were obtained. Through t-SNE cluster analysis, 
these cells were divided into 27 cell clusters, and anno-
tation tools were used for classification, including T 
cells, B cells, NK cells, macrophages, monocytes, epi-
thelial cells, smooth muscle cells, and endothelial cells 
(Fig. 7A). In order to further analyze the expression dif-
ferences of ODFRGs in different cell types, we used vio-
lin plots and t-SNE plots for visualization analysis. The 
results showed that the expression levels of MCFD2 and 

MRPL13 in macrophages were higher than in other cell 
types (Fig. 7B, C).

Analysis of prognostic model‑related signaling pathways 
and functions
According to the biological analysis using GSEA software, 
the pathways Cell cycle, phosphate pathway, peroxisome, 
ubiquitin mediated proteolysis, and p53 signaling path-
way are active in the high-risk group, while the pathways 
Arachidonic acid metabolism, fatty acid metabolism, 
GnRH signaling pathway, pentose phosphate pathway, 
and PPAR signaling pathway are active in the low-risk 
group (Fig. 8A). The results of GSVA enrichment analy-
sis show that the functions DNA replication, homolo-
gous recombination, mismatch repair, and cell cycle are 
enriched in the high-risk group, while the functions Sul-
fur metabolism, glycine serine and threonine metabo-
lism, tyrosine metabolism, primary immunodeficiency, 
and intestinal immune network for IgA production 
are enriched in the low-risk group (Fig.  8B). In addi-
tion, important tumor pathways, such as Wnt, MAPK, 
Notch, JAK-STAT, PD-1/PD-L1, mTOR, TNF, HIF-1, and 
ErbB, are all related to the risk score, and pathways and 

Fig. 6  Clinical and immune analysis related to risk subgroups. A Differences in clinical data, DRGs, TMB, TIDE scores, and ssGSEA results 
between high and low-risk groups. TIDE scores and TMB are presented in the form of a bar chart and density plot respectively. B The differences 
in the abundance of immune cell infiltration algorithms in TIMER2.0 database including TIMER, CIBERSORT, CIBERSORT-ABS, MCPCOUNTER, XCELL, 
and EPIC between the high-risk and low-risk groups (the heatmap shows the results with statistical differences)
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functions related to disulfidptosis and ferroptosis are also 
related to the risk score (Fig. 8C).

Analysis of the mutation landscape
Gene mutations are of great significance to tumors 
because they are one of the main causes that lead to the 
formation and development of tumors. Gene mutations 
can change the gene expression and protein structure in 
cells, leading to abnormal growth and division of cells, 
and eventually forming tumors. Analysis of the muta-
tion status of high-risk and low-risk groups shows that 
the mutation frequency of high-risk group genes such as 
TP53, TTN, MUC16, CSMD3, RYR2, LRP1B, ZFHX4, 

and USH2A are higher than that of low-risk group 
(Fig. 9A).

Construction of nomogram
In order to further utilize the DFRG prognosis model for 
the prediction of LUAD patient survival, we additionally 
included clinical data in the construction of the 
nomogram, including Gender, T stage, N stage, and Age 
(Fig. 9B). The red line in the figure indicates example data. 
In addition, we presented the calibration curve of the 
nomogram (Fig.  9C). To verify the model, we analyzed 
the survival situation of the high and low scoring groups 
using the KM curve. The results showed that the OS of 
the high-score group was significantly lower than that 
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Fig. 7  Verification of OCIRGs by sc-RNA seq. A tSNE plot of cells generated from LUAD tissues. The images are color-coded by cell clusters, 
with the cells clustering into 27 subclusters. Each point represents a LUAD cell. B Expression of ODFRGs visualized in tSNE in LUAD. C Violin plot 
depicting the expression of ODFRGs in LUAD clusters
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of the low-score group (Fig. 9D). The ROC curve results 
for 1 year, 3 years, and 5 years were AUC values of 0.823, 
0.809, and 0.790, respectively (Fig. 9E).

Verification of ODFRGS expression
To verify the expression levels of ODFRG in normal and 
LUAD samples, we analyzed the TCGA LUAD cohort. 
The results showed that, compared with normal sam-
ples, GMPR was under-expressed in tumors, MRPL13 
was overexpressed in lung adenocarcinoma, while the 
expression of MCFD2 and SALL2 between normal lung 
tissue and lung adenocarcinoma tissue was not different 
(Fig.  10A). We subsequently demonstrated the immu-
nohistochemical results of ODFRGs in LUAD tissue 
(Fig. 10B). In addition, qPCR (Fig. 10C) and western blot-
ting (Fig. 10D) also get got the same result.

In vitro functional assessment of GMPR
In A549 and PC9 cell lines, the expression levels of 
GMPR were significantly increased after overexpression 
of GMPR (Fig.  11A; ***P < 0.001). Furthermore, overex-
pression of GMPR significantly reduces the prolifera-
tion of lung adenocarcinoma cells in A549 and PC9 cell 
lines. (Fig.  11B; **P < 0.01). Subsequently, colony forma-
tion analysis showed that the ability of colony formation 
in A549 and PC9 cell lines was significantly decreased 
after overexpression of GMPR (Fig.  11C; **P < 0.01). 
Overexpression of GMPR significantly reduced the 
migration ability of A549 and PC9 cell lines in wound 
healing experiments (Fig. 11D; P < 0.01, P < 0.001). In the 
transwell assay, overexpression of GMPR significantly 
decreased the invasive ability of A549 and PC9 cell lines 
(Fig. 11E; *P < 0.05, ***P < 0.001).

Fig. 8  Biological functions. A Significantly enriched pathways in the high-risk and low-risk groups. The extremum located on the left side indicates 
a positive association between risk scores and pathway activity, and vice versa. B There is a significant difference in pathways between high-risk 
and low-risk groups. Blue bars represent a positive correlation between risk scores and pathway activity, while yellow bars indicate the opposite. C 
The correlation between riskscore and tumor important pathways, as well as disulfidptosis/ferroptosis-related functions



Page 14 of 21Ma et al. Cancer Cell International          (2023) 23:267 

Fig. 9  Mutational landscape differential analysis of risk subtypes and construction of a nomogram. A Overview of the top 20 mutated genes 
in high-risk and low-risk populations. The bars above show the total amount of gene mutations and the corresponding mutation types. The right 
column displays the mutation frequency of the top 20 mutated genes. B Nomogram for 1-, 3-, and 5-year overall survival prediction. The red line 
shows an example of predicting the prognosis. C Calibration plots for agreement tests between predicted and actual OS. D KM analysis was used 
to compare the differences in survival between high and low nomogram score groups. E ROC analysis was used to evaluate the ability and accuracy 
of the nomogram
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Fig. 10  Analysis of ODFRGs expression. A IHC verification of the expression level of ODFRGs in the LUAD tissue and surrounding tissue. B Analysis 
of the expression levels of ODFRGs based on RNA-seq data between normal and tumor samples. C PCR verification ODFRGS’s expression level. D 
Western Bloting verifies the expression of ODFRGS in 1 normal cell strain and three types of LC cells

(See figure on next page.)
Fig. 11  Validates the role of the key gene GMPR in lung cancer cell lines in vitro. A The overexpression of GMPR significantly enhanced its 
expression in the A549 and PC9 cell lines (**P < 0.001). B After the overexpression of GMPR in A549 and PC9 cell lines, the activity of lung 
adenocarcinoma cells significantly decreased (**P < 0.01, ***P < 0.001). C Clone formation assay results showed that the ability of colony formation 
in A549 and PC9 cell lines was significantly reduced after GMPR overexpression (**P < 0.01). D The control group demonstrated a stronger migration 
ability than the experimental group in the wound healing experiment in A549 and PC9 cell lines (**P < 0.01, ***P < 0.001). E Overexpression of GMPR 
attenuated the invasive ability of A549 and PC9 cell lines (*P < 0.05, ***P < 0.001)
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Fig. 11  (See legend on previous page.)
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Discussion
In recent decades, significant progress has been made 
in the treatment of lung cancer. Emerging technologies 
such as targeted therapy, immunotherapy, and multidis-
ciplinary treatment models have been applied in clinical 
practice, and research results from clinical trials have 
provided more effective treatment options [16]. However, 
we still face many challenges to control the development 
of lung cancer and reduce the mortality rate of patients. 
In addition, we still do not fully understand the etiol-
ogy and pathogenesis of lung cancer. Therefore, in the 
research process, exploring new molecular markers and 
cell signaling pathways, analyzing in-depth the molecu-
lar mechanisms associated with lung cancer, will provide 
important theoretical guidance for new oral chemother-
apy drugs and immunotherapy [17].

In February 2023, a team of professors from the MD 
Anderson Cancer Center at the University of Texas, 
including Professor Gan Boyi and Professor Chen Junjie, 
first proposed a cell death process called disulfidptosis 
in the journal Nature Cell Biology [3]. This type of 
cell death occurs more in cells with high expression 
of SLC7A11 and abnormal accumulation of disulfide 
compounds caused by extreme glucose starvation leads 
to death. The characteristic manifestations of this death 
process are abnormal formation of disulfide bonds 
in muscle actin cytoskeleton proteins and collapse 
of F-actin. Lack of glucose affects the generation of 
NADPH in the pentose phosphate pathway, and the 
main function of SLC7A11 is to uptake cysteine [3]. 
When glucose starvation occurs, the accumulation 
of cysteine in the cells will cause the generation of 
disulfide stress, leading to an imbalance of the redox 
state and the occurrence of disulfidptosis. During this 
process, there are significant changes in cell morphology, 
including cell contraction and F-actin contraction, and 
the morphology of muscle actin cytoskeleton undergoes 
changes, including corresponding changes in disulfide 
bonds [18]. Ferroptosis is an important type of cell 
death, which mainly occurs due to the combined action 
of oxidative stress, membrane lipid peroxidation, and 
other factors inside the cell, resulting in cell damage 
and death [19]. Compared with other cell apoptosis 
and necrosis pathways, ferroptosis is characterized by 
lipid peroxidation and has multiple specific regulation 
mechanisms [20].

Ferroptosis plays a significant role in lung 
adenocarcinoma. Studies have shown that ferroptosis 
is involved in the development and treatment of lung 
adenocarcinoma, providing a new theoretical basis for 
its treatment. Lung adenocarcinoma cells have varying 
sensitivities to ferroptosis-inducing drugs [11]. For 
example, overexpression of the protein NFS1 in lung 

adenocarcinoma cells can promote tumor growth and 
reduce sensitivity to ferroptosis drugs. Inhibiting NFS1 
leads to cellular iron depletion and increased sensitivity 
to ferroptosis [21]. Additionally, a protein called STYK1 
has been identified in lung adenocarcinoma cells, 
which promotes lung cancer metastasis and suppresses 
ferroptosis through upregulating GPX4 expression [22]. 
Another protein, called LSH, a chromatin remodeling 
protein, inhibits ferroptosis by activating genes 
associated with metabolism [23]. Understanding the 
value of ferroptosis in lung adenocarcinoma is crucial 
for its treatment. Firstly, ferroptosis is a unique form 
of cell death that differs from traditional apoptosis. 
This means that regulating ferroptosis opens up a 
new treatment pathway and overcomes limitations 
of traditional therapies. Secondly, specific proteins 
in lung adenocarcinoma cells, such as NFS1, STYK1, 
and LSH, play important regulatory roles in the 
process of ferroptosis. Understanding and intervening 
in these regulatory factors can enhance the tumor’s 
sensitivity to ferroptosis drugs, thereby improving the 
therapeutic effect of lung adenocarcinoma. Additionally, 
identifying drugs and compounds that induce ferroptosis 
contributes to the development of new treatment 
strategies[24]. In conclusion, the study of ferroptosis 
in lung adenocarcinoma provides a new theoretical 
basis for its treatment. By gaining a deep understanding 
of the regulatory mechanisms and influencing 
factors of ferroptosis, we can develop more targeted 
treatment methods to enhance the effectiveness of lung 
adenocarcinoma treatment. Future research should 
further explore the specific mechanisms of ferroptosis 
in lung cancer and develop safer and more effective 
ferroptosis inducers for better clinical applications. As 
for disulfidptosis, there is limited research at present. It 
is known that disulfidptosis plays an important role in 
renal cancer. Studies have shown that the expression level 
of SLC7A11 in tumor tissues of renal cancer patients is 
significantly elevated, which is closely associated with 
tumor growth and progression. When renal cancer 
cells are exposed to a glucose-deprived environment, 
SLC7A11-induced disulfidptosis occurs, leading to cell 
death. During the process of disulfidptosis, the high 
expression of SLC7A11 induces cell death by reducing 
the level of NADPH and causing the accumulation 
of reactive oxygen species [25]. In fact, utilizing the 
mechanism of disulfidptosis can be a potential strategy 
for treating renal cancer. One approach is to target 
SLC7A11-overexpressing renal cancer cells and inhibit 
the glucose transport pathway to induce disulfidptosis 
and suppress tumor growth [3]. Additionally, exploring 
other proteins and signaling pathways that regulate 
disulfidptosis could promote cell death in renal cancer 
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cells. Therefore, the discovery of disulfidptosis provides 
new ideas and strategies for the treatment of renal cancer 
and offers inspiration for the treatment of other diseases. 
However, due to the relatively short period of time that 
disulfidaptosis, a cell death process, was discovered, 
there is currently limited research on lung cancer. 
Currently, there are some bioinformatics studies related 
to lung cancer, but the exploration of the mechanism of 
disulfidaptosis in lung cancer still has gaps and requires 
further investigation by future researchers [26–31].

This study discovered the connection between 
disulfidptosis and ferroptosis. Professors Gan and 
Chen pointed out in their article the important role 
of SLC7A11 in disulfidptosis [3]. Regardless of the 
deformation of the cytoskeleton, disulfide bond 
generation, F-actin contraction, or the occurrence 
of disulfidptosis, SLC7A11 played a mediating role. 
Previous research has shown that SLC7A11 plays a 
crucial role in ferroptosis [17, 32]. The function of 
SLC7A11 is to promote the entry of cysteine (Cys) into 
cells and increase the synthesis of glutathione (GSH). 
Glutathione is a very important antioxidant that can 
effectively remove excess ROS in cells [33]. Therefore, 
when the expression level of SLC7A11 is reduced, its 
function is inhibited, or there is a mutation, the amount 
of GSH synthesized by cells will decrease, which in turn 
decreases GPX4 activity, resulting in ROS accumulation 
and cell death. Based on this knowledge, it is believed 
that SLC7A11 is one of the key regulatory factors in the 
process of controlling ferroptosis, and its mechanism of 
action needs to be paid special attention to.

This study screened and analyzed four ODFRGs, 
namely GMPR, MCFD2, MRPL13, and SALL2. We 
further analyzed the prognostic model constructed 
by ODFRGs, including the tumor immune 
microenvironment and enriched functional pathways 
in the risk subtype, as well as the analysis of ODFRGs 
using single-cell sequencing.

GMPR(Guanosine Monophosphate Reductase) is 
an enzyme that converts guanosine monophosphate 
(GMP) to inosine monophosphate (IMP) and plays 
a role in purine nucleotide metabolism pathways. 
Multiple studies have shown that [34, 35] GMPR 
plays an important biological role in melanoma. The 
expression of this enzyme can inhibit the invasion and 
metastasis of melanoma cells, thereby reducing the 
malignancy of melanoma. In addition, maintaining an 
appropriate level of GMPR expression potential can 
inhibit the development of melanoma, making GMPR 
a potential target for the treatment of melanoma. In 
our study, GMPR was found to be downregulated in 
lung adenocarcinoma and was correlated with poor 
prognosis. The expression of GMPR was positively 

correlated with the infiltration abundance of resting 
mast cells.

MCFD2 (Multiple Coagulation Factor Deficiency 
2) is a protein related to coagulation factors. Recent 
studies have shown that [36] MCFD2 is involved in 
the development of oral cancer, and its expression 
level in oral cancer cells is significantly higher than 
in normal cells. Studies have also found that reducing 
the expression of MCFD2 can effectively inhibit the 
growth and metastasis of oral cancer. The database 
results show that high expression of MCFD2 in LUAD 
is associated with poor prognosis. The expression of 
MCFD2 is positively correlated with the abundance of 
M2 macrophage infiltration and negatively correlated 
with the abundance of memory B cells infiltration.

MRPL13(Mitochondrial Ribosomal Protein L13) is 
one of the components of mitochondrial ribosomes 
and has multiple oncogenic mechanisms. In breast 
cancer, MRPL13 is involved in cell proliferation and 
EMT process, and is associated with poor prognosis 
of patients [37–39]. In non-small cell lung cancer, 
the expression of MRPL13 is also higher than that 
of normal tissues or cells, which can promote the 
proliferation of tumor cells and induce apoptosis [40]. 
Studies have shown that inhibiting MRPL13 can slow 
down the proliferation of breast cancer cells and EMT 
process, while reducing the resistance of non-small 
cell lung cancer cells to anthracyclines chemotherapy 
drugs. Currently, there is no evidence to prove the 
important role of MRPL13 in immune cell regulation in 
the tumor microenvironment, thus further research is 
needed to clarify its role in tumor treatment. Overall, 
MRPL13 is one of the important directions of tumor 
treatment research. This study found that MRPL13 
is highly expressed in lung adenocarcinoma and is 
associated with poor prognosis. Immune infiltration 
analysis showed that the expression level of MRPL13 is 
highly correlated with the infiltration level of activated 
memory CD4 T cells.

MRPL13 (Mitochondrial Ribosomal Protein L13) is 
one of the components of mitochondrial ribosomes 
and has various carcinogenic mechanisms. In breast 
cancer, MRPL13 is involved in cell proliferation and 
EMT processes and is associated with poor prognosis 
in patients [37–39]. In non-small cell lung cancer, the 
expression of MRPL13 is also higher than that in normal 
tissues or cells, promoting tumor cell proliferation and 
inducing cell apoptosis [40]. Studies have shown that 
inhibiting MRPL13 can slow down the proliferation and 
EMT process of breast cancer cells [37]. Overall, MRPL13 
is one of the important directions in tumor treatment 
research. This study found that MRPL13 is highly 
expressed in lung adenocarcinoma and is associated with 
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poor prognosis. Immunoinfiltration analysis shows that 
the expression level of MRPL13 is highly correlated with 
the infiltration level of activated memory CD4 + T cells.

SALL2 (Spalt Like Transcription Factor 2) is a 
transcription factor belonging to the Spalt-like family. 
In ovarian cancer, SALL2 is believed to have a role in 
inhibiting tumor development [41], but it may promote 
tumor growth in glioblastoma [42]. Studies have shown 
that SALL2 can inhibit cell proliferation by regulating 
the transition from G1 to S phase and suppressing 
the expression of Cyclin D1 and E1. SALL2 plays an 
important role in breast cancer. SALL2 downregulation 
leads to loss of sensitivity to hormone therapy in breast 
cancer patients, affecting cell proliferation and apoptosis 
[39]. SALL2 directly regulates the transcription levels of 
ERα and PTEN genes, which have a specific impact on 
the treatment and prognosis of breast cancer patients.
This regulatory effect can help prevent the occurrence 
of cancer. In addition, SALL2 also induces cell cycle 
arrest and apoptosis, which further contributes to the 
suppression of tumor development. In this study, it was 
found that SALL2 has a protective effect in LUAD. The 
higher the expression level of SALL2, the earlier the 
clinical staging of LUAD patients.

The results of single-cell sequencing revealed a sig-
nificant upregulation of MCFD2 and MRPL13 expres-
sion in macrophages, vital cellular components in 
tumor microenvironments. Macrophages demonstrate 
diverse phenotypes, with M1 macrophages exhibit-
ing anti-tumor activity and M2 macrophages promot-
ing tumor growth. Tumor-associated macrophages 
(TAMs) play a pivotal role in photodynamic therapy 
(PDT), a treatment modality relying on the ability of 
macrophages to uptake systemically administered pho-
tosensitizers. Consequently, macrophage activity largely 
contributes to the localization and local fluorescence 
of photosensitizers within tumors. Upon PDT treat-
ment, macrophages enriched with photosensitizers 
(predominantly M2 macrophages) sustain considerable 
damage and become replaced by newly recruited M1 
macrophages. These macrophages play a critical role 
in the efficacy of PDT by facilitating the clearance of 
apoptotic cancer cells and processing/presenting tumor 
antigens to T lymphocytes. As a result, macrophages 
hold substantial significance in both immunotherapy 
and PDT for tumor management. Additionally, the 
heightened expression of MCFD2 and MRPL13 within 
macrophages suggests their potential involvement in 
macrophage-related functions.

The proportional hazards regression model in this 
study was also constructed based on the aforementioned 
four ODFRGs. The functions associated with the model 

include Arachidonic acid metabolism, cell cycle, peroxi-
some, and ubiquitin mediated proteolysis.

Enzymes related to Arachidonic acid metabolism [43], 
such as cyclooxygenase and lipoxygenase, play a critical 
role in the development and progression of cancer. 
These enzymes’ metabolites include prostaglandin E2, 
leukotriene A4, and thromboxane A2, which have been 
shown to stimulate cell proliferation, angiogenesis, and 
cancer cell metastasis. Therefore, research on inhibiting 
these enzymes has become a hot topic in cancer 
treatment. Many natural products, such as bioactive 
substances and dietary plant compounds, are believed to 
be potential therapeutic drugs.

Cell cycle [44] refers to the process by which cells grow 
and divide, including the G1, S, G2, and M phases. The 
regulation of the cell cycle mainly depends on activators 
and inhibitors. Cells will perform different life cycle 
checkpoints at different stages to ensure cell health and 
prepare for division. Errors in the cell cycle may lead to 
cell apoptosis or genetic instability.

Peroxisome [45] plays an important metabolic role 
in tumor cells, especially in regulating the oxidation–
reduction state and improving fatty acid oxidation and 
ether phospholipid synthesis. Therefore, studying the 
function of Peroxisome in tumor metabolism can provide 
new potential targets for cancer treatment (Additional 
file 3).

Ubiquitin mediated proteolysis[46] plays a crucial 
role in cancer. E3 ubiquitin ligases such as APC/C 
(ANAPHASE-PROMOTING COMPLEX/CYCLOsome) 
and SCF (SKP1-CUL1-F-box protein complex) regulate 
the ubiquitin signaling pathway to ensure the progression 
of the cell cycle. Correct ubiquitination process can 
prevent uncontrolled cell proliferation and tumor 
occurrence. Therefore, the treatment strategy targeting 
E3 ubiquitin ligases has become one of the novel 
approaches to cancer treatment (Additional file 4).

Conclusion
Through the analysis of public database data, this study 
identified prognostic genes in LUAD and ultimately 
selected 4 ODFRGs to construct a prognostic model. The 
model can accurately predict the prognosis and level of 
immune infiltration among LUAD patients, providing 
a reliable basis for clinicians to make personalized 
treatment decisions. Moreover, the elevated expression 
of GMPR in ODFRGs in lung adenocarcinoma reduces 
the proliferation, migration, and invasion of lung cancer 
cells. Additionally, the results of this research provide 
important foundational data for further exploring LUAD 
and tumor microenvironment.
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