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Abstract

Glioma is the most aggressive and malignant type of primary brain tumor, comprises the majority of central nerv-
ous system deaths, and is categorized into different subgroups according to its histological characteristics, includ-
ing astrocytomas, oligodendrogliomas, glioblastoma multiforme (GBM), and mixed tumors. The forkhead box (FOX)
transcription factors comprise a collection of proteins that play various roles in numerous complex molecular cas-
cades and have been discovered to be differentially expressed in distinct glioma subtypes. FOXM1 and FOXOs have
been recognized as crucial transcription factors in tumor cells, including glioma cells. Accumulating data indicates
that FOXM1 acts as an oncogene in various types of cancers, and a significant part of studies has investigated its
function in glioma. Although recent studies considered FOXO subgroups as tumor suppressors, there are pieces

of evidence that they may have an oncogenic role. This review will discuss the subtle functions of FOXOs and FOXM!1
in gliomas, dissecting their regulatory network with other proteins, microRNAs and their role in glioma progression,
including stem cell differentiation and therapy resistance/sensitivity, alongside highlighting recent pharmacological
progress for modulating their expression.
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Introduction

Glioma, a nervous system (CNS) tumor with a high
recurrence rate, is responsible for 81% of adults’ most
primary invasive brain tumors and 30% of CNS malig-
nancies [1]. Gliomas are classified as astrocytoma, oli-
godendrogliomas, ependymomas, or oligoastrocytoma
based on the malignancy intensity and their histologic
origination oligodendrocytic and astrocytic components
of the CNS [2]. World Health Organization (WHO)
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categorized glioma into four grades (grades I to IV). Glio-
mas with WHO grades I and II are classified as low-grade
gliomas (LGG). In contrast, those with grades III and
IV are classified as high-grade gliomas (HGG)[3]. HGG
includes several tumors consisting of glioblastoma mul-
tiforme (GBM), anaplastic oligodendroglioma (OA), and
anaplastic astrocytoma (AA) [4]. The median survival
time of HGGs after conventional treatments is approxi-
mately 2 to 5 years for anaplastic glioma [5] and less than
15 months for glioblastoma [6, 7]. LGGs include oligo-
astrocytomas or mixed gliomas, astrocytomas, and oli-
godendrogliomas with an average survival rate of 7 years
and eventually progress to HGGs [8]. Conventional treat-
ments were limited to chemotherapy and radiotherapy
in the past; however, despite the recent development of
novel treatments such as molecular targeted therapy,
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stem cell therapy, immunotherapy, gene therapy, and
genomic corrections, the survival rate of patients has
not improved significantly in clinical settings, majorly
because of low brain-blood-barrier (BBB) permeability
and occurrence of the resistance to treatment [9]. There-
fore, a subtle understanding of the molecular mecha-
nisms involved in glioma progression, therapy resistance,
and glioma stem cell-induced differentiation is needed
for developing the efficacy of available treatments [10].

Transcription factors (TFs) play critical roles in the
transcriptional processes that control gene expression;
dysregulation of muted TFs is prevalent in glioma and
can lead to the development of tumor-related character-
istics. Various expressed TFs and their downstream tar-
gets in glioma could be utilized for therapeutic goals [11].
FOX proteins are a broad group of transcription factors
that play key roles in a variety of cellular mechanisms,
including cellular growth, cell differentiation, prolifera-
tion, and cell cycle control. FOX proteins are classified
according to a DNA binding motif consisting of 80 to 100
amino acids, known as the FKH domain or the fork head
box [12, 13]. Thus, they are categorized into 19 subtypes
according to similarities in the FKH domain; despite the
fact that the FOX proteins have highly similar DNA bind-
ing domains, they have diverse tissue-specific transcrip-
tional regulation and regulatory mechanisms that allow
them to perform their specialized tasks [14, 15].

FOXO is a member of the FOX family, including four
subtypes (FOXO1, FOXO3, FOXO4, and FOXO6).
Growth factors which are essential for stimulation of the
phosphatidylinositol 3-kinase—protein kinase B (PI3K-
AKT), regulate FOXO function and phosphorylation of
Akt, resulting in activation of FOXO. Moreover, FOXOs
are involved in various physiological and pathological
mechanisms, including cell cycle arrest, apoptosis, stem
cell differentiation, and oxidative stress [16, 17]. The con-
troversial and complex regulatory functions of FOXOs
in tumorigenesis have been documented. Despite their
well-known tumor-suppressing properties, FOXOs can
potentially induce cancer in some circumstances [18].
For instance, FOXO1s downregulation is linked to poor
prognosis and decreased survival rate in myeloid leu-
kemia (AML), soft tissue sarcoma, and breast cancer
[19-21]. In contrast, the deactivation of FOXO1 in gas-
tric cancer contributes to better outcomes, while its acti-
vation in B-cell lymphomas was shown to be associated
with cancer progression [22, 23].

FOXM1 is associated with several human carcinomas,
and alterations in FOXM1 signaling are correlated with
carcinogenesis and oncogenesis in gliomas, prostate,
lung, colorectal, breast, and hepatocellular cancers [24,
25]. In malignant glioma, abnormal FOXM1 expression
has been discovered to be a prevalent molecular change.

Page 2 of 38

Furthermore, increased FOXM1 expression has been
linked to radioresistance and poor prognosis in GBM
patients [26]. In glioma, FOXM1 interacts with criti-
cal signaling pathways and molecules, including MELK,
STAT proteins, Wnt/p-Catenin, growth factors, and non-
coding RNAs [26—29].

Several exclusive reviews have emphasized the role of
FoxM1 and FoxOs in ovarian cancer [30] and hepatocel-
lular carcinoma [31], respectively. However, a study to do
so in gliomas is missing. Therefore, we aimed to conduct
this review to fill the missing gaps and shed more light on
the role of these transcription factors in the pathogenesis
of gliomas.

Methods

First, we searched PubMed on 14 May 2023 to estimate
the number of published articles regarding forkhead
box transcription factors in glioma using the following
terms: ([Name of FOX protein]) AND (Glioma OR Glio-
blastoma OR Astrocytoma OR Ependymoma OR Oligo-
dendroglioma OR Oligoastrocytoma). According to our
initial assessment, the most frequently studied FOX pro-
teins were FOXP3, followed by FOXM1, FOXO3(a), and
FOXO1 (Fig. 1). However, as a subtype of regulatory T
cells are also termed FOXP3+ cells, the number of stud-
ies that evaluated FOXP3 function was relatively few,
leading us only to review the function of FOXM1 and
FOXOs transcription factors in glioma deeply. Our inclu-
sion criteria were original studies that evaluated these
proteins’ biological, prognostic, or pharmacological func-
tion in gliomas. Exclusion criteria were review articles,
case reports or series, letters, editorials, consensus state-
ments, conference abstracts, and retracted articles. The
flow chart of the study selection is shown in Fig. 2.

FoxM1

FOXM1 (forkhead box protein M1, also known as HNF-
3, HFH-11, or Trident) is a transcription factor whose
overexpression was implicated in the carcinogenesis of
diverse tumors, especially glioma [32, 33]. This molecule
is regulated at different stages of gene expression, includ-
ing (a) transcriptional level (mostly cis-activated via
interaction of different molecules with its binding sites
and promotor), (b) post-transcriptional level (notably
by non-coding RNAs: including miRNAs, IncRNAs, and
circRNAs), (c) post-translational level (via mechanisms
such as phosphorylation, ubiquitination, and de-ubiq-
uitination), and (d) direct interaction of protein/RNAs
with FOXM1 protein [32]. Due to this variety of targets
for controlling FOXM1 expression, its inhibition seems
to be a promising strategy in cancer [32]. In higher-grade
gliomas, including anaplastic astrocytoma and glioblas-
toma, the expression of FOXM1 is significantly elevated,
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resulting in tumor recurrence [34—37]. In glioma tumor-
initiating cells (TICs), FOXML is a critical factor impli-
cated in the proliferation and self-renewal of cancer cells
[38]. In this section, we will discuss the importance of
FOXML1 in glioma progression, alongside mentioning its
upstream and downstream regulators (Fig. 3).

FOXM1 interplay with crucial signaling pathways

and molecules in glioma

PI3K/AKT signaling pathway

Phosphatidylinositol 3-kinase (PI3K)/Akt, as an over-
activated signaling axis, is known for contributing to
the progression of malignant gliomas (GBMs) [39]. It is
well established that activation of Akt can directly affect
FOXML1 in solid cancers by forming a positive loop in
a reciprocal manner [40]. Zhang et al. have shown that
increased Akt expression can provoke FOXM1 activity.
Their results demonstrated that MYB-related protein
B (B-MYB/MYBL2) and FOXM1, both transcriptional
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Fig. 3 A summary of FOXM1 regulation in gliomas. Activation of growth factors and tyrosine kinases can subsequently promote FoxM1
translocation to the nucleus via inducing its translocation. In the nucleus, FOXM1 can transcriptionally regulate the expression of various targets
by biding to their promoter, while several transcription factors (e.g,, HSF1, FGFR1, HIF-1a, and HMGA?2) can transactivate FOXM1. In addition, several
miRNAs that target 3'UTR of FOXM1 mRNA are downregulated in glioma cell lines. All of these processes lead to cell proliferation, migration,

invasion, angiogenesis, as well as resistance to chemoradiotherapy

factors, are co-expressed together. Their expression is
strongly correlated with poor clinical outcomes and
grades of gliomas. In addition, decreases in their expres-
sion can suppress glioma progression by inducing
apoptosis, delay of cells in the G2 phase, and inhibiting
migration, invasion, and EMT [41]. These results align
with a previous study by Wang et al. which showed that
binding chemokine CXCL12 to its receptor CXCR4
could significantly induce FOXM1 expression via the
PI3SK/AKT pathway [42]. Due to this, using a dual inhibi-
tor of histone deacetylases (HDAC) and PI3K, such as
CUDC-907, can suppress the expression and transcrip-
tional activity of FOXML1 in high-grade gliomas, leading
to radiosensitization [43].

MELK

Maternal embryonic leucine zipper kinase (MELK)
belongs to a group of serine/threonine kinases that
physiologically modulates organogenesis during the

embryonic period; however, its overexpression leads
to the progression of many cancers, including GBM,
majorly via activating transcription factors such as
FOXM1 [44]. In more detail, the activation of FOXM1
by MELK in GSCs is mediated by another kinase named
PLK1. Therefore, targeting the complex composed of
these proteins can be considered a desirable target in
GBM [28]. The importance of the MELK/FOXM1 com-
plex even gets bolder when EZH2, as an emerging ther-
apeutic molecule in brain tumors [45], was confirmed
to be a target of this complex in GBM spheres [46]. The
MELK/FOXM1 axis has received more attention in
recent years due to its significance in high-grade glio-
mas, and newer investigations have uncovered other
upstream regulators involved in chromatin remodeling,

such as SAT1 in the regulation of MELK and EZH2
[47].
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STAT proteins

Similar to FOX proteins, STATs (signal transducers and
activators of transcription) are a group of transcrip-
tion factors that are mainly localized in the cytoplasm
of cells; however, upon phosphorylation are translocated
to the nucleus and affect target genes’ expression follow-
ing the activation of cytokines (e.g.,, CXCR4) or growth
factors (EGFR)[48, 49]. In GBM cells, FOXM1 is corre-
lated with STATS3 levels, and inhibition of FOXM1 can
prevent growth factor- and cytokine-induced STAT3
activation [50]. Schonberg et al. have found that ferri-
tin, which stores and regulates iron ions, is preferentially
expressed in GBM stem cells and associated with poor
survival. They further noticed the expression of ferritin
has the highest correlation with STAT3. Since FOXM1
correlates strongly with STAT3 levels, both of them can
be targeted by ferritin knockdown [51, 52]. In addition,
the interaction between FOXM1 and STATS3 is necessary
for GBM cells’ resistance to radiation and DNA damage,
which will be the point of our focus in the next parts [26].
Moreover, not only STAT3 but also STAT1 can control
FOXM1 expression in different glioma cell lines (U87,
A172, U251, and T98), influencing other signaling path-
ways implicated in inflammation, such as NF-«B [53].

Whnt/B-catenin signaling pathway

Wnt pathway is an evolutionary conserved pathway
required for embryonic differentiation and develop-
ment, and recent studies frequently addressed the con-
sequences of its dysregulation in glioma tumorigenesis.
The Canonical Wnt pathway is also referred to as the
Wnt/B-Catenin pathway since it leads to the accumula-
tion of B-Catenin in the nucleus affecting a crucial tran-
scription factor named TCF4 responsible for Wnt target
genes expression [54]. A study by Zhang et al. turned out
FoxM1 acts as a downstream for canonical Wnt path-
way in glioma and is required for -catenin activation by
its translocating to the nucleus, leading to self-renewal
and tumorgenicity of GBM-initiating cells (GICs) [55].
More importantly, the expression of the previously men-
tioned protein transcription factor STAT3 is mediated
by FoxM1 via enhancing -catenin/TCF4 binding to the
STAT?3 gene promoter [50].

Growth factors

Some studies have mentioned the positive impact of
FOXM1 on the expression of growth factors, including
vascular endothelial growth factor (VEGF) [56] and epi-
dermal growth factor receptor(EGFR) [57] in high-grade
gliomas, all necessary for the growth and proliferation of
GSCs. While FOXM1 can target growth factors expres-
sion, the receptor of growth factors such as fibroblast
growth factor receptor 1 (FGFR1) has been reported to
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regulate the expression of FOXM1 in GBM stem cells,
leading to increased expression of EMT genes, resistance
to ionizing radiation, and GBM relapse after chemo-radi-
otherapy [58].

m®A modification pathway

One of the most common and frequent RNA modifica-
tions observed in eukaryotes is the m°®A modification,
also known as N6-methyladenosine modification. In
RNA molecules, it includes attaching a methyl group to
the nitrogen atom at the sixth position of the adenosine
base [59]. ALKBH5 is an m6A demethylase that plays a
critical role in regulating m6A modification. By removing
the m6A mark from RNA molecules, ALKBHS5 influences
RNA stability and metabolism, consequently influencing
gene expression and various biological processes in can-
cers [60]. In GBM stem cells (GSCs), a significantly ele-
vated expression of ALKBH5 has been observed, which
is essential for stem cell self-renewal. ALKBH5 could
maintain FOXM1 mRNA stability by demethylating its
nascent transcripts in GSCs, leading to tumor growth
[61]. Thus, selective ALKBHS5 inhibitors such as Enal5
and Ena2l are promising strategies against glioma pro-
gression as they could decrease tumor growth in different
GBM cell lines [62].

Hedgehog signaling pathway

The hedgehog signaling system is a multidimensional
molecular signaling network in animals, including
humans, that plays a crucial part in embryonic develop-
ment, tissue maintenance as well as cancer by controlling
cell differentiation and proliferation. When hedgehog
proteins attach to a receptor known as Patched, they acti-
vate another protein named Smoothened. This sets off a
chain of intracellular events that activate transcription
factors known as GLI proteins. GLI proteins regulate the
expression of target genes in the pathway as well as other
downstream signaling pathways [63]. There is evidence
that GLI1 and FOXM1 are co-expressed in GBM cells. In
more detail, it has been shown that FOXM1, via promot-
ing transcription of a nuclear importer protein named
IPO7, increases the nuclear localization of GLI1 proteins.
The FOXM1/IPO7/GLI1 axis contributes to the prolif-
eration, migration, and invasion of GBM cells [64]. GLI1
has a prominent role in the malignant transformation of
immortalized human astrocytes [65]. These data show a
positive feedback loop exists between GLI1 and FOXM1
transcription factors in different subtypes of gliomas [64,
66].

Other regulators and the role of non-coding RNAs
Alongside signaling pathways and molecules discussed
above, various studies have indicated the relationship
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between FoxM1 and other molecules involved in glioma
progression. As seen in Table 1, FoxM1 can regulate
(upstream regulating) or be regulated (as downstream
target) by a variety of molecules. Among upstream regu-
lators of FoxM1, the prominent role of non-coding RNAs
is worth mentioning. Though these classes of RNAs are
not encoded into proteins, they play a significant role
in epigenetic regulation of other proteins at different
stages of gene expression [67]. Due to the ability of circu-
lar RNAs and long non-coding RNAs to act as a sponge
for shared microRNAs at the post-transcriptional level,
they are also referred to as competing endogenous RNAs
(ceRNAs). In addition, the mechanism of action by which
microRNAs exert their role is mostly through target-
ing the 3" UTR of mRNAs [63]. Since FOXM1 acts as
an oncogene in cancers and glioma is not an exception,
those miRNAs whose target is FOXM1 are usually down-
regulated, leading to its overexpression and exacerbating
glioma’s malignancy. On the other hand, the downregula-
tion of these miRNAs is affected by oncogenic IncRNAs
and circRNAs as well, which are upregulated (Table 1).

FOXM1 and treatment opportunities in glioma
Radiotherapy

While radiotherapy combined with other treatments
such as chemotherapy is considered a conventional treat-
ment after surgical resection in high-grade gliomas, fail-
ure in treatment is frequently seen due to radioresistant
exhibited by tumor cells, particularly glioma stem cells
(GSCs). Various molecular pathways are involved in the
radioresistance of gliomas; on top of them, there are
AKT, Wnt/B-catenin, and STAT3 [104]. Surprisingly,
FOXM1 is a downstream target affected by them. For this
reason, FOXM1 can be considered a promising target for
overcoming radiotherapy resistance in gliomas [105], as
activation of the abovementioned oncogenic signaling
pathways and proteins subsequently leads to the aber-
rant activation of this protein and radioresistance. One
mechanism by which FOXM1 contributes to radiation
resistance is its DNA repair capability. Cells undergo-
ing radiation often overexpress FOXMI1 to prevent fur-
ther DNA damage [106]. Since FOXML1 is involved in cell
cycle regulation and DNA repair, it plays a significant
role in driving transcriptional response against radiation
in high-grade gliomas [105]. Not only FOXM1 but also
its targets also have been shown to be implicated in the
radioresistance of gliomas. The previously mentioned
MYBL2, as a downstream protein upregulated by AKT/
FOXM1 axis, can be used as radiosensitivity biomarker
for diagnosing patients with no response to radiother-
apy [41]. Similarly, the expression of both STAT3 and
FOXM1 was shown to be concurrent following radia-
tion treatment in high-grade gliomas [26]. The studies
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emphasizing the role of FOXM1 in radioresistance in
glioma have been summarized in Table 1.

Chemotherapy

The most commonly used chemotherapy regimens
against high-grade gliomas are temozolomide (TMZ),
bevacizumab, nitrosourea agents (e.g., carmustine), and
platinum-based agents (e.g., cisplatin, carboplatin, and
oxaliplatin). However, resistance to these drugs is com-
monly seen [107]. Like many other transcription factors,
FOXM1 is strongly associated with the processes related
to DNA repair, making glioma cells resistant to chemo-
therapy as well. Therefore, lowering FOXM1 has been
shown to be associated with temozolomide (TMZ) sen-
sitivity in GBM cell lines following the downregulation of
DNA -repair-responsible genes such as Rad51 and RFC5
[95, 96]. Various FOXM1 inhibitors have been found in
gliomas with chemosensitizing effects on in vivo and
in vitro models (Table 2). For example, previous studies
have found that FOXM1 can serve as a general target for
proteasome inhibitors (PlIs) in different cancer cell lines
[108]. Bortezomib is a PI that has shown TMZ-sensitiz-
ing properties via inhibiting FOXM1 in both cellular and
pre-clinical models for the treatment of high-grade glio-
mas [109]. However, since this agent cannot pass through
the blood—brain barrier (BBB), early clinical trials gener-
ally have been accompanied by unsatisfactory outcomes,
and newer generations of PIs, such as marizomib, were
more successful [110]. Takei et al. have shown that GBM
patients with low expression of FOXM1 had better over-
all survival compared to those with high levels of FOXM1
after neoadjuvant therapy with Bortezomib. There-
fore, FOXM1 can be used as a biomarker for evaluating
response treatment in GBM patients [111]. The treat-
ments which target FOXM1 in glioma have been summa-
rized in Table 2.

Immunotherapy

Immune checkpoint blockade, cytokine therapy, den-
dritic cell vaccines, viral therapy, and CAR-T therapy
all have been tried as immunotherapeutic approaches
against gliomas, and among them, immune checkpoint
inhibitors and CAR-T therapy have shown promising
therapeutic values in clinical trials [112]. A recent clinical
trial has highlighted the efficacy of early treatment with
a vaccine-based immunotherapy approach using glioma
oncoantigens (GOAs) containing FOXM1 before start-
ing chemotherapy or radiotherapy to prevent possible
chemo-radio resistance [113]. It has been shown that chi-
meric antigen receptor (CAR) T cells with costimulatory
MyD88 and CD40 (MC) endo-domains have a higher lev-
els of FOXM1, indicating that stimulation of FOXM1 in
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CAR-T cells might improve the results of immunother-
apy [114].

FOXO family

The "O" subfamily of forkhead box transcription factors
consists of four members, including FOXO1 (FKHR),
FOXO3 (FKHRL1), FOXO4 (AFX), and FOXO6, gener-
ally considered tumor suppressors via inducing apop-
tosis and inhibiting proliferation. While FOXO proteins
are majorly silenced following PI3K/AKT and Ras/MEK-
ERK(MAPK) pathways overactivity, they can be acti-
vated by oxidative stress regulators such as JNK (c-Jun
N-terminal kinase) and MST1 (Mammalian Ste20-like
kinase). Moreover, varieties of tumoral processes, includ-
ing invasiveness, angiogenesis, metastasis, and drug
response/resistance, are dependent on their deregulation
[126]. This standpoint has been revisited against previ-
ous thoughts regarding the tumor-suppressive effects of
FOXOs. Multiple theories have been proposed to justify
this controversy. Depending on the context, the stage in
which tumor cells are plays an essential role in the con-
sequences of FOXOs’ transcriptional output. The impact
of epigenetics, concurrent signaling pathways, and spa-
tial localization of cells in tumor spheroids were shown
as different factors responsible for metastasis-promoting
outputs of FOXOs expression [127]. On the one hand, the
interplay between PI3K/AKT pathway and FOXOs [126],
and on the other hand, the interaction with WNT/pB-
catenin and TGF-P pathway is supposed to be an essen-
tial factor in forming a balance between the anti-tumor
and tumor-promoting activity of FOXOs [127].

FOXO1

Post-transcriptional modifications (e.g., phosphorylation,
ubiquitination, acetylation, and deacetylation) of FOXO1
were shown to play a substantial role in regulating cell
proliferation, apoptosis, autophagy, and oxidative stress
[128]. The controversial role of FOXO1 in tumorigenesis
is also seen in gliomas. A recent study by Chen et al. has
indicated the anti-tumor capacities of FOXO1 in GBMs
favor prolonged cell survival and decreased migration,
invasion, cell adhesion (EMT), and drug resistance to
chemotherapeutic agents such as TMZ, BCNU, or cispl-
atin [129]. However, these findings are in contrast with
their previous study that showed both nuclear and cyto-
plasmic FOXO1 expression is increased in astrocytomas
and GBM cells, associated with poor survival [130]. Like-
wise, in a recent study with a small sample size by Huang
et al. immune-cytoplasmic-staining scores of FOXOla
helped distinguish low-grade-gliomas from non-neo-
plastic lesions but did not correlate significantly with
WHO grades [131]. Later, further research conducted
on TCGA-LGG and GTEx brain databases showed
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that low-grade gliomas have a significantly upregulated
FOXO1 expression. A nomogram containing this gene
alongside other autophagy-related genes (e.g., GRID2,
MYC, PTK®6, IKBKE, BIRC5, and TP73) could predict the
survival of patients with excellent accuracy (AUC: 0.81-
0.90) [132]. Another study has revealed that in both GBM
and lower-grade gliomas undergoing hypoxia (higher
expression of HIF-1a,) the expression of FOXOL1 is also
elevated [133]. However, more experimental studies
than bioinformatic studies are required to confirm these
results. Due to this duality, for each study reviewed here,
the tumor-suppressive or tumor-supportive features of
FOXOs will be highlighted (Fig. 5 and Table 3).

Akt and FOXO1 in glioma

Given that the PI3BK/AKT/mTOR pathway is overacti-
vated in 90 percent of GBMs and is closely related to
FOXOs activity, controlling its expression can serve as an
indirect approach for targeting FOXOs as well [39, 134].
However, it clearly has been established that inhibition of
other signaling pathways and oncogenes should be taken
into account for attaining therapeutic response. Tumor
suppressor p53 has an old reputation for maintaining
radiation response in different cancers [135]. Therefore,
its intact activity in GBM stem cells was shown to be nec-
essary for an adequate response to combined treatment
with PI3K/mTOR inhibitors and ionizing gamma radia-
tion followed by loss of stemness markers (e. g., SOX2,
nestin, or Musashi) and FOXO1/FOXO3a decrease [136].
Another study has also shown that FOXOL1 can increase
the expression of a stem cell marker named OCT4, exert-
ing an oncogenic impact in GBM cells (Fig. 5B) [137].
Moreover, the knockdown of FOXO1 was slightly able to
increase response to the above-mentioned treatments,
representing that for attaining higher levels of response,
both FOXO1 and FOXO3a should be inhibited together.
This gets more confusing when a recent study revealed
that targeting FOXO1 by miR-5188 is necessary for the
activation of PI3K/AKT/c-JUN signaling pathway in U87
and U251 glioma cell lines, supporting the tumor-sup-
pressive side of FOXO1 [138]. Similarly, another study
has shown that the anti-tumor features of herbal medi-
cine named Xihuang Pill are exerted through dephos-
phorylation of Akt and mTOR, resulting in decreased
phosphorylation of FOXO1 and its subsequent trans-
location to the nucleus to induce apoptosis [139]. The
interplay between FOXOs and PI3K/AKT could be a
possible factor in causing pro or anti-apoptotic effects;
however, targeting PI3K/AKT alone is not enough to
control FOXO1 expression since it can be phosphoryl-
ated independently by other upstream regulators, such as
mTORC2 [140] or CDKs [141].
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FOXO1 and metabolism in glioma

FOXOL1 regulates processes related to energy homeo-
stasis and glucose metabolism under physiological con-
ditions in organs such as the pancreas, liver, skeletal
muscle, and adipose tissue [142]. Recent studies also sup-
port its role in cancer metabolism as well [18]. In GBM
cells, upon either FOXO1 or PI3K/mTOR inhibition, the
expression of genes involved in glycolysis, such as LDHA,
is reduced. However, surprisingly when both of them are
inhibited, not only LDHA but ENOL1 as glycolytic genes
associated with poorer survival are increased, supporting
the theory that for the efficacy of PI3/mTOR inhibitors
against glycolysis, the intact activity of FOXO1 is neces-
sary [143](Fig. 5B). Masui et al. [140] have shown that
mTORC?2, independent of PI3K/AKT activity, suppresses
FOXO1/FOXO3 activity by promoting their acetylation
(Fig. 5A). Activation of mTORC?2 also leads to suppres-
sion of miR-34c, a miRNA that targets c-Myc. When
c-Myc is upregulated, the Warburg effect (as a hallmark
of cancer) is promoted and assists cell survival. Further-
more, another study has pointed out that treatment with
Progesterone (a pleiotropic steroid hormone) in GBM
cells can exert anti-tumor properties and suppress glycol-
ysis and Warburg’s effect via inhibiting GLUT1, GAPDH,
and cytoplasmic activity of FOXO1 [144].

FOXO1 and cell cycle regulation in glioma

Regulation of the cell cycle has been proposed as an
essential mechanism in which FOXO proteins exert their
tumor-suppressive functions via repressing the activ-
ity of various proto-oncogenes, including cyclins (e.g.,
A, E, D) and cyclin-dependent kinases (CDKs including
2,4, and 6) [145]. The reciprocal interplay between cycle
cell regulators and FOXOs in glioma has been reported
in various studies. Restoring FOXO1 expression in glio-
mas can cause cell cycle arrest at the G2/M phase via
phosphorylating CDK1 at 5249, resulting in hindered cell
proliferation and increased apoptosis [146]. Under meta-
bolic stress conditions, cyclin F but not cyclin A, cyclin
B, cyclin D, or cyclin E is expressed frequently in glioma
cell lines. In more detail, the binding of FOXO1 but not
FOXO3a, FOXO04, or FOXO6 to cyclin F promoter sub-
sequently represses the expression of IDH1 as a crucial
proto-oncogene in glioma [147]. In addition, it’s well
established from a long time ago that cyclin-dependent
kinases by phosphorylating FOXO1 on S249 cause its
cytoplasmic localization and decreased activity [145].
Therefore, using CDK2 inhibitors was shown to increase
the nuclear translocation of FOXO1 in U87 glioma cells
more than in U251 cells [141]. Similarly, other cyclin-
dependent kinase inhibitors (CDKi), such as p21Cipl,
were shown to be activated by FOXO1/SMAD complex,
following TGF-P signaling pathway activation in GBMs.
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However, PI3K/Akt signaling, as well as other forkhead
transcription factors such as FOXGI1, both acted as
antagonists for FOXO1 by preventing TGF- induced
cytostasis(Fig. 4) [148].

FOXOs can induce cell cycle arrest at different stages
by inhibiting cyclins and cyclin-dependent kinases. In
addition, reciprocal phosphorylation of FOXO1 and
CDKs is a crucial factor in regulating the cell cycle.
Under metabolic stress, FOXO1 increases Cyclin F but
not other Cyclins in gliomas, suppressing IDH1 expres-
sion, an essential tumor marker which its overexpression
is implicated in glioma progression. Moreover, TFG-p/
SMAD can form a complex with FOXO1 and induce the
expression of CDK inhibitor p21Cip1l. However, interfer-
ence of PI3K/Akt signaling and other oncogenes, such as
FOXG1, diminish this process.

Other upstream regulators and downstream targets

of FOXO1 in glioma

Similar to FOXMI, various studies have identified
upstream/downstream regulators of FOXOL1 in gliomas.
As seen in Table 3, most of these regulators are ncRNAs,
and in their results, FOXO1 was proposed as a tumor
suppressor, except in a study by Shi et al. [149] which
showed the opposite result. It is noteworthy to men-
tion that some ncRNAs form a positive feedback loop
that constantly represses FOXO1 expression, leading
to glioma progression [138, 150, 151] (Fig. 5A). Accord-
ing to two other studies which proposed FOXO1 as an
oncogene, two hypotheses can be raised; a) FOXO1 can
act as an oncogene in radioresistant or chemoresistant
glioma cell lines that have not responded to conventional
treatments [152], and b) in a context-dependent manner
FOXOL1 can act as an oncogene by increasing stem cell
markers in glioma [137] (Fig. 5B).

A)Tumor suppressive effects of FOXO1

Transduction of growth-related signals and subse-
quent activation of PI3K/Akt signaling cascade prevents
FOXO1 translocation to the nucleus via inducing its
phosphorylation. While mTOR inhibits FOXO1 translo-
cation to the nucleus upon its phosphorylation, mTORc2,
and IncRNA-DANCR have been shown to exert similar
effects on FOXO1 by promoting its acetylation and ubiq-
uitination, respectively. Moreover, treatment with agents
such as Progesterone suppresses EGFR-dependent acti-
vation of the PI3K/Akt signaling pathway. There are vari-
ous upregulated miRNAs, including miR-21, miR-28-5p,
miR-196a-5p, miR-374a, miR-486-5p, and miR-5188 in
different glioma cell lines that target 3" UTR of FOXO1
mRNA. In the nucleus, on the one hand, FOXO1 can
regulate its downstream targets (e.g., PID1). On the other
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Fig. 4 Cell cycle regulation by FOXO1 in gliomas

hand, transcription factors such as KLF4 control FOXO1
transcriptional activity by binding to its promoter.

B) Oncogenic effects of FOXO1

Few studies have mentioned the oncogenic capabilities of
FOXOL1 as a therapeutic target in glioma. Following com-
bined treatment with PI3K/mTOR inhibitor and gamma
ionizing radiation, the expression of FOXO1 and stem
cell marker SOX2 is decreased in GBM stem cells with
wild p53 phenotype [136]. Moreover, FOXO1 can bind
to the promoter of two other proto-oncogenes, includ-
ing OCT4 and RFC2, and increase their transcription
[137, 152]. Shi et al. have discovered that miR-135a acts
as a tumor suppressor in gliomas by hindering FOXO1
expression [149]. In addition, PI3K/mTOR or FOXO1
inhibitors could prevent glycolysis in gliomas. How-
ever, when both of them are concurrently inhibited, the
expression of glycolysis-related genes, including LDHA
and ENOJI, is elevated [143].

FOXO1 and therapeutic opportunities in glioma

Given that many studies conducted up to now sup-
port the tumor suppressor role of FOXO1, restoring its
expression may reverse glioma tumorigenesis in its early
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stages. Several studies have shown that restoration of
FOXO1 could facilitate the efficacy of treatment with
TMZ [129, 161, 164, 166], etoposide [154, 156], and radi-
otherapy [150, 162]. In addition, most of the pharmaco-
logical compounds which affect FOXO1 were shown to
increase their expression in gliomas (Table 4). Some of
these agents were shown to induce FOXO1 expression in
a dose [144, 167] and/or time-dependent manner [144,
168].

FOXO03

Similar to FOXO1, FOXO3 (also known as FOXO3a)
is generally considered a tumor suppressor in different
cancers, and its sub-cellular localization was shown to
be crucial for its activity. FOXO3 expression is regu-
lated at different levels of gene expression, including
post-transcriptional (mainly by miRNAs), post-trans-
lational modifications (such as phosphorylation, acet-
ylation, methylation, ubiquitination and etc.), and
protein—protein interaction [177]. As will be discussed
below, the majority of studies have introduced FOXO3
as a tumor suppressor in gliomas, however; similar
to FOXO1, there is a controversial role for FOXO3 in
gliomas in terms of function and prognosis [178, 179].
While Qian et al. [178] have shown that in human GBM
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Fig. 5 Double-edged role of FOXOT1 in glioma progression. A Tumor suppressive effects of FOXO1. B Oncogenic effects of FOXO1

tissues, high nuclear FoxO3a expression is linked to a
poor prognosis, a study with a smaller sample size by
Shi et al. [179] demonstrated that in low-grade astro-
cytomas (grade II), the expression of FOXO3a is sig-
nificantly higher than in anaplastic astrocytomas (grade
III) and GBM (grade IV). However, the discrepancy in
prognosis outcomes between the two studies could be
attributed to factors such as sample size, patient selec-
tion, differences in FoxO3a expression levels, and the
potential involvement of FoxO3a in resistance to radio-
therapy and chemotherapy, which was not previously
considered [178].

Protein kinases and FOXO3 in glioma

Similar to other forkhead box transcription factors,
nuclear exportation of FOXO3 is dependent on its
phosphorylation by protein kinase B (PKB, Akt) as a
downstream member of PI3K/Akt signaling cascade
[127, 180]; however, other protein kinases such as
AMPK [181, 182], EGER [183-185], and MAPK [186]

can also regulate its activity in gliomas. Accumulating
evidence supports the abovementioned proteins’ role in
regulating FOXO3a in gliomas, and various pharmaco-
logical compounds exert their inhibitory role by affect-
ing these axes (Table 6 and Fig. 6).

PKB(Akt)
Various upstream regulators of Akt such as CLK2
(oncogene) [187, 188], IGF1 (dual role) [189],

SPHK1(oncogene) [190], CHAF1A (oncogene) [191],
and importantly FOXM1B (oncogene) [192] was found
to exert their function by affecting Akt/FOXO3 axis in
gliomas. Moreover, our understanding of how PI3K/
Akt inhibitors affect FOXOs is still insufficient in glio-
mas. While a previous study [179] has shown that using
LY294002 as a PI3K/AKT inhibitor can activate FOXO3a
in the nucleus, a recent study [137] has shown using
NVP-BEZ235 (as another PI3K inhibitor) was not enough
to induce its nuclear localization in GBM cells. Therefore,
more studies are required to explore the mechanisms
behind FOXO3a regulation by PI3K/Akt inhibitors.
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Fig. 6 A summary of interaction between protein kinases and FOXO3
in glioma

EGFR

EGEFR (a receptor tyrosine kinase) mutations are fre-
quently seen in high-grade gliomas; therefore, its overex-
pression has prognostic importance in clinical diagnosis
[193]. Although a significant correlation between EGFR
and FOXO3a does not exist in GBM cell lines clinically
[179], its inhibition can induce nuclear translocation of
FoXO3a in GBM cells [185]. In fact, in GSCs with high
expression of EGFR, FOXO3 is substantially upregulated,
again supporting the hypothesis that FOXOs can induce
stem cell proliferation. In contrast to cells with low EGFR
expression, treatment with BMP4 (Bone morphogenic
protein 4) alongside TMZ in GSCs with high EGER trig-
gers FOXO3a dephosphorylation and translocation to the
nucleus to induce pro-apoptotic genes such as BCL2L11
[183]. These data show that the regulation of FOXO3 is
complex and diverse factors are involved.

AMP-activated protein kinase (AMPK)

AMPK is a protein kinase sensitive to ADP and AMP
changes in cells involved in energy homeostasis through
switching anabolism to catabolism, and its activity has

Page 23 of 38

been well-studied in gliomas [194]. Given that AMPK can
phosphorylate FOXO3a at Ser413, suppression of GGCT
can be considered a promising strategy to promote the
AMPK/FOXO3a/p21 axis and inhibit the proliferation of
A172 GBM cells [182]. Moreover, activating the AMPK/
FOXO3a axis by metformin was a desirable therapeutic
strategy to prevent self-renewal and tumor formation of
stem-like glioma-initiating cells [181].

MAPK

Activation of MAPK cascade, known as RAS/RAF/
MEK/ERK signaling axis, has significant participation
in gliomagenesis and tumor progression via inducing
cell proliferation, metastasis, angiogenesis, and inhibi-
tion of apoptosis [195]. Sato, Sunayama, and colleagues
have shown that concurrent inhibition of this pathway
and PI3K/Akt/mTOR induces differentiation of undif-
ferentiated glioma stem-like cells via activating FoxO3a
transcriptional activity [196]. Their further investigation
also highlighted the ROS-dependent mechanism of p38
MAPK/FOXO3 activation in GICs [186]. In addition,
tumor necrosis factor related apoptosis inducing ligand
(TRAIL) is a naturally occurring protein with tumor-sup-
pressing features in various cancer cell lines. However, it
suffers from efficient delivery to the brain tissue due to
its chemical structure limitation for passing through the
blood—-brain barrier. Allen et al. could induce TRAIN
expression in mice models with GBM significantly
by deploying a novel TRAIL-inducing compound 10
(TIC10), and this mechanism was attributed to stimulant
inhibition of Akt and ERK signaling pathways and subse-
quent transcriptional activity promotion of FOXO3a by
TIC10 [197].

Cellular stress and FOXO03 in glioma

FOXO3a subcellular localization and its post-trans-
lational modification are highly dependent on a wide
range of stress-related conditions, including starvation,
oxidative stress, hypoxia, heat shock, and DNA dam-
age. Energetic stress often affects FOXO3a phosphoryla-
tion through activators such as AMPK and Sirt-1 as well
as suppressors like Akt and CREB binding protein and
p300 (CBP/p300) signals. Furthermore, under oxidative
or genotoxic stress, the MEK/ERK pathway (as a down-
stream member of MAPK signaling) regulates mitochon-
drial accumulation of degraded FOXO3a and cellular
respiration [198].

ROS, hypoxia, and nutrition starvation

As mentioned earlier, hydrogen peroxide as a ROS
can activate p38-MAPK and induce FOXO3a expres-
sion in GICs very efficiently, leading to cell differentia-
tion and inhibited stem cell self-renewal capacity [186].
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PTEN-induced kinase 1 (PINK1) negatively regulates
GBM growth through activating FOXO3a and alleviat-
ing ROS and metabolic reprogramming while its loss
promotes aerobic glycolysis (Warburg effect) via stabi-
lizing HIF1la, a master modulator of hypoxia [199]. This
evidence shows that FOXO3a is involved in the regula-
tion of hypoxia. However, Hashimoto et al. have demon-
strated that severe hypoxia, instead of affecting FoxO3a,
increases the expression of Spl. In addition, under
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Fig. 7 FOXO3 as a core component in regulating cellular stress:
Various cellular stress conditions, including nutrition starvation,
hypoxia, oxidative stress, and glucose metabolism, have a reciprocal
relationship with FOXO3 in glioma. Nutrition starvation via activating
Akt and deactivating FOXO3 causes radioresistance of glioma tumors.
The relationship between ROS and FOXO3 is very complicated,

and several molecules are involved. In GICs, the production of ROS
induces p38-AMPK that, via degradation of Bmi1, activates FOXO3,
resulting in differentiation and loss of self-renewal (red arrows).
However, the role of ROS was shown to be double-edged in tumor
progression in a way that their inhibition following PINK1-induced
FOXO3 expression represses cell growth and prevents HIF-1a
stabilization (blue lines). On the other hand, the study by He et al.
showed that although TMZ, through producing ROS and inducing
AlF1 expression, causes cell death followed by DNA double-strand
breaks, in this condition, FOXO3 is activated and via upregulating
BNIP3 and ATG5 prevents DNA from damage, therefore reverses

this process (green lines). In addition, cells undergoing hypoxia

in perinecrotic areas express FOXO3 more frequently, inhibiting

the transcriptional activity of HIF-1a and p53. Since p53 can repress
GLUT1 expression (a glucose transporter), inhibition of p53 by FOXO3
increases glucose consumption by tumor cells (dashed lines)

Page 24 of 38

hypoxic conditions, the knockdown of FOXO3a does not
influence the activity of AMPK in both T98G and A172
GBM cells but suppresses Spl only in T98G cells [200].
Moreover, the authors have previously shown that nutri-
tion starvation activates Akt in T98G GBM cells and
slightly decreases FOXO3a expression, leading to radio-
resistance. They also showed that DNA-PKcs act as an
upstream regulator for FOXO3a and Akt under starva-
tion conditions. Targeting DNA-PKcs by NU7026 can
suppress their activation and slightly increase FOXO3a
expression [201]. Intriguingly, Brucker et al. [202] have
shown that FOXO3a expression is positively corre-
lated with glioma WHO grade in peri-necrotic tumor
lesions (where there is higher cellular stress) and under
hypoxic conditions independent of HIF-1a, its upregu-
lation causes cell death in GBM LNT-229 cells in a cas-
pase-independent manner. More interestingly, when the
FOXO3a gene was silenced, the intracellular level of ROS
was significantly increased and facilitated cell death, fol-
lowed by oxidative stress. Although silencing this gene
saves glucose, but does not have an impact on cell pro-
liferation. Moreover, abolishing FOXO3a lowers oxygen
consumption to compensate for decreased glucose uptake
of LNT-229 cells and reinforces the transcriptional activ-
ity of HIF-1a under hypoxia. More importantly, overacti-
vation of Tp53 activity in cells with inhibited FOXO3 can
improve cell survival in cellular stress conditions. These
data showed that although FOXO3 is increased and
results in cell death in perinecrotic tumors undergoing
hypoxia, silencing its expression can also accelerate cell
death via promoting excessive ROS production (Fig. 7).
Taken together, several conclusions can be obtained from
these studies regarding the different aspects of FOXO3 in
gliomas: (a) The expression and function of FOXO3 differ
in glioma depending on the spatial localization of tumor
cells and tumors grade. (b) Cells tolerating hypoxia tend
to promote FOXO3 activity. (c) Although FOXO3 can
regulate hypoxia, there are more crucial modulators of
hypoxia, such as HIF-1a, AMPK, Sp1, and Tp53. d) Role
of FOXO3 in modulating oxidative stress is complicated
and is highly dependent on the amount of available ROS
produced by other regulators in tumor cells. (e) Under
hypoxia, FOXO3 can regulate HIF1a, but the opposite is
not true [202].

DNA damage

Repairing DNA at the G2-M checkpoint was shown
to be stimulated by FOXO3a in mammalian cells [203].
In line with this, He et al. [204] have reported that, on
the one hand, TMZ causes the production of mitochon-
drial superoxide (ROS) that subsequently, via increasing
apoptosis-inducing factor (AIF), induces cell death. On
the other hand, the excessively produced ROS elevates
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FOXO3a expression and gradually promotes BNIP3 and
ATG5, two autophagy-related genes, and resulted in
resistance to TMZ-induced DNA double-strand breaks
(DSBs) caused by mitophagy.

Sirtuins

Sirtuins are deacetylase enzymes dependent on NAD*
for regulating cellular metabolism in response to stress.
Dysfunction of sirtuins leads to various diseases, includ-
ing cancer and neurodegeneration. Like FOXO transcrip-
tion factors, these proteins have a dual oncogenic and
tumor-suppressive function via regulating DNA repair,
transcriptional modulation, and metabolism context-
dependent depending on tissue type and cancer type
[205, 206]. SIRT6 is a nuclear-residing protein that, due
to its deacetylase activity, affects a variety of targets and
substrates, including FOXO3, PARP1, MYC, and HIF-1a,
involved in metabolism and chromatin/DNA repair [205].
MST1 is a downregulated protein kinase in GBM cells
that inhibits cell viability, colony formation, and aerobic
glycolysis but exerts apoptotic effects via directly increas-
ing FOXO3a expression and its proposed downstream
target SIRT6 [207, 208]. In contrast, SIRT1 was shown to
inhibit acetylation of FOXO3a; however, treatment with
betulinic acid (BA) as a natural pentacyclic triterpenoid
could induce FOXO3a via repressing SIRT1, leading to
mitochondrial dysfunction and cell death [209].

B-catenin and FOXO3 in glioma

B-catenin is a protein with multiple functions that plays
an important role in Wnt signal transduction pathway
via regulating gene transcription and cell adhesion [210].
Upon [-catenin proteins translocation to the nucleus
they form a complex with binding to transcription fac-
tors named lymphoid enhancer factor/T cell factor (LEF/
TCEF), activating the target genes of Wnt signaling path-
way [210]. FOXO proteins (especially FOXO3a) were
shown to compete with TCF for binding to 3-catenin and
suppress TCF transcriptional activity particularly under
oxidative stress [211]. In line with the study conducted
by Xu and colleagues [212], Sun et al. demonstrated that
in U87 and U251 GBM cells resistant to TMZ, overex-
pression of FOXO3a positively regulates the amount
of nuclear [B-catenin via governing MMP9 expression
[213]. In contrast, Lu et al. have shown that miR-370 as
a downregulated tumor suppressor miRNA by targeting
3" UTR of B-catenin mRNA, suppresses its expression in
astrocytoma and GBM cells and subsequently promoting
FOXO3a nuclear accumulation, suppressing cancer cell
proliferation [214]. These data again support the onco-
genic activity of FOXO proteins in therapy resistant cell
lines.
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Cell cycle regulation and FOXO3 in glioma.

Studies have reported that FOXO3 can control cell cycle
via increasing transcriptional activity of two impor-
tant pro-apoptotic genes including BIM [183, 190, 191,
209, 215-217]and p27 [184, 187, 188, 218-220] in glio-
mas, emphasizing the tumor suppressive impact of Akt/
FOXO3a/BIM axis [183, 190, 191]. In addition, other
transcription factors including SOX2 and FOXG1 can
repress FOXO3a expression level in GBM stem cells lead-
ing to cell cycle re-entry and dedifferentiation [221].

FOXO03’ function in glioma stem cells

An important function of FOXO3 is its contribution to
stem cell differentiation in both neural stem cells and gli-
oma stem cells [222]. It has been proposed that nuclear
accumulation of FOXO3a in GBM cancer stem-like cells
could induce their differentiation. Due to the prominent
role of PI3K/Akt/mTOR and MEK/ERK signaling path-
ways in the phosphorylation of FOXO3a, inhibiting these
two signaling pathways can be an promising method for
differentiation therapy against high-grade gliomas, espe-
cially GBM [137, 196, 221]. However, once GBM cells
undergo chemotherapy and radiotherapy and maintain
resistance to these treatments, FOXO3a overexpression
exerts oncogenic function by increasing the expression
of stem cell markers such as SOX2 [136]. A study sug-
gests that following repeated radiation, continuous IGF1
stimulation ultimately induces FoxO3a activation, lead-
ing to slower proliferation and enhanced self-renewal.
In contrast, after acute radiation in GBM stem cells,
IGF1R/AKT/FOXO3a axis induce radioresistance [189].
It should be noted that the activity of FOXO proteins is
highly dependent on the other upstream regulators. For
example, BMP4 treatment only is effective in sensitizing
those glioma stem cells with high EGFR expression to
TMZ treatment, leading to the accumulation of FOXO3a
in the nucleus [183]. As mentioned above, following
radiotherapy and chemotherapy, FOXO3a induces the
expression of stem cell markers. Therefore, the knock-
down of FOXO3a in glioblastoma multiforme stem cells
with intact p53 activity can significantly enhance the
response to treatment with radiation therapy combined
with PI3K/mTOR inhibition [136].

Regulation of FOXO3 by non-coding RNAs

Several studies have reported that 3° UTR of FOXO3a is
targeted by oncogenic microRNAs, including miR-10b
[223], miR-27a [224], miR-93 [225], miR-155 [226], and
miR-184 [218] that their expression is upregulated in
glioma cell lines (Table 5). In addition, FOXO3a can also
mediate the expression of non-coding RNAs. Temozolo-
mide-associated IncRNA (Inc-TALC) is an overexpressed
IncRNA in TMZ resistant cell lines that upregulates
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¢-MET through competitively binding to its regulator
miR-20b-3p. c-MET can promote cytoplasmic degrada-
tion of FOXO3a via activating Akt signaling pathway.
In TMZ sensitive cell lines, there is much more nuclear
levels of FOXO3a compared to resistant cells, which
through binding to promoter of Inc-TALC inhibits its
expression and results in MGMT silencing [227].

FOXO03a and therapeutic opportunities in glioma

Though the mechanism of many drugs on FOXO3 has
been mentioned above, current conducted pharma-
cologic research with relying on its tumor suppressive
properties has shown remarkable results. These treat-
ments mainly include PI3K/mTOR inhibitors, metabo-
lism related drugs (e.g., metformin and Fenofibrate), and
natural derived compounds. However, as seen in Table 6,
a limitation of these studies is that they are limited to
in vitro studies rather than pre-clinical clinical or levels.
Moreover, designing strategies against oncogenic activity
of FOXO3 can be a step forward.

Conclusion

According to evidence collected up to now, FOXM1
acts as an absolute oncogene in gliomas, associated
with poor survival, independent of the type of cell line,
stage of the tumor, etc. The activity of protein kinases
such as Akt, MELK, and growth factors (e.g., EGFs
or FGFs) subsequently leads to phosphorylation of
FOXML1 in gliomas, promoting transcriptional activ-
ity of a variety of targets, including STAT3, EZH?2,
B-catenin, MMP-2, Sox2, VEGF, PDGF-A, VEGEF,
UBE2C, Rad51, RFC5, BUBI1B, Anxal, SIRT1, ASPM,
and ADAM17. Furthermore, several downregulated
miRNAs, including miR-216b, miR-320, miR-370-3p,
and miR-525-5p, have been verified to target 3’ UTR of
FOXM1. More importantly, overexpression of FOXM1
has been strongly associated with increased prolifera-
tion, migration, angiogenesis, invasion, and resistance
to radiation and TMZ in glioma through facilitating
DNA repair response. Some studies have elucidated the
anti-FOXML1 activity of MELK and proteasome inhibi-
tors as well as natural products on glioma (Table 2).
Therefore, it is suggested that more studies at clini-
cal and pre-clinical levels should be conducted to
assess the subsequences of FOXM1 pharmacological
inhibition.

Like other FOXO subgroups, FOXO1 has a crucial role
in regulating proliferation, metastasis, invasion, drug
response/resistance, and apoptosis. Furthermore, while
targeting the PI3K/Akt signaling pathway has a promi-
nent role in restoring FOXOL1 activity, other proteins,
and transcription factors are involved in its regulation.
More importantly, FOXO transcription factors exert
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their tumor-suppressive functions via forming a recip-
rocal interplay with cell cycle modulators such as CDKs
and Cyclins. An overview of literature has demonstrated
that FOXO1 has a controversial role in tumorgenesis of
gliomas. The most oncogenic role of FOXO1 was mainly
attributed to elevating the expression of stem cell mark-
ers such as OCT4 and SOX2. Altogether, focusing on the
tumor suppressor role of FOXO1, most of the anticancer
drugs that affect FOXOL1 in glioma increase its expres-
sion, except EMAP-II and Progesterone, which their effi-
cacy is dose or/and time-dependent. Also, the majority
of these pharmacological compounds enhance FOXO1
expression through Akt, including Progesterone, Uro-
lithin A, Xihuang Pill, and EMAP-II. Moreover, restoring
FOXO1 expression could be utilized in the sensitization
of tumor cells to etoposide, BCNU, or cisplatin. These
findings shed light on a novel approach to conducting
research and assessing FOXOL1 role in the prognosis and
treatment of glioma.

Finally, protein kinases such as EGFR, MAPK, IGF1R,
and AKT were shown to phosphorylate FOXO3 directly
or indirectly, repressing its transcriptional activity. This
is while AMPK, via phosphorylating it at Ser413, causes
its transactivation without affecting its subcellular locali-
zation. Moreover, MST1, via phosphorylating FOXO3,
promotes its nuclear localization, leading to SIRT6 over-
expression. In addition, FOXO3 was shown to act as a
core component in the response of glioma cells to cel-
lular stress, such as ROS production, hypoxia, glucose
metabolism, and sirtuins. There are several upregulated
ncRNAs in glioma, including miR-10b, miR-27a, miR-
93, miR-155, miR-184, Circ-DONSON, and Inc-TALC
that their oncogenic activity was shown to be exerted
through repressing FOXO3. Therefore, suppressing their
expression can be considered a step forward in restor-
ing FOXO3 expression. Similar to FOXO1, most stud-
ies agree on the tumor-suppressive feature of FOXO3.
However, under specific circumstances, both FOXO1 and
FOXO3 were shown to be implicated in the occurrence
of TMZ and radiation resistance.

Future perspectives

In this review, we have covered a variety of regulatory
pathways, mechanisms, and effects of FOXM1 altera-
tion on numerous subtypes of gliomas. Most ongoing
studies of FOXM1 considered it as an oncogene in light
of its function in regulating several cellular processes
that have been reviewed throughout this review. More-
over, among the FOX transcription factors, the FOXO
subfamily is another mostly investigated one in glioma,
which seems to be a tumor suppressor. Despite the vast
quantity of literature describing the different mecha-
nisms linking FOXM1 to glioma, the fact that it is a
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transcription factor restricts its applicability as a tar-
get compound for the therapeutic approach of glioma.
Even though an enormous quantity of in vitro studies
has been conducted to clarify the role of FOXM1 in
glioma, the application of FOXM1 inhibition by chemi-
cal inhibitors in clinical settings has been constrained
due to a number of issues, including the need for pre-
cise concentrations, and a wide range of interacting
pathways and FOXM1 regulators and unknown side
effects. A recent clinical trial on 79 human glioma tis-
sues unraveled that down-regulation of FOXM1 by siR-
NAs induced the apoptosis, cell cycle arrest, and EMT
of glioma cells [41]. Clinical trials in phases 1 and II
are required to analyze the safety, pharmacodynamics,
and pharmacokinetics of FOXM1 inhibitors; therefore,
additional investigation and extensive clinical trials
need to be conducted in order to gain conclusive evi-
dence and elaborate the clinical potency of FOXM1
in glioma. In addition, glioma cells with mutations of
the IDH gene have a decreased expression of FOMX1
compared to wild-type phenotypes. Therefore, it is
suggested that the function of FOXM1 in lower-grade
gliomas with IDH mutations be studied in more detail
[236]. The FOXO subfamily is notably regulated by epi-
genetic triggers and has a close association with the cell
cycle. Therefore, these proteins are exciting candidates
for developing new therapeutics related to epigenet-
ics. Further studies should investigate the function of
FOXO1 and FOXO3 before and after different treat-
ments with chemotherapy and radiotherapy in more
detail. In addition, the prognostic function of these
proteins should be evaluated in studies with larger sam-
ple sizes and different glioma grades, as the number of
studies that evaluated the function of FOXOs in glio-
mas is very few and mostly based on publicly available
cohorts(TCGA). The FOXO-FOXM1 axis, in particular,
should be further studied in translational and clinical
research due to its effects on a variety of cellular activi-
ties, including carcinogenesis, progression, and treat-
ment resistance. Given the significance of the FOXO
and FOXM1 proteins, it may be possible to utilize these
proteins as potential targeted therapies and prognos-
tic markers for glioma if their regulation mechanisms
and roles in cancer initiation, progression, and drug
resistance are better understood. Moreover, a com-
bination therapy targeting the FOXO subfamily and
FOXML1 has a significant chance of creating beneficial
synergistic effects, reducing adverse effects, and ulti-
mately boosting clinical outcomes. Finally, since grow-
ing numbers of models are developing in the prediction
of survival of GBM patients [237, 238], the construction
of models using FOX proteins for prognosis evaluation
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of patients appears as a promising strategy in clinical
settings, and future studies should consider this point.
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