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Abstract 

The tumor microenvironment is overwhelmingly dictated by macrophages, intimately affiliated with tumors, exercis‑
ing pivotal roles in multiple processes, including angiogenesis, extracellular matrix reconfiguration, cellular prolifera‑
tion, metastasis, and immunosuppression. They further exhibit resilience to chemotherapy and immunotherapy 
via meticulous checkpoint blockades. When appropriately stimulated, macrophages can morph into a potent 
bidirectional component of the immune system, engulfing malignant cells and annihilating them with cytotoxic 
substances, thus rendering them intriguing candidates for therapeutic targets. As myelomonocytic cells relent‑
lessly amass within tumor tissues, macrophages rise as prime contenders for cell therapy upon the development 
of chimeric antigen receptor effector cells. Given the significant incidence of macrophage infiltration correlated 
with an unfavorable prognosis and heightened resistance to chemotherapy in solid tumors, we delve into the intri‑
cate role of macrophages in cancer propagation and their promising potential in confronting four formidable cancer 
variants—namely, melanoma, colon, glioma, and breast cancers.
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Introduction
Cancer immunotherapy has become a potent disease 
treatment option that helps advanced cancer patients 
survive longer while removing any chance of returning 
tumors [1, 2]. In cancer patients, immune cells are inef-
fective against cancer cells and promote tumor growth, 
decreasing treatment effectiveness [3, 4]. Among innate 
system cells, macrophages play a crucial role in normal 
homeostasis, inflammation, and phagocytosis [5, 6]. 
However, macrophages have been shown to play a nega-
tive role in the progression of oncogenesis and neoplastic 
disease by promoting genetic instability and angiogen-
esis. [7]. Macrophages are divided into the M1 and M2 
subgroups based on morphological, phenotypic, and 
functional variability. The M2 macrophages have been 
shown to support tumor growth and metastasis, whereas 
the M1 macrophages play a crucial role in antitumor 
immunity and largely orchestrate pro-inflammatory 
activities in the tumor microenvironment (TME) [8, 
9]. Tumor-associated macrophages (TAMs), the most 
diversified immune cells in the TME that are essential 
for tumor formation, include the M2 macrophages and 
a small population of M1 macrophages [10]. In this line, 
tumor cells secrete chemokines and growth factors to 
draw in macrophages and change them into the M2 type. 
Therefore, it was also discovered that significant dynamic 
changes in macrophage subpopulations were related to 
the efficacy of immunotherapy [11]. Therefore, this cri-
tique outlines the latest developments in the functions of 
TAMs in predicting, detecting, and treating four potent 
forms of cancer, namely melanoma, colon, glioma, and 
breast, which have been extensively explored in previous 
research publications.

Macrophage‑based therapy for breast cancer
Breast cancer includes four main groups: inflammatory 
breast cancer (IBC), ductal carcinoma in  situ (DCIS), 
invasive ductal carcinoma (IDC), and metastatic breast 
cancer [12]. The IDC is particularly aggressive and 
responsible for most breast cancer cases. Since breast 
cancer cells become resistant to traditional cancer treat-
ments, researchers are seeking new approaches, such as 
TAMs therapy, which involves macrophages targeting the 
tumors to control their growth and spread.

TAMs promote cell stemness in breast cancer
The tumor microenvironment (TME), which includes the 
surrounding cells and molecules that interact with cancer 
cells, plays a critical role in the development of tumors, 
including the occurrence, progression, and immune sup-
pression of the tumors [13]. Molecules existing in the 
tumor microenvironment, commonly upregulated in the 

tumor stroma, have been shown to influence the behavior 
of macrophages and their ability to infiltrate and polarize 
within the tumor microenvironment [14]. So, the specific 
role of TAMs in cancer prognosis may vary depending on 
the cancer types and their ability to adapt in response to 
the tumor microenvironment [15]. The TAM can exhibit 
both M1-like pro-inflammatory and M2-like immuno-
suppressive traits, such as the production of anti-tumor-
molecules as well as T cells priming, and secretion of 
immunosuppressive molecules and expression of inhibi-
tory checkpoint proteins, respectively [16]. In breast can-
cer, TAM may exhibit a combination of M1- and M2-like 
traits contributing to the formation of pre-metastatic 
niches [17] and pro-angiogenic processes [18]. Moreover, 
various literature evidence suggests that many immuno-
suppressive cells within the TME play a significant role 
in the maintenance and expansion of cancer stem cells 
(CSCs) [19]. This is due to the ability of TAMs to produce 
various cytokines promoting the self-renewal and prolif-
eration of CSCs. For example, M1 macrophages can also 
stimulate the formation of drug-resistant ALDH1+ breast 
CSCs [20]. Additionally, the TAMs have been found to 
secrete IL-6, which can stimulate the transformation of 
non-stem cancer cells into CSCs by activating the JAK/
STAT pathway [21]. Furthermore, the TAMs can upregu-
late the expression of SOX transcription factors and sur-
face receptors, which can enhance the CSC phenotype 
in breast cancer cells by activating the EGFR/STAT3/
SOX-2 pathway [22]. The expression of SOX-2 in early-
stage breast tumors is important in the regulation of CSC 
formation [23]. Finally, during epithelial–mesenchymal 
transition (EMT), the upregulation of EPHA4 on the 
TAMs surface can bind to cancer cells receptor, leading 
to activating the NF-kB pathway to facilitate the mainte-
nance of homeostasis in CSCs [24].

TAMs induce immunosuppressive microenvironment 
in breast cancer
TAMs are also found in the TME, playing a significant 
role in cancer progression (Fig. 1). Their main function 
is to regulate the T cell’s function, specifically effec-
tor T cells, to kill cancer cells [25]. This is achieved 
through various mechanisms, including regulating 
arginine metabolism, producing nitric oxide, and 
expressing immune checkpoints such as programmed 
cell death protein-1 (PD-1) [26]. TAM-secreted IFN-γ 
activates the JAK/STAT3 and PI3K/AKT pathways to 
increase PD-L1 expression while transforming growth 
factor beta (TGF-β) polarizes macrophages towards an 
M2 phenotype, which enhances the suppressive activ-
ity of TAMs, upregulates PD-L1 expression and facili-
tates tumor escape. Additionally, PD-L1 expression is 
considerably upregulated in the absence of IL-6 and 
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has been found to be highly effective when treated 
with an anti-PD-L1 antibody [27, 28].

TAMs can also exhaust CD8+ T cells and reduce 
their ability to eliminate cancer cells [29]. So, under-
standing its mechanisms is a key area of focus in 
developing cancer immunotherapies. A TNBC-based 
study was conducted by Xu and colleagues using sin-
gle-cell transcriptome analysis to examine the relation 
between TAMs and exhausted T cells [30]. Moreo-
ver, the secretion of STAT3 by TAMs into the TME, 
with their increasing numbers in the stroma, can lead 
to CD8+ T cell exhaustion [31]. TAMs and myeloid-
derived suppressor cells can also suppress immune 
function through cell-to-cell contact, stimulating mye-
loid-derived suppressor cells (MDSCs) to secrete IL-10 
and inhibit IL-12 production via dendritic cells [32]. 
The TAMs also play a role in inhibiting T cell recruit-
ment, so targeting certain pathways, such as colony-
stimulating factor-1 (CSF1/CSF1R) [3], can obstruct 
macrophage recruitment and promote T cell infiltra-
tion [33].

TAMs targeting breast cancer therapy
Currently, CSF-1R is inhibited by PLX3397 to diminish 
M2 macrophage recruitment, which is utilized to treat 
malignancies such as glioblastoma, breast cancer, and 
other tumors. There was high tolerability in a phase 1 
study of the CSF-1R inhibitor LY3022855 in metastatic 
breast cancer [34]. Twenty-two medicines that target 
CXCR4 are now in the active development phase; most 
of these are small molecule antagonists; however, there 
are also antibody-based medications, gene therapies, and 
CAR-T cell treatments. Eighteen of these medications are 
being developed to treat solid tumors and hematologi-
cal malignancies. Mozobil (Plerixafo), a small molecule 
antagonist that targets CXCR4, was introduced in 2018. 
It is first utilized with granulocyte colony-stimulating 
factor (G-CSF) to provoke hematopoietic stem cells 
for therapy of multiple myeloma and non-lymphoma 
Hodgkin’s.

To evaluate IMM2902’s safety and effectiveness in 
HER2+ advanced solid tumors, clinical trials have 
approved the drug’s primary indication of the lung, 

Fig. 1  Anti-tumor/pro-tumor activity of macrophages in breast cancer
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gastric HER2-positive breast, and other solid tumors 
(NCT05076591). SIGLEC10 interacts with CD24 in 
renal clear cell carcinoma, triple-negative breast, and 
ovarian cancers to prevent tumor cell phagocytosis and 
immune cell activation. Blocking SIGLEC10hi TAMs in 
HCC decreased the expression of immunosuppressive 
molecules and increased the cytotoxic effects of CD8+ T 
cells. It also supported Pembrolizumab as an anti-tumor 
drug that targets PD-1 molecules [35]. Additionally, anti-
MARCO therapy reduced the metastasis and develop-
ment of mouse melanoma and breast cancer, improved 
the TME’s immunogenicity, and increased the treatment 
effectiveness of anti-CTLA4 mAbs [36, 37].

Repolarization of TAMs into M1‑type macrophages exerts 
tumor‑killing effects
The alteration of TME leads to the polarization of TAMs 
into M1 macrophages, facilitating an immune response 
against the tumor. The M1 macrophages exhibit a strong 
antigen presentation ability as they express major his-
tocompatibility complex class II and secrete various 
proinflammatory cytokines, including interleukin-6, 
interleukin-12, inducible nitric oxide synthase, reac-
tive oxygen species, and tumor necrosis factor-alpha 
(TNFα), which have the potential effect of killing cancer 
cells [38]. So, repolarizing TAMS into M1 macrophages 
leads to increased secretion of interleukin-12, which acti-
vates and recruits natural killer cells to carry out tumor 
cell killing in advanced tumors [39]. Additionally, the use 
of anti-Her2 antibodies in combination with anti-PD-L 
is beneficial in upregulating PD-L1 expression in mac-
rophages [40]. Traditional Chinese medicine may also 
serve as a potential therapeutic option for breast cancer 
by promoting the repolarization of TAMs, with emodin 
and the XIAOPI formula being particularly effective in 
this regard. Emodin, a Chinese herbal medicine, exerts 
anti-tumorigenic impacts on breast cancer by suppress-
ing the production of transforming growth factor beta 
1 (TGFβ1) in macrophages [41]. The key bioactive com-
pound of the XIAOPI formula, Baohuoside I, has also 
been shown to block the polarization of TAMs’ M2 phe-
notype and severely restrict the invasion and migration 
of breast cancer cells [42]. Various macrophage functions 
and different treatment options for breast cancer are 
shown in Fig. 2.

Macrophages‑based therapy in colorectal cancer
Colorectal cancer (CRC) is the third most prevalent 
cancer type and in terms of mortality ranks the second 
leading cause of cancer deaths [43]. A variable antitumor 
immune response gets elicited in colorectal malignancies 
[44], and high tumor-associated T-cell concentrations are 
recognized as positive prognostic indicators [45, 46]. As a 

result, the immune system may also contribute to tumor 
progression [47, 48], which will be discussed below.

Role of TAMs in colorectal cancer (CRC)
Most studies demonstrate the relationship between mac-
rophage infiltration and the clinical course of CRC. Some 
studies have found a correlation between higher mac-
rophage infiltration, more advanced tumor stages [44], 
and worse prognosis [49]. In contrast, other studies indi-
cate that TAMs can improve the prognosis and progres-
sion of CRC (Fig. 3) [50]. These discrepancies may be due 
to the use of CD68, a macrophage lineage marker, with-
out considering differences among the various anti- or 
pro- inflammatory subtypes [51]. A meta-analysis found 
that a high density of CD68 macrophages in the tumor 
microenvironment was associated with a better progno-
sis and a lack of tumor metastasis in CRC patients [52]. 
This may be due to the recruitment of macrophages con-
tributing to an adaptive immune response against the 
tumor [53–55]. Additionally, a high density of CD68-
labeled macrophages in the tumor microenvironment 
was correlated with high infiltration of CD8 T cells and 
CD3 T cells, which can regulate the macrophage polari-
zation to the M2 subtype leading to CRC metastasis. 
Recent research has analyzed markers for M1 and M2 
subtypes. They found that in the early stages of the CRC, 
there was a correlation between macrophage infiltration 
and enhanced disease-free survival, while in later stages 
of the disease, a high number of CLEVER-1/Stabilin-11+ 
cells, an M2 marker, correlated with shorter disease-free 
survival [56].

The role of TAMs on CRC angiogenesis
Evidence shows that the number of TAMs in a tumor 
is related to the number of blood vessels in malignan-
cies [57–60]. The TAMs are recruited to hypoxic areas 
of the tumor, where they secrete various molecules that 
promote angiogenesis and provide nutrition for tumor 
growth. The HIF-1α, expressed in TAMs and other cells, 
regulates the transcription of genes associated with angi-
ogenesis in hypoxic sites in a HIF-1α-dependent manner 
[61]. Several studies have found a correlation between 
macrophage infiltration and vascular density in colorec-
tal cancer [61, 62]. These studies suggested that TAMs 
are the key regulators of tumor angiogenesis in this type 
of cancer [62]. The GPR35, expressed on macrophages, 
has been shown to promote tumor angiogenesis and 
MMP activity by activating Na/K-ATPase. Macrophages 
also secrete MMP-2 and MMP-9, enzymes that improve 
cancer angiogenesis in  vivo, under the stimulation of 
L-10 [63–65]. Additionally, MK2 signaling and angiogen-
esis are inherent in macrophages [66]. Through modu-
lating NADPH oxidase activity, TAMs can also improve 
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angiogenic protein expression in the tumor microenvi-
ronment [67]. In this line, chronic inflammation in the 
sub-epithelial stroma is hypothesized to activate muta-
genic mechanisms that initiate tumor formation [68]. 
The pro-inflammatory M1 macrophages [69] can poten-
tiate this effect by triggering oncogenic mutations in the 
adjacent epithelial layer [70]. Colon cancer cells produce 
macrophage colony-stimulating factor-1 to attract and 
re-educate macrophages. Tumor development in its early 
stages attracts monocytes and ensures their maturation 
into macrophages within the tumor microenvironment 
[71]. Later, these cells differentiate into TAMs, and can-
cer cells manipulate their metabolism through different 
signaling pathways to support further tumor growth and 
progression. Chemoattractant CCL2 overexpression has 
been linked to advanced tumor stages, metastatic disease 
conditions, and poor prognosis in CRC. Furthermore, 

CRC cells produce lactic acid through aerobic glyco-
lysis as a byproduct [72]. Even oxygen does not hinder 
this process; they metabolize glucose to lactate, which 
induces the expression of arginase-1 and VEGF. This 
mechanism recruits and polarizes macrophages towards 
the M2 phenotype and helps in tumor-promoting, there-
fore associated with TAMs metabolic reprogramming 
[67]. Lim, S.Y. et  al. reported TAMs-mediated S100A8/
A9 mRNA expression in colon cancer involving ERK-
signaling and inducing tumor cell migration [73]. Phin-
ney et  al. also reported TAMs-mediated secretion of 
chemokines such as monocyte chemotactic protein-1 
(MCP1) and macrophage inflammatory proteins-1 and 
-2 (MIP-1 and MIP-2) by the use of the MAPK-activated 
protein kinase 2 (MK2) pathway, helping tumor cell 
growth and invasion in vitro [74]. Wei, C. et al. showed 
that IL-6 secretion by TAMs stimulates EMT, thereby 

Fig. 2  Different macrophages-based treatment strategies in breast cancer
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improving CRC invasion and migration ability through 
the modulation of the JAK2/STAT3/miR-506-3p/FoxQ1 
axis [75]. β-catenin nuclear localization promoted by 
STAT3 improves growth regulation [76]. In addition, 
HT29 and HCT116CRC cells increased vimentin expres-
sion level although decreased E-cadherin level, indicating 
improved invasion ability [77]. The TAMs also transfer 
microRNAs to cancer cells, leading to the downregula-
tion of proteins that inhibit metastasis and the upregu-
lation of proteins that promote it [78]. Overall, these 
findings highlight the complex role of TAMs in CRC 
development and progression [79].

TAM’s roles in the prognosis of CRC​
The macrophage polarization state was a predictive factor 
independent of common tumor molecular and clinical 
characteristics. On the other hand, several studies sug-
gest that CD68+ TAMs, which are primarily found in the 
stroma of CRC along the front edge of invasion, are asso-
ciated with better prognoses for CRC patients [51, 80, 
81]. For instance, in a 30-patient Japanese CRC cohort, 
a lower density of CD68+ in the tumor stroma and 
invasive front were linked to more progressive cancer, 

whereas high levels of TAMs were linked to a favora-
ble prognosis [82]. Similar relationships got observed in 
European cohorts. For instance, in a tissue microarray 
of 100 colon cancer patients in Germany demonstrated 
decreased CD68+ macrophages in higher-stage tumors 
[83]. In a Bulgarian cohort conducted on 210 patients 
with primary CRC, a lower density of CD68+ TAMs in 
the invasive tumor front which is considerably associated 
with the advanced tumor stage (III and IV stages), dis-
tant metastases, and local lymph nodes specific metasta-
ses was observed [84]. A lesser number of CD68+ TAMs 
were also reported in cancer patients where the tumor 
cells migrated and invaded the blood circulation, lymph 
vessels, and perineural tissues.

Additionally, a high CD206/CD68 ratio has been 
linked to improved recurrence-free survival rates in 
patients with stage II of CRC after receiving adjuvant 
chemotherapy [85]. On the other hand, both VEGF-
expressing and CD68-TAMs have been found to pre-
dict improved survival rates in individuals with stages 
II and III of CRC. So, only TAM infiltration cannot 
fully explain the degree of disease recurrence. A recent 
meta-analysis of 6115 CRC cases from 27 separate 

Fig. 3  Anti-tumor/pro-tumor activity of macrophages in CRC​
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studies indicated a high density of TAMs in CRC as 
an independent favorable predictor for 5-year OS but 
not for DFS. The TAM density and additional prognos-
tic markers may be a more accurate predictor of CRC 
relapse. In this line, traditional methods of analyzing 
TAMs have relied on the expression of CD68, a pan-
macrophage marker, but recent studies have used dou-
ble immunofluorescence staining to identify different 
subsets of TAMs using other markers such as CD86, 
CD163, and CD206 [86, 87]. Literature has shown that 
the presence of M2 macrophages (CD163+) is cor-
related with poorer overall survival and disease-free 
survival/recurrence-free survival in CRC. In addition, 
high levels of CD163+ TAMs and a high CD163/CD68 
ratio have been linked to an aggressive phenotype and 
poor prognosis in CRC [77]. In a recent study, as the 
proportion of M2 TAMs in total TAMs, co-expression 
of CD68 and CD163 was found to be a better predic-
tor of prognosis than traditional clinic pathological 
factors or the expression of CD163 TAMs alone [80]. 
Additionally, the expression of CD86 TAMs and TNM 
stage were found to be independent prognostic factors 
for recurrence-free survival and overall survival in CRC 
[88].

Potential applications of TAMs in CRC therapy
Blocking monocyte infiltration in CRC​
Blocking the infiltration of mononuclear cells, such 
as TAMs, in the inflammatory tissues associated with 
tumors has been identified as a potential therapeutic 
method for primary cancers. Chanmee et  al. demon-
strated that TAMs, specifically those associated with 
colon cancer, induce CXCR4, CXCL-12, and HIF-1 
in the hypoxic TME. Moreover, the accumulation of 
TAMs is blocked by targeting the HIF-1/CXCR4 axis 
effectively. Mantovani et al. revealed that TAMs derived 
from colon cancer monocytes could differentiate, high-
lighting the need for combination therapies that block 
differentiation to target these cells effectively. In this 
line, the TNF-α has been found to induce the recruit-
ment of monocytes and simultaneously inhibit the dif-
ferentiation of monocytes or macrophages into TAMs 
in the TME of colon cancer in  vivo [89]. Another 
strategy for targeting TAMs is the inhibition of their 
recruitment or infiltration. SIX1, a protein that is over-
expressed in various types of cancer and promotes the 
recruitment of pro-tumor TAMs to the region of colo-
rectal cancer (CRC) [79], can be silenced through the 
use of its inhibitor, Nitazoxanide, which suppresses the 
WNT/CTNNB1 pathway [90, 91]. Trifluridine/Tip-
iracil, an anti-metabolism drug, has been observed to 
effectively exhaust M2 macrophages when combined 

with oxaliplatin, leading to the infiltration of cytotoxic 
CD8+ T cells and the lysis of tumor cells [92].

Repolarizing TAMs
TAMs predominantly exhibit an M2 phenotype, 
simultaneously promoting immunosuppression and 
angiogenesis. They can be re-educated via M2 to M1 
polarization. For instance, TAMs mediated inhibition of 
macrophage receptor expression with collagenous struc-
ture (MARCO) repolarized TAMs to the M1 phenotype 
and caused antitumor activity in the MC38 colon cancer 
mice model [93]. By altering the number and frequency 
of myeloid cells infiltrating the tumor, tasquinimod-
based immunotherapy can reduce the immunosuppres-
sive potential of TME [94]. It has been demonstrated by 
Olsson et al. that tasquinimod targets early-stage myeloid 
cells that tend to penetrate tumors, causing M2 myeloid 
cells to adopt an M1 macrophage phenotype, altering the 
tumor microenvironment, preventing angiogenesis, and 
inhibiting metastatic spread [95].CRC can be diagnosed 
and treated using long non-coding RNAs (lncRNA) as 
noninvasive biomarkers and targeted molecules. For 
instance, cells secreting lncRNAs, such as RPPH1, pro-
mote M2 polarization and tumor metastasis but can’t be 
directly targeted [90, 91]. Cathepsin K (CTSK), which 
binds to TLR4 and activates mTOR, is synthesized by 
intestinal microflora and modulates the expression of 
long noncoding RNAs in various tissues [92]. The CTSK-
specific inhibitor Odanacatib has been reported to curb 
the pro-tumor effects and improve the prognosis of CRC 
patients [96]. Moreover, researchers found that Ru@ICG-
BLZ nanoparticles effectively repolarize TAMs to M1 
macrophages due to their CRC specificity and low toxic 
properties as a new approach [97].

Targeting TAMs in immunotherapy
Immune checkpoint inhibitors, T cells-based treatment, 
and autologous tumor vaccines are the key components 
of immunotherapy in CRC treatment [98–101]. These 
strategies target immune checkpoint inhibitors with 
matching targets, including CTLA-4, PD-1, and PD-L1 
[3, 10, 102]. The co-inhibitory molecule CTLA-4, pro-
duced by T cells, binds to the ligand CD80/86 on adeno-
matous polyposis coli (APC) to produce an inhibitory 
signal [103]. When PD-1, an immunosuppressive recep-
tor on T cells, binds to PD-L1, it significantly reduces 
the activity of antigen-specific T cells [104]. PD-L1 is 
expressed mainly by aggressive primary tumor cells and 
by CD68/CD163-positive M2 macrophages in patients 
with colorectal cancer with high microsatellite instabil-
ity [105]. Gordon and his team discovered that when the 
illness worsens, TAMs express more PD-1. Additional 
research revealed the ability of TAMs to phagocytose is 
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inversely linked with PD-1 expression, and in vivo, inhi-
bition of PD-1-PD-L1 improved macrophage phagocyto-
sis, slowed tumor growth, and lengthened mouse survival 
[16]. On the other hand, evidence suggests that the PD-1/
PD-L1 axis plays a role in skewing TAMs from the M1 to 
M2 phenotype, and M2 TAMs have been found to con-
tribute to resistance to PD-1/PD-L1 blockade [106, 107]. 
As such, switching TAMs from the M2 to the M1 pheno-
type is a promising strategy for improving the efficacy of 
checkpoint blockade therapy, and strategies aimed at “re-
educating” TAMs are being developed to overcome the 
current limitations of immunotherapy [108]. In conclu-
sion, the relationships between PD-1/PD-L1 expression 
and polarization in TAMs seem to be crucial in tumor 
progression, indicating that combination immunotherapy 
targeting these cells will likely become a trend in check-
point blockade therapy [109].

So, PDCD1 blockers can increase macrophages’ capac-
ity to phagocytose and lengthen patient lifetime, sup-
porting the idea that TAM can be the target of PDCD1 
therapy. Additionally, patients with higher M2 mac-
rophage infiltration in lesion sites may benefit from 
increased efficacy. Regarding adoptive cell treatment, 
tumor-directed anti-mesothelin CAR-T cells and M2 

inhibitors have been shown to have anti-tumor efficacy. 
In contrast, CD40-based TAM-associated adoptive cell 
therapy is currently being researched [110]. The OVA 
vaccine may lessen the density of TAMs in cell mod-
els that persistently express ovalbumin (OVA) peptides. 
Additionally, administering a VEGFC/VEGFR3 neu-
tralizing antibody may further block the chemotaxis of 
M2 macrophages into the CRC region, reducing tumor 
growth and preventing the CRC from evading immune 
surveillance (Fig. 4) [111].

Tumor‑associated macrophages in melanoma
In the intricate management of interactions, networks, 
and linkages between melanoma cells and other cell sub-
populations that make tumor stroma, macrophages play a 
crucial role. Macrophages influence the tumor microen-
vironment by producing different proteins, enzymes, and 
oxidants, encouraging tumor development and invasion. 
In advanced primary melanoma lesions, it was found to 
have a decrease in the number of macrophages while an 
increase in the iNOS-positive macrophages. Markedly, 
the macrophage-produced nitric oxide has shown anti-
cancer properties, but in the presence of INFγ produc-
ing NK cells [112]. The expression of cyclooxygenase-2 

Fig. 4  Macrophages-based therapeutic strategies in CRC​
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(COX-2), a pro-inflammatory protein, characterizes 
Melanoma-associated macrophages. Regarding percent-
age, the presence of COX2-positive TAMs is highest in 
thin melanoma and lowest in advanced metastatic mela-
nomas. Therefore, COX-2 has been considered a mela-
noma progression marker [113]. Osteopontin-stimulated 
macrophages in the melanoma microenvironment begin 
to produce the COX-2 protein [114], where α9β1 integrin 
acts as an osteopontin-specific surface receptor on mac-
rophages and stimulates COX-2 expression via ERK and 
p38 pathways [114]. In addition, to maintain an inflam-
matory environment, melanoma cell angiogenesis, and 
migration are supported by COX-2 through COX-2-de-
pendent PGE2 production [114]. Renalase is the next 
protein that promotes melanoma growth in the tumor 
microenvironment. This flavoprotein functions as a cell 
survival factor found in CD163-positive TAMs and mela-
noma cells [115].

Melanoma-associated macrophages also indirectly pro-
mote angiogenesis by releasing TNF-α and IL-1α. Upon 
stimulation, melanoma cells generate various angiogenic 
factors such as VEGF, TIE2, IL-8, and CD31, leading to 
neoangiogenesis [116]. Additionally, pericytes released 
proangiogenic factor milk fat globule-epidermal growth 
factor 8 (MFG-E8) stimulates M2 macrophage polariza-
tion, suggesting their role in tumor angiogenesis. The 
tumor microenvironment is characterized by a hypoxic 
condition found to be associated with TAMs, and it also 
affects TAMs [117]. Tumor-specific hypoxic condition 
drives TAMs accumulation in the melanoma micro-
environment [117]. It has been established that under 
hypoxic situations, melanoma cells release the high-
mobility group box 1 (HMGB1) protein, which promotes 
the M2 macrophage accumulation and IL-10 produc-
tion in the tumor microenvironment [117], activating 
advanced glycation end-product receptors and leading to 
an inflammatory response.

Interactions of macrophages with melanoma cells
Literature reports on mice with spontaneous melanoma 
have shown that stem-like cells and CD34 tumor-initiat-
ing cells (TICs) depend on M2 macrophages for initiating 
tumor growth and determining specific tumor character-
istics, including chemo-resistance. The proliferation and 
survival of TICs are also dependent on TAMs [118]. In 
addition, TICs get stimulated by TAMs to form mela-
nospheres or non-adherent colonies of melanoma cells 
[118]. It has been indicated that CD34-TICs induction 
through TAMs leads to melanoma development [118]. 
These studies also revealed that chemotherapies, namely 
cisplatin and temozolomide, drive TAM recruitment in 
the tumor microenvironment, stimulate TAM-responsive 
TICs growth, and protect TICs against chemotherapy 

effects [118]. At the molecular level, TICs stimulation 
results from TAM-derived TGF-β, which regulates and 
stimulates arginase production, leading to the production 
of polyamines playing a key role in the growth and differ-
entiation of cancer cells [119].

Role of TAMs in melanoma therapy
The macrophage colony-stimulating factor (M-CSF) 
[120] and granulocyte-macrophage colony-stimulating 
factor (GM-CSF) can result in the induction of M2- and 
M1-like TAMs, respectively. So, blocking M-CSF recep-
tors on MDSCs can lead to the preferential expression 
of M1 phenotypes [36]. The macrophage receptor with 
collagenous structure (MARCO) regulates PI3K/AKT/
mTOR signaling pathways and M1 or M2-like TAM 
polarization [121–123]. Additionally, new targeted treat-
ments for disseminated melanoma (using, for exam-
ple, an anti-PD-L1 antibody) were made possible by our 
understanding of signaling pathways, protein molecules, 
and their ligands [124]. Durvalumab, atezolizumab, and 
avelumab are the anti-PD-L1 monoclonal antibodies 
used to treat melanoma. Atezolizumab (anti-PD-L1), 
an FDA-approved mAbs, was recommended for use 
in combination with the BRAF inhibitors cobimetinib 
and vemurafenib to treat metastatic melanoma that has 
the BRAF V600 mutation [125–128]. Two anti-CTLA-4 
mAbs are ipilimumab and tremelimumab. Ipilimumab 
and nivolumab combination therapy for metastatic mela-
noma has also shown a 52% survival rate for 5 years [129].

Targeted medicines may be utilized to support the 
already used therapeutic approaches or directly target 
TAMs to eradicate them or control their activity. It has 
been discovered that macrophage activation causes them 
to become more active against melanoma [130]. Patho-
gen vaccination, nanoparticles (polyhydroxylated fuller-
enols), galectin-9, GM-CSF, and inhibiting melanoma 
suppression of macrophage movement by macrophage 
inhibitory cytokines are some immunomodulatory agents 
that can be used to achieve this goal [130]. Preventing 
macrophage conversion to TAMs is another therapeutic 
approach. Antibodies that block TGF-β, Il-4, or Il-10 may 
also be employed in this technique [130]. Finally, research 
is being done on TAM-targeted treatments [131]. Pre-
clinical investigations of the STAT-3 inhibitor, Janus 
Kinase-2 inhibitor, or nanoparticles that carry small 
interfering RNA to TAMs are promising [132].

Targeting TAMs‑derived chemokines
Stromal factors influence the chemokines produced by 
TAMs in skin malignancies, and they help characterize 
the profile of TILs in the tumor microenvironment. Peri-
ostin (POSTN) is produced in the lesions surrounding 
melanoma cell nests in metastatic melanoma. The TAMs 
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are primarily present in the tumor stroma, and POSTN 
encourages CD163+ macrophages to release various 
cytokines, including Treg-related chemokines (CCL17 
and CCL22) [133, 134]. Repolarizing TAMs by immu-
nomodulators such as imiquimod and IFNs may inhibit 
melanoma tumor growth as TAMs generated by CCL17 
and CCL22 attract Tregs to melanoma tumor locations 
[135, 136]. Certain chemokines, including IL-8, CCL4, 
CCL17, and CXCL10, in the cerebrospinal fluid may pre-
dict brain metastases in melanoma patients. The use of 
certain chemotherapy agents, such as nimustine hydro-
chloride, dacarbazine, and vincristine, has been shown 
to decrease CCL22 production in B16F10 melanoma 
mice [134]. These findings suggest that TAM-derived 
chemokines produced in the tumor stroma under the 
influence of POSTN (a protein involved in extracellular 
matrix organization) may contribute to melanoma-spe-
cific TILs in melanoma patients [137].

Targeting TAMs‑derived angiogenic factors
TAMs have been shown to produce various angiogenic 
factors, including platelet-derived growth factor (PDGF), 
VEGF, TGFβ, and matrix metalloproteinases (MMPs) 
[138]. These factors can promote neovascularization by 
recruiting TAMs to the location of skin tumors in mouse 
models [139]. The VEGF and MMPs have been iden-
tified as crucial indicators of skin cancer progression 
[140], with high concentrations of POSTN and CD163+ 
TAMs in the tumor stroma of skin malignancies leading 
to increased production of MMP1 and MMP12 in skin 
lesions [141]. TAMs stimulated by tumor stromal factors 
may therefore serve as potential targets for molecular 
targeted therapy in the treatment of cancers [133].

Effects of anti‑cancer agents on TAMs
Recent studies have also concentrated on the immu-
nomodulatory impacts of chemotherapeutic drugs on 
TAMs. For instance, in mouse melanoma models, non-
cytotoxic dosages of paclitaxel could reduce MDSCs 
and even prevent their ability to suppress the immune 
response [142]. It has been discovered that chemothera-
peutic agents and drugs with low molecular weight 
co-localize along with TAMs at tumor locations. Hu-
Lieskovan et  al. showed combination therapy with 
dabrafenib and trametinib with synergistic impacts of 
immune checkpoint inhibitors. In contrast, dabrafenib 
and trametinib monotherapy led to elevated Tregs and 
decreased TAMs in melanoma, respectively [143].

In a different study, the collagen-structured anti-
macrophage receptor was discovered to induce TAMs 
polarization into pro-inflammatory phenotypes, lead-
ing to anti-tumor immunological responses in B16 
melanomas [36]. Furthermore, Gordon et  al. showed 

that suppression of PD-1/PD-L1 in vivo promoted mac-
rophage phagocytosis, decreased tumor progression, and 
improved macrophage survival [16, 144]. Lymphocyte-
Activation Gene 3 (LAG-3, CD223) is another important 
immune checkpoint molecule that participates in T-cell 
exhaustion similar to Cytotoxic T-Lymphocyte Antigen 
4 (CTLA-4) and Programmed cell death protein 1 (PD-
1) [145]. It is expressed on the surface of activated CD4+ 
and CD8+ T cells and other immune cells, such as natu-
ral killer cells, regulatory T cells, and macrophages [146, 
147]. TAMs release chemokines that lead to the recruit-
ment of immune-suppressive cells towards the tumor 
microenvironment, which influence other stromal cells, 
like fibroblasts, to synthesize chemokines. Young et  al. 
demonstrated that granulocytic MDSCs are recruited 
to tumor sites by the CXCR2 ligand, produced by fibro-
blasts, after being stimulated by IL-1β from TAMs [148]. 
Moreover, combination therapy with anti-CD115 Abs 
and CXCR2 agonists might inhibit B16F10 melanoma 
in  vivo by preventing the enrollment of granulocytic 
MDSCs and removing immature TAMs [149]. Nota-
bly, emactuzumab, an anti-human CD115 Ab, reduced 
CD163+ CD206+ M2 macrophages in melanoma cases 
by eliminating immature TAMs before being stimulated 
by IL-4 [150]. These findings imply that anti-CXCR2 ago-
nists and emactuzumab may trigger the anti-melanoma 
immune response by lowering M2 polarized TAMs. 
These results highlight the necessity of understanding 
how chemotherapeutic agents affect TAMs. The ICIs, in 
combination with TAMs targeting agents, provide prom-
ising outcomes for melanoma treatment. Data from pre-
clinical research provided good explanations for clinical 
trials in which elimination or repolarization of immuno-
suppressive TAMs are being investigated to overcome ICI 
resistance and improve their anti-tumor functions [151]. 
Studies using ICIs and immunomodulatory factors that 
block M2-TAMs activities have been performed or are 
still being conducted in melanoma patients. Decreases 
in M-CSF (CSF-1) and increases in GM-CSF levels are 
two strategies being investigated in conjunction with 
ICIs to re-polarize M2-TAMs into M1-TAMs. For exam-
ple, the phase 2 studies of recombinant human analog 
(sargramostim) as a GM-CSF agonist in combination 
with ipilimumab for the treatment of unresectable stage 
III or IV metastatic melanoma has been completed and 
revealed increased survival [152–154]. Talimogene laher-
parepvec (T-VEC), a modified oncolytic herpes virus, is 
another GM-CSF agonist that increases the anti-tumor 
responses and has been approved for local treatment of 
advanced melanoma. The T-VEC exclusively infects and 
replicates in tumor cells and results in immune-mediated 
lysis of tumor cells via encoding human GM-CSF, as well 
as the susceptibility of melanoma to ICIs. Combination 
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therapy of melanoma with T-VEC plus nivolumab and 
pembrolizumab has reached phase 2 clinical trial [155–
157]. OPTiM is also a phase III trial of talimogene laher-
parepvec, in which T-VEC had long-term efficacy in 
contrast to GM-CSF in advanced melanoma [158, 159]. 
Moreover, ONCOS-102 is an engineered oncolytic ade-
novirus encoding GM-CSF that has shown synergistic 
effects for metastatic or unrespectable melanoma treat-
ment in combination with pembrolizumab (anti-PD-1 
Ab) [160, 161]. Designing antagonists against M-CSF 
cytokine is another strategy that might lead to the deple-
tion of M2-TAMs and an improvement in ICIs functions. 
In addition, M-CSF contributes to metastatic melanoma 
resistance to BRAF-targeted therapies. Therefore, M-CSF 
acts as a therapeutic target in BRAFV600E melanoma. 
Monoclonal antibody lacnotuzumab, an anti-M-CSF, has 
been studied alone and in combination with ICI spar-
talizumab (an anti-PD-1 mAb) [162–165]. The M-CSF 
receptor (CSF1R) provides another therapeutic target 
to deplete the immunosuppressive functions of TAMs. 
Some examples include BLZ945 (CSF1R inhibitor) 

combined with PDR001 (anti-PD-1 mAb), LY3022855 
(CSF1R inhibitor) combined with tremelimumab or dur-
valumab ICIs, emactuzumab (CSF1R inhibitor), and cabi-
ralizumab (a humanized mAb against CSF1R) [166–170]. 
APX005M is a humanized CD40 agonist mAb that acti-
vates immune responses by stimulating IFN-γ secretion 
[170]. INCB001158 is an arginase inhibitor used as mon-
otherapy or combined with pembrolizumab in solid met-
astatic tumors such as melanoma. It has been suggested 
that inhibition of metabolic enzymes, such as ARG-1, 
could restore T-cell activities by filling arginine storage 
[171]. Moreover, it has been reported that PI3K-γ inhi-
bition can re-polarize M2-TAMs into pro-inflammatory 
M1-TAMs. Moreover, IPI-549 is a PI3K inhibitor used 
alone or in combination with nivolumab (Fig.  5) [172, 
173].

Macrophages in glioma cancer (GBM)
Glioma is a type of primary brain tumor, including glio-
blastoma, astrocytoma, and oligodendroglioma [174]. 
The microenvironment of glioma is characterized by 

Fig. 5  Role of TAMs in melanoma occurrence and therapy. Melanoma cells can elicit an immune response through the release of various cytokines, 
including CXCL-2, CCL-2, CSF-1, GM-CSF, A9, S100A8, and VEGFA. Some of these cytokines, such as GM-CSF and VEGFA, can stimulate the activation 
of macrophages, transforming these cells into TAMs. The activation of macrophages also results in the release of a series of factors, including TGF-β, 
CCL-22, and IL-10, which can influence dendritic cells and T-lymphocytes. In addition, TAMs can release TNF-α and interferon-γ to target cancer cells. 
It is worth noting that matrix metalloproteinases 9 and 2 (MMP9 and MMP2) can break down collagen in the tissue surrounding the melanoma 
mass, contributing to its decomposition
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the presence of macrophages and microglia, known as 
tumor-associated macrophages [175, 176]. Microglia, 
which are phagocytes of the central nervous system, exist 
in three forms: amoeboid, ramified, and reactive [177, 
178]. Amoeboid microglia are involved in embryonic 
central nervous system development [179], while rami-
fied microglia are found in large quantities in the brain 
parenchyma with the ability to transform into neurons, 
astrocytes, or oligodendrocytes [180, 181]. Reactive 
microglia, which are rod-like with non-branching pro-
cesses and numerous lysosomes and phagosomes, are 
associated with brain injury and neuroinflammation [182, 
183]. They also secrete MHC class II antigens and pro-
duce inflammatory mediators [184, 185]. Macrophages 
in the central nervous system can be classified according 
to their location as perivascular macrophages, menin-
geal macrophages, macrophages of the circumventricular 
organs, or macrophages of the choroid plexus. Among 
the brain cancers mentioned above, glioma is a particu-
larly aggressive and untreatable type of brain tumor with 
a poor prognosis, and current treatments have not been 
successful in improving outcomes [186, 187]. Therefore, 
there is a need for further research into the mechanisms 
behind the invasiveness and recurrence of glioma and the 
development of new therapeutic approaches, including 
immunologic treatment [188, 189].

Glioma-associated macrophages (GAMs) are a key 
component of the tumor microenvironment in glio-
mas [190] that can be derived from microglia as well 
as bone marrow-derived macrophages [191–194]. The 
number and characteristics of GAMs can vary signifi-
cantly, with evidence from single-cell sequencing show-
ing that GAMs are made up of 59.05% and 27.87% of 
immunocytes in primary and recurrent glioblastomas, 
respectively [195]. Various signaling molecules, growth 
factors, transcription factors, and epigenetic and post-
transcriptional modifications influence the phenotype 
and activation state of GAMs. Depending on their origin, 
these cells can exhibit different characteristics, with some 
derived from brain-resident microglia [196] and others 
from bone marrow-derived monocytes [197]. The GAMs 
play a role in various aspects of glioma progression, such 
as cell motility, proliferation, survival [188], and immune 
suppression [198, 199]. They can also produce a range of 
growth factors and pro-inflammatory cytokines that con-
tribute to the supportive matrix for tumor cell metastasis 
and the development of an immunosuppressive micro-
environment [200]. Understanding the role of GAMs in 
the tumor microenvironment may provide insights into 
potential therapeutic approaches for gliomas. In this con-
text, Woolf et al. demonstrated using single-cell imaging 
that P2RY12 and TMEM119 label microglia in GBM, and 
they further demonstrated that these markers could be 

used to distinguish microglia from BMDM. P2RY12 pro-
tein expression is associated with longer survival rates in 
patients. Activation of P2Y12 receptors has been linked 
to the extension of microglial cell processes [201, 202]. 
Moreover, another study that analyzed marker genes in 
GAMs found that only a small number of genes were 
consistently present, indicating the diverse responses 
observed in different settings. In this regard, Tgm2 and 
Gpnmb genes were the only ones that were common 
across the analyzed data sets, highlighting the need for 
further research to understand the functional state of 
GAMs.

GAMs regulating GBM malignancy
In the presence of glioblastoma (GBM) cells, the func-
tions of microglia may be impaired, leading to the initia-
tion or growth of tumors. This has been demonstrated 
through comparative transcriptome analysis. It was found 
that GBM-bearing mice’s microglia are less sensitive and 
impaired at monitoring immunity due to a reduction in 
a group of genes that encode receptors for various anti-
gens, chemokines, and cytokines [203]. Additionally, 
microglia engage in reciprocal molecular crosstalk with 
glioblastoma stem cells, exhibiting a more direct pro-
tumorigenic function through the secretion of TGF-β 
[204]. Microglia activated by GM-CSF can release CCL5, 
a chemokine that upregulates the secretion of MMP2 
in GBM cells, thereby promoting tumor migration and 
invasion [205]. This effect may be mediated by the secre-
tion of interferon-gamma (IFNγ) by infiltrating micro-
glia, which leads to the stable expression of a specific 
transcriptional program in GBM cells that is associated 
with myeloid cells [206]. This epigenetic immunoedit-
ing may also be present in human mesenchymal subtype 
glioblastoma stem cells (GSCs) [207]. The TAMs also 
play a role in GBM invasion through the expression of 
CCL8 and the activation of signaling pathways in GBM 
cells through the binding of CCL8 to CCR1 and CCR5 
receptors [208], the secretion of CSF-1 [209] and epider-
mal growth factor (EGF) by GBM and microglia, respec-
tively, have also been shown to stimulate GBM invasion 
through the recruitment of TAMs and activation of sign-
aling pathways in GBM cells through the binding of EGF 
to epidermal growth factor receptors (EGFR) [210].

GAMs in angiogenesis of GBM
The resistance of GBM to anti-VEGF therapy, which tar-
gets a protein involved in angiogenesis, has been linked 
to the macrophages infiltration into the tumor (Fig.  6) 
[211]. It depends on the activation state of the immune 
cells and whether they promote or suppress angiogen-
esis. Immunosuppressive macrophages like M2 promote 
angiogenesis, while pro-inflammatory macrophages like 
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M1 suppress it [212]. Depletion of TAMs in animal mod-
els has been shown to reduce the blood vessel density in 
GBM, suggesting a role of these cells in GBM angiogen-
esis [213]. Resident microglia may be particularly impor-
tant in this process, as their selective depletion has been 
shown to reduce blood vessels in GBM to a greater extent 
than the depletion of all TAMs [213]. The TAMs isolated 
from a specific type of glioma have been found to over-
express proangiogenic factors such as VEGF and CXCL2, 
both of which have been linked to angiogenesis. The 
interaction of the receptor for advanced glycation end 
products (RAGE) with its ligands has also been shown to 
promote angiogenesis in GBM through the activation of 
TAMs-specific signaling pathways [214].

GAMs in drug resistance of GBM
Resistance to temozolomide (TMZ) has been reported as 
a common obstacle to GBM patients’ treatment, where 
the resistance rate is approximately 60% [215]. Litera-
ture evidence suggests that genetic factors and GAMs 
may contribute to this resistance [216]. The interleu-
kin-11 (IL-11) produced by microglia and macrophages 
activates STAT3-MYC signaling in GBM cells, leading 

to TMZ resistance [216]. By inhibiting GAM recruit-
ment and IL-11 secretion through ABP1 ablation or 
genetic inactivation, TMZ resistance has been reversed 
in a murine model of GBM [217]. Additionally, different 
subpopulations of GAMs may have distinct effects on 
treatment responses [218]. For instance, M2-like GAMs 
contribute to resistance through secretion of exosomal 
miR-21-5p, while M1-like polarization of GAMs induced 
by GBM-derived extracellular HMGB1 has been shown 
to restore sensitivity to TMZ. In addition to chemore-
sistance, GAMs have also been implicated in resistance 
to radiotherapy and antiangiogenic therapy [219]. The 
impact of GAMs on treatment responses may be medi-
ated by the expression of PD-L1, which interacts with 
CD80 on T-cells and leads to CD4+ T-cell suppression, 
Treg expansion, and immune checkpoint blockade resist-
ance [220]. The role of CD73-expressing macrophages in 
ICB resistance has also been demonstrated in a murine 
model of GBM [221].

GAM‑targeted therapy in GBM
Several approaches have been identified and tested in 
experimental and clinical settings for targeting TAMs in 
glioblastoma (GBM). These approaches can be divided 
into three categories: TAM re-education, TAM educa-
tion, and TAM depletion. TAM education involves acti-
vating pro-inflammatory pathways, which can also be 
delivered through gene therapy or direct administration, 
while TAM depletion involves targeting key molecules 
to achieve the unbiased depletion of TAMs or to inhibit 
macrophage infiltration. These TAM-targeting strategies 
can potentially counter immunotherapies and influence 
glioma progression [174].

Anti‑angiogenic treatment
Tumor-infiltrating myeloid cells may play a role in the 
limited effectiveness of anti-angiogenic therapies by 
expressing alternative proangiogenic factors that bypass 
VEGF-mediated pathways [222]. The MerTK inhibitor 
MRX-2843 has been shown to have therapeutic benefits 
by promoting the polarization of macrophages away from 
immunosuppressive conditions, inhibiting neo-angiogen-
esis in the glioblastoma microenvironment, and inducing 
tumor cell death [223]. The metalloprotease-disintegrin 
ADAM8, which is highly expressed in tumor cells and 
associated immune cells in glioblastomas, is related to 
angiogenesis and is associated with a poor clinical prog-
nosis [224]. The regulation of osteopontin mediates the 
angiogenic potential of ADAM8 in glioblastoma cells/
primary macrophages, so targeting ADAM8 may be a 
viable approach for modulating angiogenesis in glioblas-
toma [225].

Fig. 6  Anti-tumor/pro-tumor activity of macrophages in GBM
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PD‑L1 signaling pathway
Pembrolizumab monotherapy, which targets the PD-1 
protein, cannot elicit an effective immune response in 
most GBM patients, likely due to the low number of T 
cells within the tumor microenvironment and the abun-
dance of CD68 + macrophages [226]. Besides that, in 
a recent study, it was reported that GBM cells secrete 
interleukin-11 (IL11) in response to glial-derived neuro-
trophic GAMs, activating signal transducer and activator 
of transcription 3-MYC signaling. This signaling pathway 
leads to the induction of stem cell states, which increase 
tumorigenicity and resistance to temozolomide (TMZ) 
in GBM cells. In mouse GBM models, PI3K inactivation 
or inhibition reduces microglia recruitment and IL11 
secretion, resulting in improved TMZ response [227]. 
Anyway, in the late stage of temozolomide (TMZ) treat-
ment or relapse, treatment with an anti-PD-L1 antibody 
significantly reduced the infiltration of CD163-positive 
macrophages into tumors. In contrast, a combination of 
a PD-L1 antibody and IPI-549 (a selective PI3Kγ inhibi-
tor) therapy effectively inhibited tumor growth [228]. 
Treatment with rapamycin and hydroxychloroquine 
(RQ) decreased the polarization of M2 macrophages, 
increased phagocytic ability, and increased the accumula-
tion of lipid droplets. This treatment enhanced the ratio 
of anti-tumoral to pro-tumoral immune cells within the 
tumor and the ratio of CD8 to CD4 T cells. The combi-
nation of RQ and anti-PD1 treatment was found to be 
synergistic in action [229]. Saha et al. tested a triple com-
bination of anti-CTLA-4, anti-PD-1, and G47Δ-mIL12 
(oncolytic herpes simplex viruses armed with angiosta-
tin and IL-12) in mouse GBM models. This treatment 
was associated with an influx of macrophages, an anti-
tumoral, macrophage-like polarization of these cells, and 
an increase in the ratio of T-effector to T regulatory cells. 
This treatment was able to cure most mice with gliomas. 
Immune cell depletion studies showed that CD4+ and 
CD8+ T cells and macrophages are all required for the 
synergistic curative activity of this treatment [230].

Combination therapy
Several studies have reported the potential of target-
ing pro-tumoral macrophages in the treatment of GBM. 
Almahariq et  al. found that the BLZ-945, a CSF-1R 
inhibitor, reduced pro-tumoral macrophage polarization 
and improved the response to radiotherapy in respected 
tumors with a high baseline population of pro-tumoral 
macrophages [231]. The results of Zhu et al. showed that 
when debulking plus anti-CD47 tumors were compared 
with non-debulking plus IgG tumors, macrophages with 
CD68-positive labels were recruited more, pro-inflam-
matory cytokines like CXCL10 were increased, and angi-
ogenic proteins were decreased, indicating that surgical 

resections coupled with anti-CD47 blocking immuno-
therapy promote inflammation and prolong survival 
[232]. As a result of lipopolysaccharide and interferon-
gamma stimulation of bone marrow macrophages and 
brain-resident macrophages, Herting et  al. have found 
that dexamethasone prevented the production of IL-1. 
These findings suggest that IL-1 signaling may be a useful 
therapeutic target in the management of GBM-associated 
cerebral edema [233] (Table 1).

Conclusion
The use of cancer immunotherapy for removing residual 
tumors has emerged as an effective way to improve the 
survival of patients with advanced-stage cancers, as it 
enhances the immune system’s ability to eliminate mini-
mal residual tumors. As a result of ineffective immune 
cells against cancer cells, patients with cancer are more 
likely to develop tumors, which reduces the effective-
ness of therapeutic measures. The macrophage is one of 
the most important innate system cells contributing to 
normal homeostasis, inflammation, and phagocytosis. 
Several studies have shown, however, that macrophages 
promote genetic instability and angiogenesis in the devel-
opment of oncogenesis and neoplasms. The M2 mac-
rophages promote tumor growth and metastasis. Among 
the most diverse immune cells in the TME are the M2 
macrophages, which along with the M1 macrophages, are 
called TAMs. The pro-tumorigenic M2 macrophages are 
attracted to tumor cells by chemokines and growth fac-
tors. Therefore, immunotherapy efficacy is also strongly 
influenced by changes in macrophage subpopulations. 
The TAMs have been implicated as a therapeutic tar-
get in numerous biological studies due to their ability to 
deplete, inhibit recruitment, and influence polarization 
status. In addition, TAMs limit the efficacy of immuno-
therapy approaches, such as anti-PD1 treatment, because 
they are linked to resistance to well-known antitumor 
therapies, such as chemotherapy and radiotherapy. Any-
way, many preclinical studies using small molecules or 
antibodies to block each of mentioned factors/pathways 
individually have demonstrated significant improve-
ment in response to a wide variety of tumors to therapy, 
indicating that their blockage is generally well tolerated. 
However, more research is needed to overcome mac-
rophage-based cancer therapy, particularly in nano-
particles and drug delivery. In this line, the use of small 
molecules or antibodies to block specific factors or path-
ways associated with TAMs has shown promising results 
in preclinical studies, leading to improved responses to a 
wide variety of tumors. These approaches have generally 
been well tolerated. However, more research is needed, 
especially in the field of nanoparticles and drug delivery, 
to advance macrophage-based cancer therapy further. As 
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Table 1  Macrophages-based therapeutic strategies in four different cancers: breast, glioma, colorectal, and melanoma

Mechanisms of 
TAMs targeting 
agents

Cancer type Agent Name Function References

GM-CSF agonist Melanoma 1-T-VEC
2-ONCOS-102
3-Sargramostim

Induction of cytotoxic T-cell responses, immune-mediated 
tumor cell death, repolarization of M2-TAMs to tumor sup‑
pressive phenotype M1-TAMs

[152–154]

Breast cancer 1-T-VEC [234]

Glioma 1-T-VEC2-Sargramostim [230, 235]

Colorectal 1-ONCOS-102 [236, 237]

M-CSF antagonist Melanoma 1-Lacnotuzumab Antagonists against M-CSF cytokine or its receptor (M-CSF-R) 
lead to the depletion of M2-TAMs and its tumor progression 
support, interfering with M-CSF signaling, TAM recruitment, 
and polarization

[162, 163, 165, 238]

Breast cancer 1-BLZ945
2-RG7155

[239, 240]

Glioma 1-GW2580
2-BLZ945
3-AFS98

[241–244]

Colorectal 1-PLX3397 [245]

CSF1R antagonist Melanoma 1-BLZ945
2-LY3022855
3-Emactuzumab
4-Cabiralizumab
5-PLX647
6-siCD115

Targeting M-CSF receptors (CSF1R) on MDSCs results 
in the preferential expression of M1-TAMs and inhibition 
of tumor growth, by modulating the TILs profiles
Inhibiting the c-kit tyrosine kinase and colony-stimulating 
factor-1 (CSF-1) receptor kinase

[132, 166–170]

Breast cancer 1-Pexidartinib (PLX3397) [246]

Glioma 1-Pexidartinib (PLX3397) [246]

Colorectal 1-Cabiralizumab [247]

CD40 Agonist Melanoma 1-APX005M CD40 agonist, after binding to CD40, activates immune 
responses by stimulating the secretion of IFN-γ. Following 
the interaction of IFN-γ with its receptor on melanoma cells, 
the JAK/STAT/IRF1 downstream cascade is triggered

[170]

Breast cancer 1-ADC-1013
2-Selicrelumab
3-ChiLob7/4
4-SEA-CD40

[248–252]

Glioma 1-APX005M
2-6-2141-V11

[253, 254]

Colorectal 1-ADC-1013
2-RO7009789
3-ChiLob 7/4
4-APX005M

[248, 255]

IDO inhibitor Melanoma 1-Indoximod
2-Epacadostat (or ECHO-204)

Attenuating immune
suppression in tumors through inhibition of tryptophan 
metabolism, inducing tumor regression by stimulating T-cell 
recruitment and preventing resistance to ICIs and TAMs-
mediated immune evasion

[25, 256, 257]

Breast cancer 1-NLG919 (Navoximod)
2-KHK2455
3-LY3381916

[258–262]

Glioma 1-Indoximod
2-NLG2105
3-PF-06840003

[263, 264]

Colorectal 1-Epacadostat
2-NLG919 (Navoximod)

[265–267]

ARG-1 inhibitor Melanoma 1-INCB001158 (or CB-1158)
2-Piceatannol

Restore T-cell activities through replacing arginine storage, 
Attenuating tumor growth and mortality rate

[171, 268, 269]

Breast cancer 1-nor-NOHA
2-CB-1158
3-Piceatannol
4-Chlorogenic acid

[269–272]

Glioma 1-nor-NOHA
2-OATD-02 (OAT-1746)

[273, 274]

Colorectal 1-Piceatannol
2-Chlorogenic acid

[271, 275]
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the role of TAMs in cancer therapy is increasingly recog-
nized, several crucial gaps in the field necessitate further 
investigation. TAM heterogeneity, plasticity, and their 
interactions with other immune cells remain areas of 
exploration. Understanding the underlying mechanisms 
of TAM-mediated immunosuppression and identifying 
reliable biomarkers for patient stratification and treat-
ment response assessment is paramount. Additionally, 
optimizing TAM-targeted therapies and validating their 
clinical effectiveness are essential for translating preclini-
cal findings into meaningful treatments.
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Table 1  (continued)

Mechanisms of 
TAMs targeting 
agents

Cancer type Agent Name Function References

PI3K inhibitor Melanoma 1-IPI-549
2-GSK2636771

Re-polarization of pro-tumor M2-TAMs towards pro-inflam‑
matory M1-TAMs, overexpression of IFN-γ-responsive factors, 
and elimination of the tumor suppressor PTEN gene

[172, 276]

Breast cancer 1-Alpelisib (BYL719)
2-GDC-0077 (Inavolisib)
3-GDC-0941 (Pictilisib)

[277–280]

Glioma 1-PX-866
2-LY294002
3-BKM120

[281–283]

Colorectal 1-PX-866
2-BKM120 (Buparlisib)
3-HS-173
4-BEZ235
5-NVP-BEZ235

[284–288]

Anti-LAG-3 Melanoma 1-BMS-986016 (Relatlimab)
2-BI 754111

Inhibiting LAG-3 binding to MHC-II, increasing CD8+ IFNγ 
producing cells and decreasing tumor progression

[289, 290]

Breast cancer 1-IMP321 (Eftilagimod alpha)
2-REGN3767

[291–293]

Glioma 1-BMS-986016 (relatlimab) [294, 295]

Colorectal 1-MK4280 (favezelimab)
2-MGD013 (tebotelimab)

[296–298]
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